Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations

A. Proof of Theorem 2

In this section, we provide a proof for Theorem 2:

For an MCEEF representation given in Definition 3, the FIM F,,.(\) given in (9) is positive-definite and
invertible for all A € Q.

We prove this using a sequence of lemmas.

Lemma 1 log g(w, z|\) is twice differentiable with respect to .

Proof: From Definition 2, we see that the log ¢(z, w) is differentiable when A,,(A,,) and A, (., w) are twice differen-
tiable for each w sampled from q(w). Since q(w) is an EF, A,,(A,) is twice differentiable (Johansen, 1979). Similarly,
since conditioned on w, ¢(z|w) is also an EF, A,(\,, w) is twice differentiable too. Therefore, the log of the joint
distribution is twice differentiable. O

Lemma 2 The FIM F,. () is block-diagonal with two blocks:

sz()‘) = |: 0 Fw()\w)

where F,(A\y,) is the FIM of q(w) and F () is the expected of the FIM of q(z|w) where expectation is taken under q(w)
as shown below:

Fo(Aw):
F.(\):

—Eqw) [Viw log q(W|)‘w)]
_]ELI(H)) [EQ(Z\W) [Viz log Q(Z|W7 )‘z)]] y

Proof: By Lemma 1, log g(w,z|\) is twice differentiable, so the FIM is well defined. Below, we simplify the FIM to
show that it has a block-diagonal structure. The first step below follows from the definition of the FIM. The second step is
simply writing the FIM in a 2 x 2 block corresponding to A, and A,,. In the third step, we write the joint as the product of
q(z|w) and g(w). The fourth step is obtained since the two blocks are separable in A, and A,,. In the fifth step, we take the
expectation inside which give us the desired result in the last step.

sz()\) = _]Eq(z,wlx\) [V?\ IOg q(z,w|)\)]

V3. logq(z, wlA) Vi, V,rlogq(z, wiX)
= —Egum 5 2 T
[Va.Var logg(z, wlX) VX logq(z, wiA)

V3, (logg(zlw, A;) +logq(wlXy)) Vi, Var (logg(zlw, A;) +log g(w|Ay))

= e |9, Vi (logg(zlw, A) + logg(wlx,)) V2, (log g(zlw. A.) + log g(wlA,))
_ R (V3. logq(z|w, X,) 0 }
el | 0 V2 logg(w|Ay)
_ {Equ,wm [V3_ logq(z|w, )] 0 ]
0 Eywir,) [V3, 108 ¢(W|Ay)]
_ {Fz@) 0 }
L 0 Fu(Aw),

Lemma 3 The first block of the FIM matrix ¥, is equal to the derivative of the expectation parameter m,,(\):

F.(A) := VamI(})
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Proof: We first show that the gradient of A, (X, w) with respect to A, is equal to E,(,,,) [¢,(z, w)]. By using the
definition of A, (X, w), this is straightforward to show:
Vi, Az (A, w) =V, log/hz(z,w) exp [(¢,(z, W), X,)] dz

[ Vb (z,w) exp (. (2, W), A da
[ ha( z,w) exp [(¢,(z, W), A,)] dz
_ [ ¢.(z,w)h.(z, W) exp [(§. (2, W), )] dz

el w) exp [ ), A.) o
=By [0, (2, W)] 34)
Using this, the expectation parameter m, is simply the expected value of the gradient of the log-partition function.
m; = Eywqtalo) [@2(2, W)] = Equ) [Va, Az (Az, W) (35)
Using this, it is easy to show the result by simply using the definition of the conditional EF, as shown below:
F.(A) = —Ey¢. [V3, logq(zw, X.)]
~Eyeun [V3, (l0gh.(2, W) + (. (2, W), A.) — A-(Az, w))]
=Egz ) [viz A (Az, w)]
= Equp) [V3. 4: (A, w)]
= V. Egwir,) [V&T Az (As, W)]
= Vi m]
]

Lemma 4 Let ), x Q, be relatively relatively open. If the mapping m,,(+) : Q,, — M, is one-to-one, and, given every
Aw € Qu, the conditional mapping m, (-, Ay : Q. — M, is one-to-one, then ¥, (\) is positive-definite in 1, X (.

