
Supplement to “On Efficient Optimal Transport: An Analysis of Greedy and
Accelerated Mirror Descent Algorithms”

In this Supplementary material, we first establish several
key properties of APDAMD algorithm for the general setup
in (12) in Section A. Then we provide the proofs for all the
lemmas, theorems and propositions in the main context in
Section B. Finally, in Section C, we provide some additional
experimental results on synthetic and real MNIST images.

A. Properties of the APDAMD algorithm
In this section we present several important properties of the
APDAMD algorithm that can be used later for regularized
OT problems. First, we prove the following result regard-
ing the number of line search iterations in the APDAMD
algorithm:

Lemma A.1. For the APDAMD algorithm, the number of
line search iterations in the line search strategy is finite.
Furthermore, the total number of gradient oracle calls after
the k-th iteration is bounded as

Nk ≤ 4k + 4 +
2 log

(
‖A‖21
2η

)
− 2 log(L0)

log 2
. (17)

Proof. We follow Jiang et al. (2018) but we provide the proof
details for the reader’s convenience. First, we observe that
multiplying Mk by two will not stop until the line search
stopping criterion is satisfied. Therefore, we must have

Mk ≥
‖A‖21

2η
.

By using Lemma 4.1, we obtain that the number of line
search iterations in the line search strategy is finite. Let-
ting ij denote the total number of multiplication at the j-th
iteration, we have

i0 ≤ 1 +
log
(
M0

L0

)
log 2

, ij ≤ 2 +
log
(

Mj

Mj−1

)
log 2

.

Furthermore, M j ≤ ‖A‖
2
1

η must hold. Otherwise, we have

M j

2
≥
‖A‖21
η

,

which implies that the line search stopping criterion will be
satisfied with Mj

2 and proceed to the line search in the next

iteration. Therefore, the total number of line search can be
bounded by

k∑
j=0

ij ≤ 1 +
log
(
M0

L0

)
log 2

+

k∑
j=1

2 +
log
(

Mj

Mj−1

)
log 2


≤ 2k + 1 +

log
(
Mk
)
− log(L0)

log 2

≤ 2k + 1 +
log
(
‖A‖21
2η

)
− log(L0)

log 2
.

Since each line search contains two gradient oracle calls,
we conclude (17). �

The next lemma presents a property of the dual objective
function at the iterates of the APDAMD algorithm.

Lemma A.2. For each iteration k of the APDAMD algo-
rithm and any z ∈ Rn, we have

ᾱkϕ(λk) (18)

≤
k∑
j=0

[
αj
(
ϕ(µj) +

〈
∇ϕ(µj), z − µj

〉)]
+ ‖z‖2∞ .

Proof. We follow the proof path in Dvurechensky et al.
(2018) with `∞-norm instead of `2-norm. First, we claim
that

αk+1
〈
∇ϕ(µk+1), zk − z

〉
≤ ᾱk+1

(
ϕ(µk+1)− ϕ(λk+1)

)
+Bφ(z, zk)−Bφ(z, zk+1), (19)

for any z ∈ Rn. Indeed, it follows from the optimality
condition in the mirror descent step that, for any z ∈ Rn,
we have〈
∇ϕ(µk+1) +

∇φ(zk+1)−∇φ(zk)

αk+1
, z − zk+1

〉
≥ 0.

(20)
Recall the celebrated generalized triangle inequality for the
Bregman divergence:

Bφ(z, zk)−Bφ(z, zk+1)−Bφ(zk+1, zk)

=
〈
∇φ(zk+1)−∇φ(zk), z − zk+1

〉
. (21)
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Therefore, we have

αk+1
〈
∇ϕ(µk+1), zk − z

〉
(22)

= αk+1
〈
∇ϕ(µk+1), zk − zk+1

〉
+αk+1

〈
∇ϕ(µk+1), zk+1 − z

〉
(20)
≤ αk+1

〈
∇ϕ(µk+1), zk − zk+1

〉
+
〈
∇φ(zk+1)−∇φ(zk), z − zk+1

〉
(21)
= αk+1

〈
∇ϕ(µk+1), zk − zk+1

〉
+Bφ(z, zk)−Bφ(z, zk+1)−Bφ(zk+1, zk)

≤ αk+1
〈
∇ϕ(µk+1), zk − zk+1

〉
+Bφ(z, zk)−Bφ(z, zk+1)− 1

2γ

∥∥zk+1 − zk
∥∥2
∞ ,

where the last inequality comes from the fact that φ is 1
γ -

strongly convex with respect to `∞-norm. Furthermore, we
observe from the update formula of µk+1 and λk+1 that

λk+1 − µk+1 =
αk+1

ᾱk+1
(zk+1 − zk), (23)

and the update formula of αk+1 and ᾱk+1 yields

γMk(αk+1)2 = ᾱk + αk+1 = ᾱk+1. (24)

Therefore, we have

αk+1〈∇ϕ(µk+1), zk − zk+1〉
(23)
= ᾱk+1〈∇ϕ(µk+1), µk+1 − λk+1〉.

