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Abstract

We provide theoretical analyses for two algo-
rithms that solve the regularized optimal transport
(OT) problem between two discrete probability
measures with at most n atoms. We show that
a greedy variant of the classical Sinkhorn algo-
rithm, known as | the Greenkhorn algorithm, can
be improved to O (n2 / 52) , improving on the best
known complexity bound of o (n2 /53) This
matches the best known complexity bound for the
Sinkhorn algorithm and helps explain why the
Greenkhorn algorithm outperforms the Sinkhorn
algorithm in practice. Our proof technique is
based on a primal-dual formulation and provide
a tight upper bound for the dual solution, lead-
ing to a class of adaptive primal-dual acceler-
ated mirror descent (APDAMD) algorithms. We
prove that the complexity of these algorithms
is O (n?\/7/¢) in which v € (0,n] refers to
some constants in the Bregman divergence. Ex-
perimental results on synthetic and real datasets
demonstrate the favorable performance of the
Greenkhorn and APDAMD algorithms in prac-
tice.

1. Introduction

Optimal transport—the problem of finding minimal cost
couplings between pairs of probability measures—has a
long history in mathematics and operations research (Vil-
lani, 2003). In recent years, it has been the inspiration for
numerous applications in machine learning and statistics,
including posterior contraction of parameter estimation in
Bayesian nonparametrics models (Nguyen, 2013; 2016),
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scalable posterior sampling for large datasets (Srivastava
et al., 2015; 2018), optimization models for clustering com-
plex structured data (Ho et al., 2018), deep generative mod-
els and domain adaptation in deep learning (Arjovsky et al.,
2017; Gulrajani et al., 2017; Courty et al., 2017; Tolstikhin
et al., 2018), and other applications (Rolet et al., 2016;
Peyré et al., 2016; Carriere et al., 2017; Lin et al., 2018).
These large-scale applications have placed significant new
demands on the efficiency of algorithms for solving the op-
timal transport problem, and a new literature has begun to
emerge to provide new algorithms and complexity analyses
for optimal transport.

The computation of the optimal-transport (OT) distance can
be formulated as a linear programming problem and solved
in principle by interior-point methods. The best known com-
plexity bound in this formulation is O (n5/ 2) , achieved by
an interior-point algorithm due to Lee & Sidford (2014).
However, Lee and Sidford’s method requires as a subrou-
tine a practical implementation of the Laplacian linear sys-
tem solver, which is not yet available in the literature. Pele
& Werman (2009) proposed an alternative, implementable
interior-point method for OT with a complexity bound is
O(n?). Another prevalent approach for computing OT dis-
tance between two discrete probability measures involves
regularizing the objective function by the entropy of the
transportation plan. The resulting problem, referred to as
entropic regularized OT or simply regularized OT (Cuturi,
2013; Benamou et al., 2015), is more readily solved than
the original problem since the objective is strongly con-
vex with respect to ||-||,. The longstanding state-of-the-art
algorithm for solving regularized OT is the Sinkhorn algo-
rithm (Sinkhorn, 1974; Knight, 2008; Kalantari et al., 2008).
Inspired by the growing scope of applications for optimal
transport, several new algorithms have emerged in recent
years that have been shown empirically to have superior
performance when compared to the Sinkhorn algorithm.
An example includes the Greenkhorn algorithm (Altschuler
et al., 2017; Chakrabarty & Khanna, 2018; Abid & Gower,
2018), which is a greedy version of Sinkhorn algorithm.
A variety of standard optimization algorithms have also
been adapted to the OT setting, including accelerated gra-
dient descent (Dvurechensky et al., 2018), quasi-Newton
methods (Cuturi & Peyré, 2016; Blondel et al., 2018) and
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stochastic average gradient (Genevay et al., 2016). The
theoretical analysis of these algorithms is still nascent.

