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Abstract
The robust Markov Decision Process (MDP)
framework aims to address the problem of param-
eter uncertainty due to model mismatch, approx-
imation errors or even adversarial behaviors. It
is especially relevant when deploying the learned
policies in real-world applications. Scaling up
the robust MDP framework to large or continu-
ous state space remains a challenging problem.
The use of function approximation in this case
is usually inevitable and this can only amplify
the problem of model mismatch and parameter
uncertainties. It has been previously shown that,
in the case of MDPs with state aggregation, the
robust policies enjoy a tighter performance bound
compared to standard solutions due to its reduced
sensitivity to approximation errors. We extend
these results to the much larger class of kernel-
based approximators and show, both analytically
and empirically that the robust policies can signif-
icantly outperform the non-robust counterpart.

1. Introduction
We address the problem of learning a robust policy in
Markov decision processes with large or continuous state
spaces. Finding an exact solution is typically infeasible in
such settings and some form of function approximation is
needed. We focus on the approach of kernel-based rein-
forcement learning (Ormoneit & Sen, 2002; Barreto et al.,
2016) where the reward and the transition functions are ap-
proximated through the use of kernel averaging on a set of
training examples. Moreover, we employ a class of linear
approximators called averagers (Gordon, 1995; Tsitsiklis &
van Roy, 1996) to approximate the value function, which
can be seen as an application of the stochastic-factorization
trick (Barreto et al., 2016) in the kernel-based approach.
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This class includes kernel averaging, k-nearest-neighbor,
weighted k-nearest neighbor, Bezier patches, linear interpo-
lation etc. In particular, state aggregation is also a special
case.

While the motivation of the robust MDP framework (Nilim
& El Ghaoui, 2005; Iyengar, 2005; Wiesemann et al., 2013)
is to deal with model mismatch or parameter uncertain-
ties in the rewards and transitions, in this work we empha-
size its use as a way to protect against the inflexibility or
“mismatch” in the value function imposed by the chosen
function approximators. It has been shown (Petrik & Sub-
ramanian, 2014) that for the class of approximators based
on state aggregation, the robust solution enjoys a tighter
performance bound compared to standard solutions, with
a loss against the optimal policy that scales with O( 1

1−γ )

instead of O( 1
(1−γ)2 ), where γ ∈ (0, 1) is the discount fac-

tor for the infinite-horizon discounted total reward. We
extend and derive similar results for the much larger class
of kernel-based approximators that includes state aggrega-
tion as a special case. Empirically, we demonstrate that the
better performance bound does translate into solutions that
perform better, especially when there is a model mismatch
between the training and the testing environments.

Our contribution is twofold. Theoretically, we extend the
existing work on the state-aggregation case (Petrik & Sub-
ramanian, 2014) to general kernel averagers. In the state-
aggregation case, member states of the same aggregate state
share the same action. This no longer holds in the general
case and the extension involves the construction of a new
robust MDP with an expanded action space that allows the
derivation of a performance bound that subsumes the pre-
vious bound. Empirically, we present new results on the
performance of robust policies in various benchmark tasks
in reinforcement learning.

1.1. Related works

Until recently, the robust MDP framework has been ana-
lyzed under various finite-state settings (Nilim & El Ghaoui,
2005; Iyengar, 2005; Wiesemann et al., 2013). Tamar et al.
(2014) proposed a robust approximate policy iteration al-
gorithm with linear approximation of the value function.
Additional assumptions need to be made on the exploration
policy to ensure convergence. Roy et al. (2017) extended the
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results to non-linear approximation and proposed stochastic
gradient algorithms that are guaranteed to converge to a
local minimum. As in standard results based on projected
Bellman equation, the error bound for the final policy scales
with O( 1

(1−γ)2 ) in both (Tamar et al., 2014) and (Roy et al.,
2017).