In addition, the following equality holds:

∥∥zk+1 − zk
∥∥2
∞

(23)
=

(
ᾱk+1

αk+1

)2 ∥∥µk+1 − λk+1
∥∥2
∞

(24)
= γMkᾱk+1

∥∥µk+1 − λk+1
∥∥2
∞ .

Plugging all the above equations into (22) yields that

αk+1
〈
∇ϕ(µk+1), zk − z

〉
≤ ᾱk+1

〈
∇ϕ(µk+1), µk+1 − λk+1

〉
+Bφ(z, zk)

− Bφ(z, zk+1)− ᾱk+1Mk

2

∥∥µk+1 − λk+1
∥∥2
∞

= ᾱk+1

(〈
∇ϕ(µk+1), µk+1 − λk+1

〉
− Mk

2

∥∥µk+1 − λk+1
∥∥2
∞

)
+Bφ(z, zk)−Bφ(z, zk+1)

≤ ᾱk+1
(
ϕ(µk+1)− ϕ(λk+1)

)
+ Bφ(z, zk)−Bφ(z, zk+1),

where the last inequality comes from the stopping criterion
in the line search strategy. Therefore, we conclude the
desired inequality (19).

The next step is to bound the iterative objective gap, i.e., for
z ∈ Rn,

ᾱk+1ϕ(λk+1)− ᾱkϕ(λk) (25)
≤ αk+1

(
ϕ(µk+1) +

〈
∇ϕ(µk+1), z − µk+1

〉)
+Bφ(z, zk)−Bφ(z, zk+1),

Indeed, we observe from the update formula of µk+1 that

αk+1
(
µk+1 − zk

)
(26)

(24)
=

(
ᾱk+1 − ᾱk

)
µk+1 − αk+1zk

= αk+1zk + ᾱkλk − ᾱkµk+1 − αk+1zk

= ᾱk
(
λk − µk+1

)
.

Thus, we have

αk+1
〈
∇ϕ(µk+1), µk+1 − z

〉
= αk+1

〈
∇ϕ(µk+1), µk+1 − zk

〉
+αk+1

〈
∇ϕ(µk+1), zk − z

〉
(26)
= ᾱk

〈
∇ϕ(µk+1), λk − µk+1

〉
+αk+1

〈
∇ϕ(µk+1), zk − z

〉
= D.

Furthermore, given the results of (19) and (24), the follow-
ing results hold:

D ≤ ᾱk
(
ϕ(λk)− ϕ(µk+1)

)
+ αk+1

〈
∇ϕ(µk+1), zk − z

〉
(19)
≤ ᾱk

(
ϕ(λk)− ϕ(µk+1)

)
+ ᾱk+1

(
ϕ(µk+1)− ϕ(λk+1)

)
+Bφ(z, zk)

− Bφ(z, zk+1)

(24)
= ᾱkϕ(λk)− ᾱk+1ϕ(λk+1)

+ αk+1ϕ(µk+1) +Bφ(z, zk)−Bφ(z, zk+1).

Summing up (25) over k = 0, 1, . . . , N − 1 yields that

ᾱNϕ(λN )− ᾱ0ϕ(λ0)

≤
N−1∑
k=0

[
αk+1

(
ϕ(µk+1) +

〈
∇ϕ(µk+1), z − µk+1

〉)]
+ Bφ(z, z0)−Bφ(z, zN ).

Finally, we observe that α0 = ᾱ0 = 0, Bφ(z, zN ) ≥ 0 and
φ is 1-smooth with respect to `∞-norm, and conclude that,
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for any z ∈ Rn

ᾱNϕ(λN ) ≤
N∑
k=0

[
αk
(
ϕ(µk) +

〈
∇ϕ(µk), z − µk

〉)]
+Bφ(z, z0)

≤
N∑
k=0

[
αk
(
ϕ(µk) +

〈
∇ϕ(µk), z − µk

〉)]
+
∥∥z − z0∥∥2∞

z0=0
=

N∑
k=0

[
αk
(
ϕ(µk) +

〈
∇ϕ(µk), z − µk

〉)]
+ ‖z‖2∞ .

The desired inequality (18) directly follows by changing the
counter from k to i and the iteration count N to k. �

The final lemma provides us with a key lower bound for the
accumulating parameter.