Very recently, Altschuler et al. (2017) have shown that both
the Sinkhorn and Greenkhorn algorithm can achieve the
near-linear time complexity for regularized OT. More specif-
ically, they proved that the complexity bounds for both al-
gorithms are O (n2 / g3 ) , where n is the number of atoms
(or equivalently dimension) of each probability measure
and € is a desired tolerance. Later, Dvurechensky et al.
(2018) improved the complexity bound for the Sinkhorn
algorithm to O (n2 / 52) and further proposed an adaptive
primal-dual accelerated gradient descent (APDAGD), assert-
ing a complexity bound of O (min {n%*/e, n?/e?}) for
this algorithm. It is also possible to use a carefully designed
Newton-type algorithm to solve the OT problem (Allen-
Zhu et al., 2017; Cohen et al., 2017), by making use of
a connection to matrix-scaling problems. Blanchet et al.
(2018) and Quanrud (2018) provided a complexity bound
of O (n?/e) for Newton-type algorithms. Unfortunately,
these Newton-type methods are complicated and efficient
implementations are not yet available. Nonetheless, this
complexity bound can be viewed as a theoretical benchmark
for the algorithms that we consider in this paper.

Our Contributions. The contribution of this work is three-
fold and can be summarized as follows:

1. We improve the complexity bound for the Greenkhorn
algorithm from O (n?/£%) to O (n?/?), matching the
best known complexity bound for the Sinkhorn algo-
rithm. This analysis requires a new proof technique—
the technique used in Dvurechensky et al. (2018) for
analyzing the complexity of Sinkhorn algorithm is not
applicable to the Greenkhorn algorithm. In particular,
the Greenkhorn algorithm only updates a single row
or column at a time and its per-iteration progress is
accordingly more difficult to quantify than that of the
Sinkhorn algorithm. In contrast, we employ a novel
proof technique with a novel tight £,,-bound for the
dual optimal solution. Our results shed light on the bet-
ter practical performance of the Greenkhorn algorithm
compared the Sinkhorn algorithm.

2. The smoothness of the dual regularized OT with re-
spect to ||-||, allows us to formulate a novel adaptive
primal-dual accelerated mirror descent (APDAMD)
algorithm for the OT problem. Here the Bregman di-
vergence is strongly convex and smooth with respect to
||| .- The resulting method involves an efficient line-
search strategy (Nesterov & Polyak, 2006) that is read-
ily analyzed and is inspired by a few recently proposed
mirror descent algorithms (Zhou et al., 2017a;b). It can
be adapted to problems even more general than regu-
larized OT. It can be viewed as a primal-dual extension
of Algorithm 1 in Tseng (2008) and a mirror descent

extension of the APDAGD algorithm (Dvurechensky
et al., 2018). We establish a complexity bound for
the APDAMD algorithm of O (n?,/7/¢) in which
v € (0, n] refers to some constants in the Bregman
divergence. In particular, v = n if the Bregman di-
vergence is simply chosen as - H||§ We provide
some numerical results to show that APDAMD is more

robust than APDAGD (see Section 6).

3. We show that there is a limitation in the derivation
by Dvurechensky et al. (2018) of the complexity bound
O (min {n/*/e, n?/e*}). More specifically, the
complexity bound in Dvurechensky et al. (2018) de-
pends on a parameter which is not estimated explicitly.
We provide a sharp lower bound for this parameter by
a simple example (Proposition 5.2), demonstrating that
this parameter depends on n. Due to the dependence on
n of that parameter, we demonstrate that the complex-
ity bound of APDAGD algorithm is indeed O(n?"5 /¢).
This is slightly worse than the asserted complexity
bound of O (min {n%*/e, n?/e?}) in terms of di-
mension n. Finally, our APDAMD algorithm poten-
tially provides an improvement for the complexity
of APDAGD algorithm as its complexity bound is
O(n?,/7/¢) and y can be much smaller than n.

Organization. The remainder of the paper is organized
as follows. In Section 2, we provide the basic setup for
regularized OT. We analyze the worst-case complexity of
the Greenkhorn algorithm in Section 3. In Section 4, we
propose the APDAMD algorithm for solving regularized
OT and provide a theoretical complexity analysis. In Sec-
tion 5, we provide detail argument with the limitation of
complexity of APDAGD algorithm (Dvurechensky et al.,
2018). Section 6 presents experiments that illustrate the
favorable performance of the Greenkhorn and APDAMD
algorithms. Proofs for all the results as well as additional
experiments are presented in the Supplementary material.