Performance loss bound of O( 1
1−γ ) for state aggregation

has been shown by Van Roy (2006), but it depends on the in-
variant distribution. Similar bound for linear approximation
can be achieved by the method of DRADP (Petrik, 2012),
but this approach results in NP-hard problems. It is inter-
esting to note that a very different approach by Scherrer
& Lesner (2012), which uses non-stationary policies, also
results in O( 1

1−γ ) loss bound.

2. Problem setup
Let M = (S,A, p, r, γ) be a discrete-time MDP with fi-
nite state space S and finite action set A. The finite-state
assumption is for analytical convenience and our method
applies without change to infinite or continuous-state MDPs.
Transition probabilities are given by the function p where
we define p(i, a, i′) = Pr(st+1 = i′|st = i, at = a) as
the probability of transitioning to state i′ when action a is
taken in state i. The expected reward when taking a in i is
given by r(i, a). All rewards are assumed bounded and we
focus on maximizing the total discounted reward where the
discount factor is γ ∈ (0, 1).

Given a stationary deterministic policy π : S → A, its value
at state i, vπ(i) is defined as the expected infinite-horizon
total discounted reward, when π is followed starting from
state i. The value function (as a vector) satisfies:

vπ = rπ + γPπv
π =

∞∑
t=0

(γPπ)
t
rπ,

where rπ(i) = r(i, π(i)) and the i-th row of the matrix
Pπ, denoted Pπ(i, ·) is the next-state distribution where
Pπ(i, i′) = p(i, π(i), i′). It is a standard result of MDP
(Puterman, 1994) that an optimal stationary deterministic
policy π∗ exists (regardless of starting state), and its value
is given by

v∗ := vπ
∗

= rπ∗ + γPπ∗v
π∗ = max

π∈A|S|
rπ + γPπv

π∗ .

where the max function is assumed to be element-wise (i.e.
state-wise). Let T be the Bellman operator on any value
function v defined by

T v := max
π∈A|S|

rπ + γPπv. (1)

Due to the standard result that T is a γ-contraction in the
max-norm, one can find v∗ by starting with an arbitraty v
and repeatedly applying T until convergence.

In the robust MDP framework, instead of a fixed reward
and transition function r and p, one defines an uncertainty
set Ui,a ⊆ Ri,a × Pi,a for each (i, a) where Ri,a is a set
of possible expected rewards and Pi,a is a set of possible
next-state distributions. We restrict ourselves to the SA-
rectangular setting (Wiesemann et al., 2013) where for each
policy π and each time step t, the “nature” is free to choose a
pair (rt, Pt) ∈ Uπ such that (rt(i), Pt(i, ·)) ∈ Ui,π(i) for all
i. The immediate reward and next-state after taking action
at time t will be drawn from rt and Pt. We assume that all
uncertainty sets are compact. The standard MDP is a robust
MDP where Ri,a and Pi,a are singletons for all (i, a) and
therefore Uπ is a singleton {(rπ, Pπ)}.

For robust MDPs, we define the robust value of a policy π
as follows:

ṽπ := min
(rt,Pt)∈Uπ

∞∑
t=0

(γPt)
t
rt.

Note that we use ṽ for the robust value and v for the stan-
dard value. It is a standard result of robust MDP (Nilim
& El Ghaoui, 2005; Iyengar, 2005) that given a stationary
deterministic policy π, there exists a particular choice of
(r∗π, P

∗
π ) ∈ Uπ such that ṽπ can be minimized by setting

(rt, Pt) = (r∗π, P
∗
π ) for all t. We define the robust Bellman

operator T̃ as

T̃ ṽ := max
π∈A|S|

min
(r,P )∈Uπ

r + γP ṽ.

Again, T̃ can be shown to be a γ-contraction and the optimal
robust value satisfies ṽ∗ = T̃ ṽ∗. The optimal robust policy
π̃∗ is then the greedy policy with respect to ṽ∗ where

π̃∗ := arg max
π∈A|S|

min
(r,P )∈Uπ

r + γP ṽ∗.