Lemma A.3. For each iteration k of the APDAMD algo-
rithm, we have

ᾱk ≥ η(k + 1)2

8γ ‖A‖21
. (27)

Proof. For k = 1, we have

ᾱ1 (24)
= α1 (24)

=
1

γM1
≥ η

2γ ‖A‖21
,

whereM1 ≤ 2‖A‖21
η has been proven in Lemma A.1. So (27)

holds true for k = 1. Then we proceed to prove (27) for
k ≥ 1 by using the mathematical induction. Indeed, we
have

ᾱk+1 = ᾱk + αk+1

= ᾱk +
1 +

√
1 + 4γMkᾱk

2γMk

= ᾱk +
1

2γMk
+

√
1

4 (γMk)
2 +

ᾱk

γMk

≥ ᾱk +
1

2γMk
+

√
ᾱk

γMk

≥ ᾱk +
η

4γ ‖A‖21
+

√
ηᾱk

2γ ‖A‖21
,

where Mk ≤ 2‖A‖21
η was also proven in Lemma A.1. Now,

we assume that (27) hold true for k. Then, we find that

ᾱk+1 ≥ η(k + 1)2

8γ ‖A‖21
+

η

4γ ‖A‖21
+

√
η2(k + 1)2

16γ2 ‖A‖41
=

η

8γ ‖A‖21

[
(k + 1)2 + 2 + 2(k + 1)

]
≥ η(k + 2)2

8γ ‖A‖21
,

which implies that (27) holds true for k + 1. �

B. Technical Proofs
In this section, we provide the proofs for the remaining
results in the paper.

B.1. Proof of Lemma 3.1

By the definition, we have

f(u, v) = 1>B(u, v)1− 〈u, r〉 − 〈v, l〉

=

n∑
i,j=1

eui+vj−
Cij
η −

n∑
i=1

riui −
n∑
j=1

ljvj

The gradients of f at (uk, vk) are

∇uf(uk, vk) = B(uk, vk)1− r,
∇vf(uk, vk) = B(uk, vk)>1− l.

Therefore, the quantity Ek can be rewritten as

Ek = ‖∇uf(uk, vk)‖1 + ‖∇vf(uk, vk)‖1.

By using the fact that f is convex and globally minimized
at (u∗, v∗), we have

f(uk, vk)− f(u∗, v∗) ≤ (uk − u∗)>∇uf(uk, vk)

+ (vk − v∗)>∇vf(uk, vk).

Applying Hölder’s inequality yields

f(uk, vk)− f(u∗, v∗) (28)
≤ ‖uk − u∗‖∞‖∇uf(uk, vk)‖1
+ ‖vk − v∗‖∞‖∇vf(uk, vk)‖1
=

(
‖uk − u∗‖∞ + ‖vk − v∗‖∞

)
Ek.

Thus it suffices to show that

‖uk − u∗‖∞ + ‖vk − v∗‖∞ ≤ 2 ‖u∗‖∞ + 2 ‖v∗‖∞ .

The next result is the key observation that makes our analysis
work for the Greenkhorn algorithm. We use an induction
argument to establish the following bound:

max{‖uk − u∗‖∞, ‖vk − v∗‖∞} (29)

≤ max{‖u0 − u∗‖∞, ‖v0 − v∗‖∞}.



On Efficient Optimal Transport: An Analysis of Greedy and Accelerated Mirror Descent Algorithms

It is easy to verify (29) for k = 0. Assuming that it holds
true for k = k0 ≥ 0, we show that it also holds true for
k = k0 + 1. Without loss of generality, let I be the index
chosen at the k0 + 1-th iteration. Then we have

‖uk0+1 − u∗‖∞ ≤ max{‖uk0 − u∗‖∞, |uk0+1
I − u∗I |},

(30)

‖vk0+1 − v∗‖∞ = ‖vk0 − v∗‖∞. (31)

By the updating formula for uk0+1
I and the optimality con-

dition for u∗I , we have

eu
k0+1

I =
rI∑n

j=1 e
−
Cij
η +v

k0
j

, eu
∗
I =

rI∑n
j=1 e

−
Cij
η +v∗j

.

This implies that

|uk0+1
I − u∗I | =

∣∣∣∣∣∣log

∑n
j=1 e

−CIj/η+v
k0
j∑n

j=1 e
−CIj/η+v∗j

∣∣∣∣∣∣ (32)

≤ ‖vk0 − v∗‖∞,

where the inequality comes from the following inequality:∑n
i=1 ai∑n
i=1 bi

≤ max
1≤j≤n

ai
bi
, ∀ai, bi > 0.

Combining (30) and (32) yields

‖uk0+1 − u∗‖∞ ≤ max{‖uk0 − u∗‖∞, ‖vk0 − v∗‖∞}.
(33)

Therefore, we conclude that (29) holds true for k = k0 + 1
by combining (31) and (33). Since u0 = v0 = 0, (29)
implies that

‖uk − u∗‖∞ + ‖vk − v∗‖∞ (34)
≤ 2

(
‖u0 − u∗‖∞ + ‖v0 − v∗‖∞

)
= 2‖u∗‖∞ + 2‖v∗‖∞.

Finally, we obtain the result (7) by combining (28) and (34).