Notation. We let A™ denote the probability simplex in . — 1
dimensions, forn > 2: A™ = {u = (uy,...,u,) € R":
>, u; = 1, u > 0}. Furthermore, [n] stands for the
set {1,2,...,n} while R} stands for the set of all vectors
in R™ with nonnegative components for any n > 1. For
avector z € R" and 1 < p < oo, we denote ||z||, as its
¢p-norm and diag(x) as the diagonal matrix with x on the
diagonal. For a matrix A € R"*", the notation vec(A)
stands for the vector in R"” obtained from concatenating
the rows and columns of A. 1 stands for a vector with all of
its components equal to 1. 0, f refers to a partial gradient
of f with respect to x. Lastly, given the dimension n and
accuracy &, the notation a = O (b(n,€)) stands for the
upper bound a < C - b(n,e) where C' is independent of n
and ¢. Similarly, the notation a = O(b(n, ¢)) indicates the
previous inequality may depend on the logarithmic function
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of n and ¢, and where C' > 0.

2. Problem Setup

In this section, we review the formal problem of computing
the OT distance between two discrete probability measures
with at most n atoms. We also discuss its regularized ver-
sion, the entropic regularized OT problem. We then proceed
to present the formulation of the dual regularized OT prob-
lem, which is vital for our theoretical analysis in the sequel.

2.1. (Regularized) OT

Approximating the OT distance amounts to solving a linear
problem given by Kantorovich (1942):

min (C, X) st Xl=r, X'1=1,X>0, (1)

where X € R"*" is called the transportation plan while
C € R}*"™ is a cost matrix comprised of nonnegative ele-
ments. The vectors r and [ are fixed vectors in the proba-
bility simplex A™. The regularized version of problem (1)
is proposed by Cuturi (2013) in which the entropy of X is
used instead of the nonnegative constraints. The resulting
problem is formulated as follows:

(C,X)—nH(X) st.X1=r X'1=1, (2

min
X ERW Xn
where 1 > 0 is the regularization parameter and H(X) is
the entropic regularization given by

H(X) = = Y X;;log(Xi)). 3)

i,5=1

The computational problem is to find X € R’} ™ such that
X1=rand X"1=1land

(C,X) < (C,X*) +e¢, 4)

where X * is an optimal transportation plan, i.e., an optimal
solution to problem (1). In this formulation, (C, X) is re-
ferred to an e-approximation for the OT distance and X is
an e-approximate transportation plan.

2.2. Dual regularized OT

While problem (2) involves optimizing a convex objective
with several affine constraints, its dual problem is a un-
constrained optimization problem, which simplifies both
algorithm design and the complexity analysis. To derive
the dual, we begin with the Lagrangian £(X,«,8) =
(C,X)—nH(X)—{a, X1 —7)—(8,XT1—1). The dual
regularized OT is obtained by solving minx £(X, a, 3).
Since L(-, a, ) is strictly convex and differentiable, we can
solve it by setting dx L(X, a, ) = 0. More specifically,
we have

Cij +n(1+1og(Xyy)) —ai— B; =0, Vi,jen],

implying that
—Cijtai+B; _ L.
X5 =e 7 L Vijen]
To simplify the notation, we perform a change of variables,
setting u; = ¢ — 1 and v; = 2 — £ from which we obtain
n n

Cid 4yt : . .
n TtV With this solution, we have

. -
X =e

d Cij 4yt
LX* a,B) = 77(— Z en“““”—&-(u,r)—i—(v,l)—i—l).

i,7=1

Putting these pieces together yields the dual problem of
problem (2) as follows,

n c,;
- Z e” T T () 4 (0, D). (5)

ij=1

max
u,veER™

Letting B(u,v) := diag(e*) e diag(e”). Then prob-
lem (5) is simplified as follows,

min  f(u,v) := 1" B(u,v)1 — (u,7) — (v,1). (6)

u,vER™

We refer to problem (6) to the dual regularized OT problem.

3. The Greenkhorn Algorithm

In this section, we analyze the Greenkhorn algorithm,
which stands for a “greedy Sinkhorn” algorithm (Altschuler
et al., 2017). In particular, we improve the existing best
nzI\Clliglog(n))

known complexity bound O ( in Altschuler

n?||C|I2, log(n)

=3 , which matches the

et al. (2017) to (9(

best known complexity bound for the Sinkhorn algo-
rithm (Dvurechensky et al., 2018). To facilitate the dis-
cussion later, we present the Greenkhorn algorithm in pseu-
docode form in Algorithm 1 and its application to regular-
ized OT in Algorithm 2.