2.1. Kernel Averager

In this work we use kernel averagers for two related but
different purposes. First, we use kernel averagers to ap-
proximate the reward and/or the transition functions based
on a training set of example state-action outcomes. This
is needed when the true reward and transition model is not
available. Secondly, we use kernel averagers to approximate
the value function. This addresses the practical issue of
dealing with very large or continuous state spaces.

2.1.1. APPROXIMATING THE REWARD AND TRANSITION
FUNCTION

For a particular action a, when the true reward and transition
function is not available, we approximate them based on
a training set Da = {(ia1 , i′a1 , ra1) . . . (iama , i

′a
ma , r

a
ma)} as

follows:

r̂(i, a) :=

∑ma
k=1 ψ(i, iak)rak∑ma
k=1 ψ(i, iak)
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and

p̂(i, a, i′) :=

∑ma
k=1 ψ(i, iak)I(i′ak = i′)∑ma

k=1 ψ(i, iak)

where ψ(i, i′) ≥ 0 for all i, i′ ∈ S is a kernel function, and
I is the indicator function. We define the normalized version

ψ̂(i, iak) =
ψ(i, iak)∑ma
k=1 ψ(i, iak)

and let ψ̂a(i) be a vector whose k-th entry equals ψ̂(i, iak).
Let ra be a vector whose k-th entry equals rak . Then we
have r̂(i, a) = 〈ψ̂a(i), ra〉.

One can solve the approximate MDP (S,A, p̂, r̂, γ) using
the approximate version of (1):

T̂ v := max
π∈A|S|

r̂π + γP̂πv. (2)

Let Ŝa = {i′a1 . . . i′ama} and let Ŝ = ∪a∈AŜa. Note that
solving the above only requires keeping track of v(i) for
i ∈ Ŝ since p̂(·, ·, i) will be zero for any i /∈ Ŝ.

2.1.2. APPROXIMATING THE VALUE FUNCTION

When S is large, (1) is no longer feasible. Similarly, (2) can
be too expensive to solve when the training set is large. We
assume a linear approximation architecture where v is ap-
proximated by Φw where Φ is a |S|×m feature matrix, with
m ≤ |S| (typically m � |S|) and w is an m-dimensional
vector. The i-th row Φ(i, ·) corresponds to a feature vector
for state i. The “standard” solution is to seek w that satisfies

Φw = ΠΦT Φw (3)

where ΠΦ is a projection onto the range of Φ. This can
be done, for instance, with the method of least-squares. A
greedy policy πw with respect to w can then be derived via

πw := arg max
π

rπ + γPπΦw (4)

when the model is available or

π̂w := arg max
π

r̂π + γP̂πΦw (5)

when a training set is used.

We focus on the special case where Φ is a kernel averager.
A feature matrix is a kernel averager if

∀i, j, 0 ≤ Φi,j ≤ 1 and ∀i,
∑
j

Φi,j = 1.

We have a simpler solution for w when Φ is a kernel aver-
ager. In this case, one can consider a subset S̃ ⊂ S of m
representative states andw is the value function for these rep-
resentative states. Consider a new finite MDP (S̃, A, p′, r′)

with state space S̃ = {1 . . .m} where each j ∈ S̃ is asso-
ciated with a corresponding state ij ∈ S. Let the expected
reward r′(j, a) := r(ij , a) and transition function

p′(j, a, j′) :=
∑
i′∈S

p(ij , a, i
′)Φi′,j′ .

Note that each row in Φ is used as a next-state distribution.
The Bellman operator

T ′w := max
π

r′π + γP ′πw (6)

is a γ-contraction in this new m-state MDP and therefore
w = T ′w can be solved via repeated application of T ′.
A greedy policy in the original MDP can then be derived
via (4). Similarly, one can define p̂′ and r̂′ using the training
set, solve the corresponding Bellman equation and obtain a
greedy policy using (5).