B.2. Proof of Lemma 3.2

First, we claim that there exists an optimal solution pair
(u∗, v∗) such that

max
1≤i≤n

u∗i ≥ 0 ≥ min
1≤i≤n

u∗i . (35)

Indeed, since the function f is convex with respect to (u, v),
the set of optima of problem (5) is not empty. Thus, we can
choose an optimal solution (ũ∗, ṽ∗) where

+∞ > max
1≤i≤n

ũ∗i ≥ min
1≤i≤n

ũ∗i > −∞,

+∞ > max
1≤i≤n

ṽ∗i ≥ min
1≤i≤n

ṽ∗i > −∞.

Given the optimal solution (ũ∗, ṽ∗), we let (u∗, v∗) be

u∗ = ũ∗ − max1≤i≤n u
∗
i + min1≤i≤n u

∗
i

2
1,

v∗ = ṽ∗ +
max1≤i≤n u

∗
i + min1≤i≤n u

∗
i

2
1.

and observe that (u∗, v∗) satisfies (35). It now suffices to
show that (u∗, v∗) is optimal; i.e., f (u∗, v∗) = f (ũ∗, ṽ∗).
Since 1>r = 1>l = 1, we have

〈u∗, r〉 = 〈ũ∗, r〉 , 〈v∗, l〉 = 〈ṽ∗, l〉 .

Therefore, we conclude that

f (u∗, v∗) =

n∑
i,j=1

e−Cij/η+u
∗
i+v

∗
j − 〈u∗, r〉 − 〈v∗, l〉

=

n∑
i,j=1

e−Cij/η+ũ
∗
i+ṽ

∗
j − 〈ũ∗, r〉 − 〈ṽ∗, l〉

= f (ũ∗, ṽ∗) .

The next step is to establish the following bounds:

max
1≤i≤n

u∗i − min
1≤i≤n

u∗i ≤
‖C‖∞
η
− log

(
min

1≤i,j≤n
{ri, lj}

)
,

(36)

max
1≤i≤n

v∗i − min
1≤i≤n

v∗i ≤
‖C‖∞
η
− log

(
min

1≤i,j≤n
{ri, lj}

)
.

(37)

Indeed, for each 1 ≤ i ≤ n, we have

e−‖C‖∞/η+u
∗
i

 n∑
j=1

ev
∗
j

 ≤ n∑
j=1

e−Cij/η+u
∗
i+v

∗
j

= [B(u∗, v∗)1]i = ri ≤ 1,

implying that

u∗i ≤
‖C‖∞
η
− log

 n∑
j=1

ev
∗
j

 . (38)

On the other hand, we have

eu
∗
i

 n∑
j=1

ev
∗
j

 ≥ n∑
j=1

e−Cij/η+u
∗
i+v

∗
j

= [B(u∗, v∗)1]i = ri ≥ min
1≤i,j≤n

{ri, lj} ,

implying that

u∗i ≥ log

(
min

1≤i,j≤n
{ri, lj}

)
− log

 n∑
j=1

ev
∗
j

 . (39)
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Combining (38) and (39) yields (36). In addition, (37) can
be proved by a similar argument.

Finally, we proceed to prove that (8) holds true. We first
assume that

max
1≤i≤n

v∗i ≥ 0, max
1≤i≤n

u∗i ≥ 0 ≥ min
1≤i≤n

u∗i .

The optimality condition implies that

n∑
i,j=1

e−
Cij
η +u∗i+v

∗
j = 1,

and

max
1≤i≤n

u∗i + max
1≤i≤n

v∗i ≤ log

(
max

1≤i,j≤n
eCij/η

)
=
‖C‖∞
η

.

Equipped with the assumptions max1≤i≤n u
∗
i ≥ 0 and

max1≤i≤n v
∗
i ≥ 0, we have

0 ≤ max
1≤i≤n

u∗i ≤
‖C‖∞
η

, 0 ≤ max
1≤i≤n

v∗i ≤
‖C‖∞
η

.

(40)
Combining (40) with (36) and (37) yields

min
1≤i≤n

u∗i ≥ −
‖C‖∞
η

+ log

(
min

1≤i,j≤n
{ri, lj}

)
,

min
1≤i≤n

v∗i ≥ −
‖C‖∞
η

+ log

(
min

1≤i,j≤n
{ri, lj}

)
.

We conclude (8) by putting together the above inequalities.

We proceed to the alternative scenario, where

max
1≤i≤n

v∗i ≤ 0, max
1≤i≤n

u∗i ≥ 0 ≥ min
1≤i≤n

u∗i .

Combining with (36) yields

max
1≤i≤n

u∗i ≤
‖C‖∞
η
− log

(
min

1≤i,j≤n
{ri, lj}

)
min

1≤i≤n
u∗i ≥ −

‖C‖∞
η

+ log

(
min

1≤i,j≤n
{ri, lj}

)
.

Similar to (39), we have

min
1≤i≤n

v∗i ≥ log

(
min

1≤i,j≤n
{ri, lj}

)
− log

(
n∑
i=1

eu
∗
i

)

≥ 2 log

(
min

1≤i,j≤n
{ri, lj}

)
− log(n)−

‖C‖∞
η

,

and again we conclude that (8) holds.