Both the Sinkhorn and Greenkhorn procedures are coordi-
nate descent algorithms for the dual regularized OT prob-
lem (6). However, while the Greenkhorn algorithm is a
greedy coordinate descent algorithm, the Sinkhorn algo-
rithm is block coordinate descent with only two blocks. It
turns out to be easier to quantify the per-iteration progress
of the Sinkhorn algorithm than that of the Greenkhorn al-
gorithm, as suggested by the fact that the proof techniques
in Dvurechensky et al. (2018) are not applicable to the
Greenkhorn algorithm. We thus explore a different strategy
which will be elaborated in the sequel.

3.1. Algorithm scheme

The Greenkhorn algorithm is presented in Algorithm 1 with
the function p : Ry x Ry — [0, +oo] (Altschuler et al.,
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Algorithm 1 GREENKHORN(C, 7, r, 1, ")

Input: & = 0 and u° = 2% = 0.
while E¥ > ¢’ do
r(uF,v*) = B(u¥, vF)1.
I(u¥,vk) = B(u*, v¥)T1.
I = argmax<;<, p (rl,m uP, vk) )
J:argmax1<J<n (l],l uP vk) )

if p (TZ,TZ(’U,k o)) > p( l;(uF,v"*)) then
uytt = uk +log (rr) — log (ry(u®,v*)).
else
vﬁ“—w—i—log ly) log(l] )
end if
k=Fk+1
end while

Output: B(u*,v").

Algorithm 2 Approximating OT by GREENKHORN
Input: n =

£ ! £
— and = AT
Tlog(n) N9 E = FTOT

Step 1: Let7 € A, and [ € A, be defined as

(7.0) = <1 - g) (r,1) +

Step 2: Compute

5.I
—(1,1).
=

X = GREENKHORN (C, n, 7 0,¢ /2) .

Step 3: Round X to X by Algorithm 2 (Altschuler et al.,

2017) such that Xl=rand X'1=1.
Output: X.

2017) given by p(a,b) := b—a+ alog (¢). Note that p
measures the progress in the dual objective value between
two consecutive iterates of the Greenkhorn algorithm. In
particular, p(a,b) > 0 for any a,b € R and the equality
holds if and only if @ = b. On the other hand, we observe
that the optimality condition of the dual regularized OT

problem (6) is B(u,v)1 — 7 = 0 and B(u,v)'1—1 = 0.

This brings us to the following quantity which measures the
error of the k-th iterate of the Greenkhorn algorithm:

Fo= 1Bt oM =+ B, 0") T =1

3.2. Complexity analysis—bounding dual objective
values

Given the definition of E*, we first have the following
lemma which yields an upper bound for the objective values
of the iterates.

Lemma 3.1. For each iteration k > 0 of the Greenkhorn
algorithm, we have

Pk o) = f %) < @t + 2007 BY ()

where (u*,v*) denotes an optimal solution pair for the dual
regularized OT problem (0).

Our second lemma provides an upper bound for the /-
norm of the optimal solution pair (u*, v*) of the dual reg-
ularized OT problem. Note that this result is stronger than
Lemma 1 in Dvurechensky et al. (2018) and generalizes
Lemma 8 in Blanchet et al. (2018) with fewer assumptions.

Lemma 3.2. For the dual regularized OT problem (6), there
exists an optimal solution (u*,v*) such that

[ loc < R, [lv*]lc < R, (®)

where R > 0 is defined as

1€l

R = ” + log(n) — 2log <1<r£11n {Tzal })

Putting together Lemma 3.1 and Lemma 3.2, we have the
following straightforward consequence:

Corollary 3.3. Letting {(u*,v*)}>0 denote the iterates
returned by the Greenkhorn algorithm, we have

Fb %) = flu*

Remark 3.4. The constant R provides an upper bound both
in this paper and in Dvurechensky et al. (2018), where the
same notation is used. The values in the two papers are
of the same order since R in our paper only involves an
additional term log(n) — log (mini<; j<n {74,1;}).