3. Robust Solution
We can derive a performance bound for the policy derived
via (4). In the case where Φ is a kernel averager with the
additional condition that Φij ,j = 1 for all j = 1 . . .m, let
w∗ be the fixed-point of (6). It has been shown (Gordon,
1995) that

‖vπw∗ − v∗‖∞ ≤
4γε

(1− γ)2

where ε = minw ‖v∗ − Φw‖∞. This result is tight in the
sense that for any γ ∈ (0, 1), there exists MDP and feature
Φ such that the equality is achieved (Tsitsiklis & van Roy,
1996). Similar results, under slightly different condition for
Φ are also available (Van Roy, 2006; Tsitsiklis & Van Roy,
1997). Since γ is typically close to 1, the performance bound
can be very weak considering that the maximum value for
any state scales with 1

1−γ . For the case of state aggregation
(i.e. Φ is binary), (Petrik & Subramanian, 2014) have shown
that a robust solution can enjoy a better bound of 2ε

1−γ .

The robust solution by (Petrik & Subramanian, 2014) is
obtained by constructing a corresponding robust MDP based
on the original MDP and solving for the optimal robust
policy. The construction relies on the fact that Φ is based on
state aggregation. For general kernel averagers, we need a
new construction, which we describe in this section.

Our robust MDP M̃ assumes that Φ is a kernel averager
with m “abstract” states, each represented by a kernel. The
state space of M̃ is therefore S̃ = {1 . . .m}. We say that a
state i ∈ S is a member of abstract state j ∈ S̃ if Φi,j > 0.
We defineM(j) = {i ∈ S : Φi,j > 0} as the set of member
states of j. One can interpret M(j) as the set of states that
share a certain feature j.

The action space in M̃ , instead of A, is expanded to Ã =
A|S|. This means that each “action” in M̃ corresponds to a
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complete “policy” in the original MDP M . The execution
of an “action” π in M̃ proceeds as follows:

1. Let j ∈ S̃ be the current state.

2. The agent chooses an action π ∈ Ã.

3. “Nature” chooses a member state i ∈M(j).

4. Action π(i) is executed in i with reward r(i, π(i)) and
next-state distribution p(i, π(i)) chosen according to
M .

5. From the next state i′, the next abstract state is chosen
according to Φi′ .

Note that in the last step, the agent transitions to the next
abstract state by treating each row of Φ as a distribution –
which is valid since Φ is a kernel averager.

Given any MDP M and a kernel matrix Φ, we now have
a corresponding robust MDP M̃ . Similarly, any policy π
in M has a corresponding policy in M̃ , where the same
“action” π is assigned to every abstract state j ∈ S̃. In the
other direction, let w ∈ Rm be the (robust) value function
of some policy in M̃ . We can then derive a greedy policy
πw in M via (4). Let vπw be the (true) value of policy πw
in M , we show that the robust value Φw is always a lower
bound to vπw :

Lemma 1. Let w be the value of robust policy π̃ in M̃ . Let
πw be the greedy policy with respect to w as defined in (4).
Then

vπw ≥ Φw.

Proof. For each i ∈ S, we have

(Φw)(i)

=
∑
j∈S̃

Φi,jw(j)

(∗)
=
∑
j∈S̃

Φi,j

(
min

i′∈M(j)
r(i′, π̃j(i

′)) + γ〈p(i′, π̃j(i′)),Φw〉
)

(∗∗)
≤
∑
j∈S̃

Φi,j (r(i, π̃j(i)) + γ〈p(i, π̃j(i)),Φw〉)

≤
∑
j∈S̃

Φi,j

(
max
a

r(i, a) + γ〈p(i, a),Φw〉
)

= max
a

r(i, a) + γ〈p(i, a),Φw〉

= r(i, πw(i)) + γ〈p(i, πw(i)),Φw〉

where in (*) we apply the robust Bellman equation for the
policy π̃ and in (**) either Φi,j = 0 or i ∈M(j).

We therefore have that Φw ≤ Tπw(Φw) where Tπw is the
Bellman operator with respect to policy πw. Theorem 6.2.2

of (Puterman, 1994) states that any v such that v ≤ Tπv
satisfies v ≤ vπ. It follows that Φw is a lower bound of
vπw .