B.3. Proof of Lemma 3.6

We observe that

f(uk, vk)− f(uk+1, vk+1)

≥ 1

2n

(
ρ
(
r,B(uk, vk)1

)
+ ρ

(
c,B(uk, vk)>1

))
≥ 1

14n

(
‖r −B(uk, vk)1‖21 + ‖c−B(uk, vk)>1‖21

)
,

where the first inequality comes from Lemma 5 in Altschuler
et al. (2017) and the fact that the row or column update is
chosen in a greedy manner, and the second inequality comes
from Lemma 6 in Altschuler et al. (2017). Therefore, by the
definition of Ek, we conclude (10).

B.4. Proof of Theorem 3.7

Denote δk = f(uk, vk) − f(u∗, v∗). Based on the results
of Corollary 3.3 and Lemma 3.6, we have

δk − δk+1 ≥ max

{
δ2k

448nR2
,

(ε′)2

28n

}
,

where Ek ≥ ε′ as soon as the stopping criterion is not
fulfilled. In the following step we apply a switching strategy
introduced by Dvurechensky et al. (2018). More specifically,
given any k ≥ 1, we have two estimates:

(i) Considering the process from the first iteration and the
k-th iteration, we have

δk+1

448nR2
≤ 1

k + 448nR2

δ21

.

The above inequality directly leads to

k ≤ 1 +
448nR2

δk
− 448nR2

δ1
.

(ii) Considering the process from the (k + 1)-th iteration
to the (k +m)-th iteration for ∀m ≥ 1, we have

δk+m ≤ δk −
(ε′)2m

28n
.

The above result demonstrates that

m ≤ 28n

(ε′)2
(δk − δk+m) .

We then minimize the sum of these two estimates by an
optimal choice of a tradeoff parameter s ∈ (0, δ1]:

k ≤ min
0<s≤δ1

(
2 +

448nR2

s
− 448nR2

δ1
+

28ns

(ε′)
2

)

=


2 +

224nR

ε′
− 448nR2

δ1
, δ1 ≥ 4Rε′,

2 +
28nδ1

(ε′)
2 , δ1 ≤ 4Rε′.
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This implies that k ≤ 2 +
112nR

ε′
in both cases. Therefore,

we conclude that the number of iterations k satisfies (11).

B.5. Proof of Theorem 3.8

We follow the same steps as in the proof of Theorem 1
in Altschuler et al. (2017) and obtain〈

C, X̂
〉
− 〈C,X∗〉

≤ 2η log(n) + 4
(∥∥∥X̃1− r

∥∥∥
1

+
∥∥∥X̃>1− l

∥∥∥
1

)
‖C‖∞

≤ ε

2
+ 4

(∥∥∥X̃1− r
∥∥∥
1

+
∥∥∥X̃>1− l

∥∥∥
1

)
‖C‖∞ ,

where X̂ is the output of Algorithm 2, X∗ is a solution to
the optimal transport problem and X̃ is the matrix returned
by the Greenkhorn algorithm (Algorithm 1) with r̃, l̃ and
ε′/2 in Step 3 of Algorithm 2. The last inequality in the
above display holds since η = ε

4 log(n) . Furthermore, we
have ∥∥∥X̃1− r

∥∥∥
1

+
∥∥∥X̃>1− l

∥∥∥
1

≤
∥∥∥X̃1− r̃

∥∥∥
1

+
∥∥∥X̃>1− l̃

∥∥∥
1

+ ‖r − r̃‖1 +
∥∥∥l − l̃∥∥∥

1

≤ ε′

2
+
ε′

4
+
ε′

2
= ε′.

We conclude that 〈C, X̂〉 − 〈C,X∗〉 ≤ ε from that ε′ =
ε

8‖C‖∞
. The remaining task is to analyze the complexity

bound. It follows from Theorem 3.7 that

k ≤ 2 +
112nR

ε′

≤ 2 +
96n ‖C‖∞

ε

(
‖C‖∞
η

+ log(n)

−2 log

(
min

1≤i,j≤n
{ri, lj}

))
≤ 2 +

96n ‖C‖∞
ε

(
4 ‖C‖∞ log(n)

ε
+ log(n)

−2 log

(
ε

64n ‖C‖∞

))
= O

(
n ‖C‖2∞ log(n)

ε2

)
.

Therefore, the total iteration complexity of the Greenkhorn
algorithm can be bounded by O

(
n‖C‖2∞ log(n)

ε2

)
. Combin-

ing with the fact that each iteration of Greenkhorn algorithm
requiresO(n) arithmetic operations yields a total amount of

arithmetic operations equal to O
(
n2‖C‖2∞ log(n)

ε2

)
. On the

other hand, r̃ and l̃ in Step 2 of Algorithm 2 can be found in
O(n) arithmetic operations (cf. Algorithm 2 in Altschuler
et al. (2017)), requiring O(n2) arithmetic operations. We

conclude that the total number of arithmetic operations re-
quired for the Greenkhorn algorithm is O

(
n2‖C‖2∞ log(n)

ε2

)
.