Remark 3.5. We further comment on the proof techniques
in this paper and Dvurechensky et al. (2018). The proof for
Lemma 2 in Dvurechensky et al. (2018) depends on taking
full advantage of the shift property of the Sinkhorn algo-
rithm; namely, either B(@",5*)1 = r or B(u*,5*)T1 = |,
where (ﬂk, Ek) stands for the iterates of the Sinkhorn algo-
rithm. Unfortunately, the Greenkhorn algorithm does not
enjoy such a shift property. We have thus proposed a dif-
ferent approach for bounding f(u*, v*) — f(u*,v*), based
on the L-norm of the optimal solution (u*,v*) of the dual
regularized OT problem.

v*) < 4ARE". ©)

3.3. Complexity analysis—bounding the number of
iterations

We proceed to provide an upper bound for the number of
iterations k to achieve a desired tolerance &’ for the iterates
of the Greenkhorn algorithm. First, we start with a lower
bound for the difference of function values between two
consecutive iterates of the Greenkhorn algorithm:

Lemma 3.6. Let {(u*,v*)}>0 be the iterates returned by
the Greenkhorn algorithm, we have
Ek)2
ko, kY _ k1 k1) S (
R R R IS

(10)
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We are now able to derive the iteration complexity
of Greenkhorn algorithm based on Corollary 3.3 and
Lemma 3.6.

Theorem 3.7. The Greenkhorn algorithm returns a matrix
B(u®,v¥) that satisfies Ey, < €' in the number of iterations
k satisfying

112nR
a (1m)

E <2+
where R is defined in Lemma 3.2.

Equipped with the result of Theorem 3.7 and the scheme of
Algorithm 2, we are able to establish the following result
for the complexity of the Greenkhorn algorithm:

Theorem 3.8. The Greenkhorn algorithm for approximat-
ing optimal transport (Algorithm 2) returns X e Rvxn
satisfying XI1=r, XT1=1and 4)in

o <n ||o§§1og(n>>
9

arithmetic operations.

The result of Theorem 3.8 improves the best known
complexity bound O <"—§) for the Greenkhorn algo-

rithm (Altschuler et al., 2017; Abid & Gower, 2018), and
further matches the best known complexity bound for the
Sinkhorn algorithm (Dvurechensky et al., 2018). This sheds
light on the superior performance of the Greenkhorn algo-
rithm in practice.

4. Adaptive Primal-Dual Accelerated Mirror
Descent

In this section, we propose and analyze an adaptive primal-
dual accelerated mirror descent (APDAMD) algorithm for
a general class of problems that specializes to the regular-
ized OT problem in (2). The APDAMD algorithm is an
adaptive primal-dual optimization algorithm for finding a
primal-dual optimal solution pair for a broad class of OT
problems. The pseudocode for the APDAMD algorithm
and its specialization to the regularized OT problem (2) are
presented in Algorithm 4 and Algorithm 3, respectively. In
Section 4.2 we show that the complexity of APDAMD is

2
] (M) in which v € (0, n] refers to some
constants in the Bregman divergence.

4.1. General setup

We consider the following generalization of the regularized
OT problem:

min f(z),

min st. Az = b, (12)

where A € R™*" is a matrix and b € R™. Here f is
assumed to be strongly convex with respect to the ¢1-norm:

f(xa) — flz1) —

The Lagrangian dual problem for (12) can be written as the
following minimization problem:

(V@) a2 = a1) 2 3 |laa - 7.

min p()) = (ATA,x)}. (13)

AER™

(A, b) + max { f(z) -
A direct computation leads to V() = b — Az()\) where

z(\) = argmax {—f(z) — <AT)\,:£>} .

zER™

To analyze the complexity of the APDAMD algorithm, we
first establishes the smoothness of the dual objective func-
tion ¢ with respect to the £,-norm.

Lemma 4.1. The dual objective p satisfies that

A 2
PO =p02)—(Tp0a),hs =) < T2 oy — 2

— [0, +00] is
By(2,7') = ¢(2)=¢(z")—(d(2'),2 = &), Vz,2/ €R"

Let ¢ be a %-strongly convex and 1-smooth on R™ with

The Bregman divergence B : R™ x R"

respect to the £.-norm; i.e., for any z # 2/,

1 0(z) = o(z) = (Ve(z'), 2 — =)

< 3 <
2y Iz = 2[5

1
— 2 .