Our strategy is now clear. Since the robust value of every
policy in M̃ is a lower bound for the corresponding greedy
policy in M , we look for the optimal robust policy in M̃ .
This involves solving M̃ via the robust Bellman operator T̃ .
Let π̃∗ be the optimal robust policy and w∗ its robust value.
We then derive a greedy policy πw∗ . We are now ready to
derive a performance bound for vπw∗ .

Theorem 1. Let ε = minw ‖v∗ − Φw‖∞ and w0 =
arg minw ‖v∗ − Φw‖. Let π̃∗ be the optimal robust pol-
icy in M̃ and w∗ its robust value. Let πw∗ be the greedy
policy with respect to w∗ via (4). Then

‖vπw∗ − v∗‖∞ ≤
2ε+ L0

1− γ

where

L0 = max
{(j,j′)∈S̃|M(j)∩M(j′) 6=∅}

|w0(j)− w0(j′)|.

Proof. We follow the strategy of (Petrik & Subramanian,
2014). First, let π̄ be the corresponding robust policy in M̃
whose actions in all j ∈ S̃ equal the true optimal policy π∗

in M . Let wπ̄ be its robust value in M̃ . Then,

∀i, v∗(i)− vπw∗ (i) ≤ v∗(i)− (Φw∗)(i)

≤ v∗(i)− (Φwπ̄)(i)

where the first inequality is by Lemma 1 and the second
inquality is due to the fact that w∗ is the value of the optimal
robust policy.

Using the linear program definition of the robust value wπ̄

(Marecki et al., 2013),∑
j

wπ̄(j) = max
w

∑
j

w(j)

s.t. Φ1w ≤ Φ2rπ∗ + γΦ2Pπ∗Φw (7)

where Φ1 and Φ2 are defined as follows

• Φ1 is a (
∑
j |M(j)|)×m matrix such that

∀j, j′ ∈ S̃,∀i ∈M(j),Φ1
(j,i),j′ = I(j = j′)

• Φ2 is a (
∑
j |M(j)|)× |S| matrix such that

∀j ∈ S̃,∀i ∈M(j),∀i′ ∈ S,Φ1
(j,i),i′ = I(i = i′)

Note that each row of Φ1 and Φ2 corresponds to a pair (j, i)
of abstract state j and its member i. Any w that satisfies (7)
is therefore a lower bound for wπ̄ .
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Let w0 = arg minw ‖v∗ − Φw‖∞. Since

∀j0,∀i0 ∈M(j0),|v∗(i0)−
∑
j

Φi0,jw0(j)| ≤ ε

|w0(j0)−
∑
j

Φi0,jw0(j)| ≤ L0

we have that

−(ε+ L0)1 ≤ Φ2v∗ − Φ1w0 ≤ (ε+ L0)1.

Thus, for any δ, we have

(δ−ε−L0)1 ≤ Φ2v∗−Φ1(w0−δ1) ≤ (ε+L0+δ)1. (8)

By definition of w0, we also have

−ε1 ≤ v∗ − Φw0 ≤ ε1

and therefore

(δ − ε)1 ≤ v∗ − Φ(w0 − δ1) ≤ (ε+ δ)1

hence

γ(δ−ε)1 ≤ γΦ2Pπ∗v
∗−γΦ2Pπ∗Φ(w0−δ1) ≤ γ(ε+δ)1.

(9)

Combining (8) and (9) we obtain

Φ1(w0 − δ1)− γΦ2Pπ∗Φ(w0 − δ1)

≤ Φ2v∗ + (ε+ L0 − δ)1− γΦ2Pπ∗v
∗ + γ(ε+ δ)1

≤ Φ2rπ∗ + (ε(1 + γ) + L0 − (1− γ)δ)1

Consequently, if we take δ = 1+γ
1−γ ε + 1

1−γL0, then w =

w0 − δ1 is a vector that satisfies (7), and therefore Φ(w0 −
δ1) ≤ Φwπ̄ , hence

∀i, v∗(i)− Φwπ̄(i) ≤ (ε+ δ) =
2ε+ L0

1− γ

which completes the proof.