B.6. Proof of Lemma 4.1

The proof shares the same spirit with that used in Theorem
1 in Nesterov (2005). In particular, we first show that

‖∇ϕ(λ1)−∇ϕ(λ2)‖1 ≤
‖A‖21
η
‖λ1 − λ2‖∞ . (41)

Indeed, from the definition of∇ϕ(λ), we have

‖∇ϕ(λ1)−∇ϕ(λ2)‖1 = ‖Ax(λ1)−Ax(λ2)‖1 (42)
≤ ‖A‖1 ‖x(λ1)− x(λ2)‖1 .

We also observe from the strong convexity of f that

η ‖x(λ1)− x(λ2)‖21
≤ 〈∇f(x(λ1))−∇f(x(λ2)), x(λ1)− x(λ2)〉
=

〈
A>λ2 −A>λ1, x(λ1)− x(λ2)

〉
≤ ‖λ1 − λ2‖∞ ‖Ax(λ1)−Ax(λ2)‖1
≤ ‖A‖1 ‖x(λ1)− x(λ2)‖1 ‖λ1 − λ2‖∞ ,

which implies

‖x(λ1)− x(λ2)‖1 ≤
‖A‖1
η
‖λ1 − λ2‖∞ . (43)

We conclude (41) by combining (42) and (43). To this end,
we have

ϕ(λ1)− ϕ(λ2)− 〈∇ϕ(λ2), λ1 − λ2〉

=

∫ 1

0

〈∇ϕ (tλ1 + (1− t)λ2)−∇ϕ(λ2), λ1 − λ2〉 dt

≤
(∫ 1

0

‖∇ϕ (tλ1 + (1− t)λ2)−∇ϕ(λ2)‖1 dt
)

×‖λ1 − λ2‖∞
(41)
≤

(∫ 1

0

t dt

)
‖A‖21
η
‖λ1 − λ2‖2∞

=
‖A‖21

2η
‖λ1 − λ2‖2∞ .

This completes the proof of the lemma.
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B.7. Proof of Theorem 4.2

From Lemma A.2, we have

ᾱkϕ(λk)

≤ min
z∈Rn

{ k∑
j=0

[
αj
(
ϕ(µj) +

〈
∇ϕ(µj), z − µj

〉)]
+ ‖z‖2∞

}
≤ min

z∈B∞(2R̂)

{ k∑
j=0

[
αj
(
ϕ(µj) +

〈
∇ϕ(µj), z − µj

〉)]
+ ‖z‖2∞

}
,

where R̂ = η(R+ 1/2) is the upper bound for `∞-norm of
optimal solutions of dual regularized OT problem (15) and
B∞(r) is defined as

B∞(r) := {λ ∈ Rn | ‖λ‖∞ ≤ r} .

This implies that

ᾱkϕ(λk) ≤ min
z∈B∞(2R̂)

{ k∑
j=0

[
αj
(
ϕ(µj)

+
〈
∇ϕ(µj), z − µj

〉)]}
+ 4R̂2.

By the definition of the dual objective function ϕ(λ), we
further have

ϕ(µj) +
〈
∇ϕ(µj), z − µj

〉
=

〈
µj , b−Ax(µj)

〉
− f(x(µj))

+
〈
z − µj , b−Ax(µj)

〉
= −f(x(µj)) +

〈
z, b−Ax(µj)

〉
.

Therefore, we conclude that

ᾱkϕ(λk)

≤ min
z∈B∞(2R̂)


k∑
j=0

[
αj
(
ϕ(µj) +

〈
∇ϕ(µj), z − µj

〉)]
+4R̂2

≤ 4R̂2 − ᾱkf(xk) + min
z∈B∞(2R̂)

{
ᾱk
〈
z, b−Axk

〉}
= 4R̂2 − ᾱkf(xk)− 2ᾱkR̂

∥∥Axk − b∥∥
1
,

where the second inequality comes from the convexity of f
and the last equality comes from the fact that `1-norm is the
dual norm of `∞-norm. That is to say,

f(xk) + ϕ(λk) + 2R̂
∥∥Axk − b∥∥

1
≤ 4R̂2

ᾱk
.

By the definition of ϕ(λ) and the fact that λ∗ is an optimal
solution, we have

f(xk) + ϕ(λk) ≥ f(xk) + ϕ(λ∗)

= f(xk) + 〈λ∗, b〉
+ max

x∈Rn

{
−f(x)−

〈
A>λ∗, x

〉}
≥ f(xk) + 〈λ∗, b〉 − f(xk)−

〈
λ∗, Axk

〉
=

〈
λ∗, b−Axk

〉
≥ −R̂

∥∥Axk − b∥∥
1
,

where the last inequality comes from the Hölder inequality
and ‖λ‖∞ ≤ R̂. We conclude that

∥∥Axk − b∥∥
1
≤ 4R̂

ᾱk

(27)
≤

32γ(R+ 1/2) ‖A‖21
(k + 1)2

,

and obtain the desired bound on the number of iterations k
required to satisfy the bound

∥∥A vec(Xk)− b
∥∥
1
≤ ε′.