(14)

Note that one typical choice of ¢ is ﬁ HzHg, implying that

’ 1 12

By(z#) = o llz =2l
In this extreme case, v = n. In general, v is a function of n.
It is worth noting that the value of y will affect the complex-
ity bound of the APDAMD algorithm for approximating
optimal transport problem (see Theorem 4.3). We make no
attempt to optimize the value of 7 as a function of n in the
current paper. To analyze the complexity of the APDAMD
algorithm for solving the regularized OT problem, we es-
tablish several key properties of APDAMD algorithm for
the general setup in (12) in Section A in the Supplementary
material.

4.2. Complexity analysis for the APDAMD algorithm

We start with the setting of the dual objective ¢ for regu-
larized OT problem. Different from dual problem (5), we
set () as the objective in the original dual OT problem in
which A := («, /3). The resulting problem is

oy BJ

—77226f (o,

3,j=1

T>_<ﬂaw'
(15)

mln Q
L o(a, B)

o *
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Algorithm 3 Approximating OT by APDAMD
Input: n =

g / g
———and &' = —~5—
4log(n) 8[[Clloo

Step 1: Let7 € A, and [ € A, be defined as

/

(rl) - (1_2) (r,l)+8%(1,1).

Step 2: Let A € R2"*"” and b € R2" be defined by

X1

Avee(X) = ( & 1) . (’l“)

Step 3: Compute X = APDAMD (¢, A, b, g’ /2) with
defined in (13) with f(z) = vec(C) "vec(X) — nH(X).
Step 4: Round X to X by Algorithm 2 (Altschuler et al.,
2017) such that X1 =r, X1 =1.

Output: X.

Algorithm 4 APDAMD (¢, A, b, &)
Input: £ = 0.
Initialization: a° = = 0,2 = p® =Xand L° = 1
repeat
Set M* = LY.
repeat

Set M* = 2M*.
. 1+4/1447 MF Gk
Compute step size o1 = LV I MTaT

2y Mk
Compute accumulating parameter &t = ak 4 of L
oFHLF L Gk
. +a®
Compute averaging step "' = ki
ak+1

Compute mirror descent update:

2" = argmin {<V<p(uk+1), z— uk+1> +

z€R™

B¢(z,zk)}

ok+1

aftl A+1+a ° A\ F
ak+1

w(p ,
Mk+1”

Compute averaging step A\*+1 =
until stopping criterion (A1)

<v(p(ﬂk+1)’)\k+1 _ Mk+1> i_% ”)\k+1 -
o

k+1)

a(u* )

dk+1

kK

Set averaging step z* 1! tar
Set LFt1 =
Setk =k + 1

until HAm — le <¢

Output: X" where z* = vec(X*).

M k

This problem was also considered in Dvurechensky et al.
(2018) to establish the complexity bound of APDAGD al-

gorithm. By means of transformations u; = % — % and
vj = %’ — 5, we follow from Lemma 3.2 that

X 1 " 1
o'l < 0 (R4 5 )0 187 < (R4 3) 09

We are ready to derive an upper bound for the iteration
number of Algorithm 3 to reach a desired accuracy &’:

Theorem 4.2. The APDAMD algorithm for approximating
optimal transport (Algorithm 3) returns an output X* that
satisfies || A vec(X*) —b|ly < €' in a number of iterations
k bounded as follows:

R+1/2
k< 1+4\/§||A||”/”(+,/)

where R is defined in Lemma 3.2.

Equipped with the result of Theorem 4.2, we proceed to
present the complexity bound of APDAMD algorithm for
approximating the OT problem.

Theorem 4.3. The APDAMD algorithm for approximating
optimal transport (Algorithm 3) returns X e Rxn satisfy-
ing X1=r, X"1=1and 4)ina total of

(n flICII log(n ))

arithmetic operations.

The complexity bound of the APDAMD algorithm in Theo-
rem 4.3 suggests an interesting feature of the (regularized)
OT problem. Indeed, the dependence of that bound on ~
manifests the necessity of using ||.|| in the understand-
ing of the complexity of the regularized OT problem. This
view is also in harmony with the proof technique of running
time for the Greenkhorn algorithm in Section 3, where we
rely on the |.||o of optimal solutions of the dual regular-
ized OT problem to measure the progress in the objective
value among the successive iterates (See Section B in the
Supplementary material).