Theorem 1 involves L0, which is a smoothness property of
the best approximator w0. In particular, it is the maximum
gap in the robust values between any two abstract states
that share some member states. In the special case of state
aggregation, L0 = 0 and we recover the performance bound
in (Petrik & Subramanian, 2014). Note that depending on
the kernels, both ε and L0 can be small, which explains why
the results on kernels can be significantly better than hard
state aggregation. We provide a concrete example in the
supplementary material. Empirically, this is illustrated in
Section 5.2.1.

4. Algorithms
Note that Theorem 1 is based on solving the optimal robust
policy in M̃ . For large state space this can be a problem
since the robust Bellman operator requires finding a mini-
mum over all member states, for each abstract state. Sec-
ondly, since the true model is usually unknown, the reward
and transition functions have to be estimated from training
examples. We propose two approximate solutions, each
adapting the kernel-based reinforcement learning algorithm
to the robust MDP setting. Both methods assume that a
training set Da as defined in section 2.1.1 is given for each
a ∈ A.

4.1. First Method

Following the construction in Section 3, our starting point
is the following robust Bellman operator for each abstract
state j ∈ {1 . . .m},

(T̃ w)(j) := max
π∈A|S|

min
i∈M̂(j)

r̂(i, π(i)) + γ〈p̂(i, π(i)),Φw〉

where r̂ and p̂ are defined as in Section 2.1.1. Note that the
minimum is taken over all states in M̂(j), which is defined
as the set of all states i ∈ M(j) that are present in the
training set. Recall that each abstract state j corresponds
to one “feature” and M(j) contains all states that have non-
zero value of feature j. Note also that even though the
max operator is over the set of all policies, it needs only be
computed for each member state i ∈ M̂(j) separately. The
robust Bellman operator is a γ-contraction and therefore the
algorithm is guaranteed to converge.

Under the right smoothness condition, kernel-based approx-
imation of r and p are consistent (Ormoneit & Sen, 2002)
and therefore in the limit of infinite number of training ex-
amples, the result of Theorem 1 applies to this method. This
method is summarized in Algorithm 1.

Algorithm 1 Robust kernel-based value iteration
Input: Da for each a ∈ A, ε

1. Initialize t← 0, w0 ← 0.

2. For each j ∈ {1 . . .m},

wt+1(j)← max
π

min
i∈M̂(j)

r̂(i, π(i))+γ〈p̂(i, π(i)),Φwt〉

3. If ‖wt+1 − wt‖∞ < ε, stop and output wt+1.

4. Set t← t+ 1. Go to step 2.
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4.2. Second Method

When the training set is large, evaluating the min opera-
tor in Algorithm 1 can be expensive. It can also result in
overly conservative policies especially when m is small.
Our second method addresses this by defining a different
uncertainty set for each abstract state j. We assume, in this
case, that each j corresponds to a representative state ij ∈ S
in the original MDP. For each a, the kernel-based approx-
imation defines a probability distribution ψ̂a(ij) which is
used to compute r̂ and p̂ (Section 2.1.1). The uncertainty set
is then defined as a norm-ball around ψ̂a(ij). In particular,
we use 1-norm ball since the minimum can be efficiently
computed. We also define Φa as the (truncated) feature
matrix where the k-th row corresponds to the feature vector
of i′ak in Da. Algorithm 2 shows the second method.

Algorithm 2 Robust kernel-based value iteration, II
Input: Da for all a ∈ A, ε, β

1. Initialize t← 0, w0 ← 0.

2. For each j ∈ {1 . . .m},

wt+1(j)← max
a

min
‖p−ψ̂a(ij)‖1≤β

〈p, ra + γΦawt〉

3. If ‖wt+1 − wt‖∞ < ε, stop and output wt+1.

4. Set t← t+ 1. Go to step 2.

An additional parameter, β is required as input to describe
the size of the norm-ball. Note that the support of the norm-
ball should be restricted to only states iak in the training set
with non-zero ψ̂(ij , i

a
k). For 1-norm, the minimum can be

computed, for example, with the algorithm in Figure 2 of
(Jaksch et al., 2010). The parameter β determines the level
of robustness needed, where β = 0 corresponds to the non-
robust version. Note that setting β = 2 is not equivalent to
Algorithm 1. In Algorithm 1, the minimum makes use of
ψ̂a(iak) for each iak ∈ M(j) whereas in Algorithm 2 only
ψ̂a(ij) is used.1