B.8. Proof of Theorem 4.3

We follow the same steps as those in the proof of Theorem
1 in Altschuler et al. (2017) and obtain〈

C, X̂
〉
− 〈C,X∗〉

≤ 2η log(n) + 4
(∥∥∥X̃1− r

∥∥∥
1

+
∥∥∥X̃>1− l

∥∥∥
1

)
‖C‖∞

≤ ε

2
+ 4

(∥∥∥X̃1− r
∥∥∥
1

+
∥∥∥X̃>1− l

∥∥∥
1

)
‖C‖∞ ,

where X̂ is the output of Algorithm 3, X∗ is a solution to
the optimal transport problem and X̃ is the matrix returned
by the APDAMD algorithm (Algorithm 4) with r̃, l̃ and
ε′/2 in Step 3 of this algorithm. The last inequality in this
display holds since η = ε

4 log(n) . Furthermore, we have∥∥∥X̃1− r
∥∥∥
1

+
∥∥∥X̃>1− l

∥∥∥
1

≤
∥∥∥X̃1− r̃

∥∥∥
1

+
∥∥∥X̃>1− l̃

∥∥∥
1

+ ‖r − r̃‖1 +
∥∥∥l − l̃∥∥∥

1

≤ ε′

2
+
ε′

4
+
ε′

2
= ε′.

We conclude that 〈C, X̂〉 − 〈C,X∗〉 ≤ ε given that ε′ =
ε

8‖C‖∞
. The remaining step is to analyze the complexity

bound. We obtain from Lemma 3.2 and r̃ and l̃ in Algo-
rithm 3 that

R =
‖C‖∞
η

+ log(n)− 2 log

(
min

1≤i,j≤n

{
r̃i, l̃j

})
(44)

≤
4 ‖C‖∞ log(n)

ε
+ log(n)− 2 log

(
ε

64n ‖C‖∞

)
.

Since ‖A‖1 equals to the maximum `1-norm of a column
of A and each column of A contains only two nonzero
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elements which are equal to one, we have ‖A‖1 = 2. We
conclude by Lemma A.1 and Theorem 4.2 that

Nk ≤ 4k + 4 +
2 log

(
‖A‖21
2η

)
− 2 log(L0)

log 2

≤ 8 + 16
√

2 ‖A‖1

√
γ(R+ 1/2)

ε′

+
2 log

(
‖A‖21
2η

)
− 2 log(L0)

log 2

= 8 +
256√
ε

√
γ(R+ 1/2) ‖C‖∞ log(n)

+
2 log

(
log(n)
ε

)
log 2

.

Plugging (44) into the above inequality yields that

Nk

≤ 256√
ε

(
4 ‖C‖∞ log(n)

ε
+ log(n)

−2 log

(
ε

64n ‖C‖∞

)
+

1

2

)1/2(√
γ ‖C‖∞ log(n)

)

+
2 log

(
log(n)
ε

)
log 2

+ 8

= O
(√

γ ‖C‖∞ log(n)

ε

)
.

Therefore, the total number of iterations for the AP-
DAMD algorithm can be bounded by O

(√
γ‖C‖∞ log(n)

ε

)
.

Combined with the fact that each iteration of AP-
DAMD algorithm requires O(n2) arithmetic operations
we find that the total number of arithmetic operations is
O
(
n2√γ‖C‖∞ log(n)

ε

)
. Furthermore, r̃ and l̃ in Step 2 of

Algorithm 3 can be found in O(n) arithmetic operations
and Algorithm 2 in (Altschuler et al., 2017) requires O(n2)
arithmetic operations. Therefore, we conclude that the total
number of arithmetic operations is O

(
n2√γ‖C‖∞ log(n)

ε

)
.

B.9. Proof of Proposition 5.2

Given the choices of r, l and η, we can rewrite the dual
function ϕ(α, β) in (15) as follows:

ϕ(α, β) =
ε

4e log(n)

∑
1≤i,j≤n

e−
4 log(n)

ε (1−αi−βj)

−
∑n
i=1 αi
n

−
∑n
i=1 βi
n

.

Since (α∗, β∗) is the optimal solution of dual regularized
OT problem (15), we have

e
4 log(n)α∗i

ε

n∑
j=1

e−
4 log(n)

ε (1−β∗j ) (45)

= e
4 log(n)β∗i

ε

n∑
j=1

e−
4 log(n)

ε (1−α∗j )

=
e

n
, ∀i ∈ [n].