* 5. Revisiting the APDAGD algorithm

In this section, we first point out that the complexity bound

of the APDAGD algorithm (Dvurechensky et al., 2018)
for regularized OT is not 10) (min {%/4, Z—; ) Then, we

provide a new complexity bound of the APDAGD algorithm
based on our results in Section 4.2. Despite the issue with
regularized OT, we wish to emphasize that the APDAGD
algorithm is still an interesting and efficient accelerated
method for general setup (12) with theoretical guarantee
under the certain conditions.

To facilitate the ensuing discussion, we first present the
complexity bound for regularized OT in (Dvurechensky
et al., 2018) using the notation from the current paper.
Theorem 5.1 (Theorem 4 in Dvurechensky et al. (2018)).
The APDAGD algorithm for approximating optimal trans-
port returns X € R™ " satisfying X1 = r, X1 = 1
and (4) in a number of arithmetic operations bounded as
R|Clllog(n) n2R|C 1
o (i Rl og(w)
€ €
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Algorithm 5 Approximating OT by APDAGD
Input: n =

g / g
———and& = 5—.
4log(n) 8[[Clloo

Step 1: Let7 € A, and [ € A, be defined as

(rl) - (1_2') (r,l)+8%(1,1).

Step 2: Let A € R2"*"” and b € R2" be defined by

Avee(X) = < )?(Tll) b= (;) .

Step 3: Compute X = APDAGD (¢, A4, b, e’ /2) with ¢
defined in (13) with f(z) = vec(C) "vec(X) — nH(X).
Step 4: Round X to X by Algorithm in (Altschuler et al.,
2017) such that X1 =r, X1 =1.

Output: X.

where ||(u*,v*)|l2 < R and (u*,v*) denotes an optimal
solution pair for the dual regularized OT problem (6).

This theorem suggests that the complexity bound is at the
~ . 9/4 2 .
order O (mm { "T, Z—Q }) . However, there are two issues:

1. The upper bound R is assumed to be bounded and
independent of n, which is not correct; see our coun-
terexample in Proposition 5.2.

2. The known upper bound R is based on
ming<; j<n {ri,l;} (cf. Lemma 3.2 or Lemma
1 in (Dvurechensky et al., 2018)). This implies that the
valid algorithm needs to take the rounding error with
weight vectors r and [ into account.

Corrected upper bound R. 7The “upper bounds from (16)
imply that an upper bound for R is O (nl/ 2). Now we show

that R is indeed Q (n'/2) for any € € (0,1).

Proposition 5.2. Assume that all the entries of the ground
cost matrix C € R"™ ™ are 1 and the weight vectors
r =1=1/n. Givene € (0,1) and the regularization
termn = ﬁ(”), the optimal solution («*, 5*) of the dual

regularized OT problem (15) satisfies ||(a*, 8*)||2 = n'/2.
Approximation algorithm for OT by APDAGD. Algo-
rithm 4 in Dvurechensky et al. (2018) can be improved by
incorporating the rounding procedure, which is summarized
in Algorithm 5. Here, the APDAGD algorithm used in
Algorithm 5 stands for Algorithm 3 in Dvurechensky et al.
(2018). Given the corrected upper bound R and Algorithm 5
for approximating OT, we provide a new complexity bound
of the APDAGD algorithm in the following proposition.

Proposition 5.3. The APDAGD algorithm for approximat-
ing optimal transport (Algorithm 5) returns X € R"*"
satisfying X1 =r, X 1 =l and (4) in a total of

o <n5/2 ||c|m1og<n>>

3

arithmetic operations.

The proof of Propositions 5.2 and 5.3 are provided in Sec-
tions B.9 and B.10. As indicated in Proposition 5.3, the
complexity bound of APDAGD and APDAMD algorithm
for the regularized OT are comparable if we choose the Breg-
man divergence to be 5~ |[.[|3. It is still unclear whether the
upper bound n of v can be further improved (Nemirovsky,
1983). From this perspective, our APDAMD algorithm can
be viewed as a generalization of the APDAGD algorithm.
Finally, since our APDAMD algorithm utilizes £.,-norm
in its line search criterion, it will be more robust than the
APDAGD algorithm (see the experimental results in Sec-

tion 6 in the main text).