5. Experiments
In all our experiments, we use the Gaussian kernel for both
ψ and φ. In particular,

ψ(i, i′) = exp

{
−1

2

(
‖i− i′‖
σψ

)2
}

1Empirically, setting β = 2 results in performance almost
identical to that of Algorithm 1, which can be overly conservative.
We show some additional results in the supplementary material.

and

φ(i, j) ∝ exp

{
−1

2

(
‖i− j‖
σφ

)2
}
.

For computational efficiency, we always restrict ψ and
φ such that only the 20 nearest neighbors of any given
state have non-zero values. For the bandwidth parame-
ters, we employ a wide range during training, from the set
{exp(−8), exp(−7) . . . exp(3)}. This results in 144 pairs
of (σψ, σφ), and we always choose the best-performing pair
based on 30 independent test episodes.

We focus mainly on Algorithm 2 since it is the more prac-
tical and flexible version of the two. Our value iteration is
stopped when ‖wt+1 −wt‖ < 0.001 or after 100 iterations,
whichever happens earlier. We use γ = 0.99 for all our
tasks. Error bars in all our plots denote 95% confidence
intervals for the mean.

The complete source code for the implementation of our
algorithm as well as the task environments are provided in
the supplementary material.

5.1. Puddle World

We begin with the toy problem Puddle World as described in
(Sutton, 1996). This serves as a sanity check for the effect of
the robust approach since the state space is two-dimensional
and can be easily visualized. The agent has 4 actions, which
correspond to moving in each axis direction, subject to ran-
dom Gaussian noise. Each move receives a −1 reward. The
goal is to reach the upper right corner ([0.95, 1]× [0.95, 1]
box), which is a region of zero-reward absorbing states,
while avoiding the two “puddles”, since stepping on the
puddle gives negative rewards whose magnitude depends
on the distance to the middle of the puddle. We use a fixed
initial state at (0.25, 0.6).

We follow the strategy of (Barreto et al., 2016) in creating
the training set Da by running a random policy on 10 train-
ing episodes, each lasts until either the goal region is reached
or 1000 steps. The representative states for φ are then cre-
ated by running K-means on the training states. K here
therefore determines the number of representative states.
The best kernel parameters are then chosen as described in
the beginning of Section 5. This process is repeated five
times and the best-performing training set and kernel pa-
rameters are chosen and used to generate both the reference
non-robust policy as well as the robust versions. The ro-
bust policies are generated using Algorithm 2 on a range of
robustness parameters β.

For Puddle World, we notice that a near-optimal perfor-
mance with a total reward of about −36 can be achieved
with K >= 80. Figure 1 shows the results for policies
generated by various β. We tested two cases. In the first
case, the test environment is identical to the training envi-
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ronment. In this case, we notice a slight performance hit
with increasing β. In the second case, we enlarge the puddle
size by 50% in the test environment. Here we see significant
performance hit for the non-robust version (β = 0) while
the robust policies suffer less.
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Figure 1. Puddle world performance across various robustness β.

Figures 2 and 3 illustrate the difference between a robust
and a non-robust policy. In particular, the robust policy
generates trajectories that move further around the puddle
toward the goal, giving up some optimality for additional
robustness.
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Figure 2. Test trajectories for non-robust policy (β = 0).
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Figure 3. Test trajectories for robust policy (β = 0.2).