This implies that α∗i = α∗j and β∗i = β∗j for all i, j ∈ [n].
So we can define A and B such that

A ≡ e
4 log(n)α∗i

ε , B ≡ e
4 log(n)β∗i

ε .

By the optimality condition (45), ABe−4 log(n)/ε = e/n2.

Equivalently, AB = e
4 log(n)

ε
+1

n2 . So we have

α∗i + β∗i =
ε (log(A) + log(B))

4 log(n)

=
ε

4 log(n)

(
4 log(n)

ε
+ 1− 2 log(n)

)
= 1 +

ε

4 log(n)
− ε

2
.

Therefore, we conclude that

‖(α∗, β∗)‖2 ≥
√∑n

i=1(α∗i + β∗i )2

2

=

√
n

2

(
1 +

ε

4 log(n)
− ε

2

)
& n1/2.

As a consequence, we achieve the conclusion of the propo-
sition.

B.10. Proof of Proposition 5.3

The proof of Proposition 5.3 is a modification of the proof
for Theorem 4 in Dvurechensky et al. (2018). There-
fore, we only give a proof sketch to ease the presentation.
More specifically, we follow the argument of Theorem 4
in Dvurechensky et al. (2018) and obtain that the number of
iterations for Algorithm 5 required to reach the tolerance ε
is

k ≤ max

{
O
(

min

{n1/4√R ‖C‖∞ log(n)

ε
, (46)

R ‖C‖∞ log(n)

ε2

})
,O
(
R
√

log n

ε

)}
.

Plugging the tight upper bound R ≤
√
n into (46) yields

that

k = O

(√
n‖C‖∞ log(n)

ε

)
.
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Figure 3. Performance of the Greenkhorn and APDAMD algorithms on the synthetic images. All the four images correspond to those in
the figure in the main context, showing that the Greenkhorn algorithm is faster than the APDAMD algorithm in terms of iterations. Note
that log(d(PG)/d(PMD)) on ten random pairs of images is consistently used, where d(PG) and d(PMD) refer to the Greenkhorn and
APDAMD algorithms, respectively.
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Figure 4. Performance of the Sinkhorn, Greenkhorn, APDAGD and APDAMD algorithms on the MNIST real images. In the first row of
images, we compare the Sinkhorn and Greenkhorn algorithms in terms of iteration counts. The leftmost image specifies the distances
d(P ) to the transportation polytope for two algorithms; the middle image specifies the maximum, median and minimum of competitive
ratios log(d(PS)/d(PG)) on ten random pairs of MNIST images, where PS and PG stand for the outputs of Sinkhorn and Greenkhorn,
respectively; the rightmost image specifies the values of regularized OT with varying regularization parameter η ∈ {1, 5, 9}. In addition,
the second and third rows of images present comparative results for APDAGD versus APDAMD and Greenkhorn versus APDAMD. In
summary, the experimental results on the MNIST images are consistent with that on the synthetic images.
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Since each iteration of the APDAGD algorithm requires
O(n2) arithmetic operations, the total number of arithmetic

operations is bounded by O
(
n5/2‖C‖∞ log(n)

ε

)
. Further-

more, r̃ and l̃ in Step 2 of Algorithm 5 can be found inO(n)
arithmetic operations and Algorithm 2 in Altschuler et al.
(2017) requires O(n2) arithmetic operations. Therefore,
we conclude that the total number of arithmetic operations

required is O
(
n5/2
√
‖C‖∞ log(n)

ε

)
.

C. Further experiments
In this section, we present some additional experimental
results. In particular, we compare the Greenkhorn and AP-
DAMD algorithms on synthetic image and conduct the ex-
tensive comparative experiments with the Greenkhorn and
APDAMD algorithms on real images from MNIST Digits
dataset2. We use essentially the same baseline algorithms
and evaluation metrics as in the synthetic images in Sec-
tion 6.

Image processing: The MNIST dataset consists of 60,000
images of handwritten digits of size 28 by 28 pixels. To
understand better the dependence on n for our algorithms,
we add a very small noise term (10−6) to all the zero ele-
ments in the measures and then normalize them such that
their sum becomes one.

Experimental results: We present the experimental re-
sults on the comparison between the Greenkhorn and AP-
DAMD algorithms on synthetic images in Figure 3. Despite
the worse dependence of ε in the complexity bound, the
Greenkhorn algorithm seems more practical than the AP-
DAMD algorithm. The possible reason is the advantage of
the coordinate descent algorithm over the gradient descent
algorithm, which is worthy further exploration.

Figure 4 presents the experimental results on the real images
with different choices of regularization parameters as well as
the coverage ratio of the foreground on the real images. The
Greenkhorn algorithm is the fastest among all the candidate
algorithms in terms of iteration count. Also, the APDAMD
algorithm outperforms the APDAGD algorithm in terms of
robustness and efficiency. All the results on real images are
consistent with those on the synthetic images.

2http://yann.lecun.com/exdb/mnist/