6. Experiments

In this section, we conduct the extensive comparative ex-
periments with the Greenkhorn and APDAMD algorithms
on synthetic and real images'. Note that some results are
deferred to Section C in the Supplementary material. The
baseline algorithms contain the Sinkhorn (Altschuler et al.,
2017), APDAGD (Dvurechensky et al., 2018) and GCPB
algorithms (Genevay et al., 2016). The Greenkhorn and AP-
DAMD algorithms outperform the Sinkhorn and APDAGD
algorithms and the APDAMD algorithm is faster and more
robust than APDAGD and GCPB algorithms.

We follow the setup in Altschuler et al. (2017) in order to
compare different algorithms on the synthetic images. In
particular, the transportation distance is defined between a
pair of randomly generated synthetic images and the cost
matrix is comprised of ¢; distances among pixel locations
in the images.

Image generation: Each of the images is of size 20 by
20 pixels and is generated based on randomly positioning
a foreground square in otherwise black background. We
utilize a uniform distribution on [0, 1] for the intensities of
the background pixels and a uniform distribution on [0, 50]
for the foreground pixels.

Evaluation metrics: The first metric is the distance be-
tween the output of the algorithm, X, and the transportation
polytope, i.e., d(X) = ||r(X)—r|l1 +||{(X)—I||; in which
r(X) and I(X) are the row and column marginal vectors
of the output X while r and [ stand for the true row and

'http://yann.lecun.com/exdb/mnist/
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Figure 1. Performance of the Sinkhorn v.s. Greenkhorn, APDAGD v.s. APDAMD on the synthetic images. In the top two images, the
comparison is based on using the distance d(P) to the transportation polytope, and the maximum, median and minimum of competitive
ratios log(d(Ps)/d(Pg)) and log(d(Psp)/d(Pamp)) on ten random pairs of images. Here, d(Ps), d(Pg), d(Pap) and d(Paup) refer
to the Sinkhorn, Greenkhorn, APDAGD and APDAMD algorithms, respectively. In the bottom left image, the comparison is based on
varying the regularization parameter € {1, 5,9} and reporting the optimal value of the original optimal transport problem without
entropic regularization. Note that the foreground covers 10% of the synthetic images here. In the bottom right image, we compare by
using the median of competitive ratios with varying coverage ratio of foreground in the range of 10%, 50%, and 90% of the images.

APDAMD vs APDAGD vs GCPB for OT, eta=1 APDAMD vs APDAGD vs GCPB for OT, eta=5 APDAMD vs APDAGD vs GCPB for OT, eta=9

—— APDAM:
APDAGI APDAG
GCPB,
045 vy
GCPB,

Figure 2. Performance of the GCPB, APDAGD and APDAMD algorithms in term of time on the MNIST real images. These three images
specify the values of regularized OT with varying regularization parameter n € {1, 5,9}, showing that the APDAMD algorithm is faster

and more robust than the APDAGD and GCPB algorithms.

column marginal vectors. The second metric is the com- iteration numbers, supporting our theoretical assertion that
petitive ratio, defined by log(d(X1)/d(X3)) where d(X;)  the Greenkhorn algorithm has the complexity bound as good
and d(X5) refer to the distance between the outputs of two as the Sinkhorn algorithm (cf. Theorem 3.7). The APDAMD
algorithms and the transportation polytope. algorithm with the Bregman divergence % I|- ||§ is slightly

Experimental setting: We perform two pairwise com- faster than the APDAGD algorithm.

parative experiments: Sinkhorn versus Greenkhorn and Figure 2 provides the performance of the APDAMD,
APDAGD versus APDAMD by running these algorithms APDAGD and GCPB algorithms on real images. The AP-
with ten randomly selected pairs of synthetic images. We DAMD algorithm is not faster but more robust than the
also evaluate all the algorithms with varying regularization APDAGD and GCPB algorithms (Genevay et al., 2016).
parameter € {1,5,9} and the optimal value of the original ~ This makes sense since their complexity bounds are the
optimal transport problem without entropic regularization,  same in terms of n and ¢ (cf. Theorem 4.3 and Proposi-
as suggested by Altschuler et al. (2017). tion 5.3). On the other hand, the robustness comes from the
fact that the APDAMD algorithm can stabilize the training

Experimental results: Figure 1 shows that the Greenkhorn . . - .
by using {,,-norm in the line search criterion.

algorithm outperforms the Sinkhorn algorithm in terms of
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