5.2. Acrobot

The acrobot (Sutton & Barto, 1998) is a control task where
the objective is to swing the tip of a two-link, underactuated
robot above a certain height by only exerting torque on the
second joint – simulating a gymnast on a high bar bending at
the waist. The state space is 4-dimensional. We simulate the

system described by the equations in (Sutton & Barto, 1998)
using the 4-th order Runge-Kutta method with a time step
of 0.05 seconds and actions chosen every 0.2 seconds. The
three actions are 3 torque levels of -1, 0 and 1 respectively.
A reward of -1 is received in every step except in a goal
state.

To add noise to the system, we introduce a noise parameter η,
such that the action 1 would produce an actual torque that is
uniformly random between 1−η and 1, and likewise for the
action −1. The training environment uses η = 0.1. Several
observations can be made via the acrobot task, which we
describe in the following subsections.

5.2.1. KERNEL-BASED VS STATE AGGREGATION

One of the motivation of this work is to generalize the
results on state aggregation to the kernel-based setting. We
implement state aggregation by simply forcing φ to always
use only the nearest representative state. Figure 4 shows that
indeed, the kernel-based approach performs better across
various feature lengths (K). This can be observed in both
robust and non-robust solutions.
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Figure 4. Kernel-based vs state aggregation performance on the
acrobot.

5.2.2. IDENTICAL TRAIN/TEST ENVIRONMENTS

In finite-state MDPs without function approximation, it is
clear that the optimal robust solution will not outperform
the optimal non-robust solution if both the training and
test environments are identical. In the case of function
approximation, this is not always true since the space of
representable value functions and policies can be very dif-
ferent between the robust and non-robust solutions. Figure 5
shows the performance of policies generated with various
β, where β = 0 corresponds to the non-robust solution. We
can observe that for certain range of β, the robust policies
actually significantly outperform the non-robust policies,
even though the training and test environments are identical.
Also note that all kernel parameters are optimized for β = 0
and the same parameters (hence, the same kernel) are used
for all other β. This supports our theoretical results where
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better worst-case performance bound can be derived when
we optimize the robust value, which is a lower bound to the
true value.
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Figure 5. Performance on identical train/test environments with
respect to beta.

5.2.3. MISMATCHED TRAIN/TEST ENVIRONMENTS

In the case of mismatched training and test environments,
the robust solutions have better potential to outperform the
non-robust solutions. Figure 6 illustrates this for test en-
vironments with η = 0.1, 0.2 and 0.5 while the training
environment uses η = 0.1. An interesting observation is
that for the range of β between 0.1 and 0.15, there is no
drop in performance when the test environment has the
larger η = 0.2.
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Figure 6. Performance on mismatched train/test environments with
respect to beta (K=600).

5.3. Double pole-balancing

We further evaluate our approach on the pole-balancing
task. In contrast to the puddle world and the acrobot, which
are both goal-directed tasks, the objective in this task is to
keep one or more poles hinged to a cart from falling over.
The two actions correspond to applying forces 10 and −10
respectively to the cart, which are constrained to stay within

a limited track. We focus on the double pole-balancing task,
where two side-by-side poles on the cart need to be balanced
simultaneously. The state space is 6 dimensional. We follow
the exact simulation settings in (Gomez, 2003) and use the
4-th order Runge-Kutta method. A reward of 1 is received
in each step. Each episode lasts 3000 steps unless a failed
state is entered.

Again, we introduce noise to the actual forces applied by
the action by adding a random decrease in magnitude up to
τ . The training examples are generated without noise, based
on 300 100-step episodes using a random policy. Due to the
sensitivity of the performance of the resulting policies to the
kernel parameters in this task, we optimize kernel parame-
ters for the robust and non-robust solutions separately, but
on the same training sets. The learned policies (with the best
kernel parameters) are then tested on the test environments
where noise is added.

Figure 7 shows the results for the case with and without
noise in the test environment. Figure 8 shows how per-
formance is affected by various noise levels in the test en-
vironments. From both figures, we can observe that the
robust policies suffer smaller performance drop compared
to the non-robust policy when noise is introduced in the test
environment.
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Figure 7. Performance on mismatched train/test environments with
respect to beta (K=150).
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Figure 8. Performance on mismatched train/test environments with
respect to noise level (K=150).
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