Proof: When the mapping m,, is one-to-one, ¢(w|A,,) is a minimal EF, and given that €,,, is relatively open, using the
result discussed in Section 2, we conclude that the second block F,(A,,) of F,, () given in (32) is positive definite and
invertible for all €2,. Now we prove that the first block F, () is also positive definite.

The steps below establish the positive-semi definiteness first. The first step is simply the definition of the FIM, while the
second step is obtained by using the fact that V1og f(A) = Vf(A)/f(A). The third step is obtained by using the chain-rule,
and the fourth step simply uses the log-trick above to simply the second term. In the fifth step, we take the derivative out of
the first term which cancels out ¢(z|w, A,). The last step is straightfoward since the outer products are always nonnegative.

VA A (A, w) = —Eqp) [V3, logg(z[w, X2)]

V)\Tq |W}\
e (B2

—_E V§ZQ(Z|W7 z) VA q(z|lw,X;) Varq(z|w, A;)
| g(zlw, Al g(zlw, X)) qlzlw, )
V3. q(z|w, A)
= Eqizw) _W + Ey:jw) [Va. log q(z|w, A;)Var log g(z|w, A.)]

/ —V3_q(z|w,X.)dz + Ey.u [Va. logg(z z[w, X))V r log q(z|lw, A.)],

/—/\—
=-V3. /q(z|w,)\z)dz +E o) [V, log q(z|w, A, )V 1 log g(z|w, A.)]

=0
= ]Eq(z\w) [v)\z log q(Z|W7 AZ)VAZ log q(Z|W, AZ)} i 0. (36)
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Using Lemma 3 and (35), we see that FIM is positive semi-definite:
Fz(/\) = V)\z mz = V/\qu(wM“,) [VAZAz(szw)] = Eq(w) I:v?\zAZ(AZ)W)] =0

Now, we prove the final claim that, for every A,, € €0, if the conditional mapping m, (-, A,,) is one-to-one, then F, (\)
is positive definite. We will prove this statement by contradiction. Suppose there exists A such that F, () is positive
semi-definite, since F, () is positive semi-definite, there exists a non-zero vector a such that a” F,(X\)a = 0. Simplifying
below, we show that this leads to a contradiction. The first and second step are obtained by simply plugging (36), while the
third step is obtained by using the definition of ¢(z|w, A,) and the fourth step is obtained by using (34). The last step is
obtained by noting that the quantity is simply the variance of a’ ¢_ (z, w) conditioned on w .

a’F.(N)a=E,., [aTV?\z A.(X., w)a
= Eq(w) [aTEq(z|w) {v)\z log q(Z|W, AZ)VAZT log Q(Z|W7 AZ)} a]

= Eq(w)q(elw) [aT (¢.(2,w) — Vi A.(X., W) (¢, (2, w) — Vi A (A, w))T a}

= Eywntetnr a7 (6:(2,W) = By [0, (2, W) (6.(2, W) = By [0 (2, ) a]
= Eyw) Ve [a7 ¢, (2, W)]

The expectation of a function positive quantity is equal to zero only when each function value is equal to zero, therefore for
the above to be zeros, we need a” ¢.(z,w) = 0. However, as we show below, this is not possible since the representation
q(z|w) is minimal conditioned on w.

Since €2, is relatively open, there exists a small § > 0 to always be able to obtain a perturbed version A, = X, + da, such
that A, € €. Since the conditional mapping is one-to-one, m_ (AL, A,,) # m_ (X, A,). By using (35) and (33), when
a’¢,(z, w) = 0, we get a contradiction:

mz()\/z7 Aw) = Eq(w\/\w) [VXZAZ(A/Za W)}

_ f¢z(z7w)hz(sz) €xXp [<d)z(sz)a>‘/z>} dz

= Bt | 1w o [ (2 w), X)) da ] 7
B [ . (2, w)h (2, w) exp [(h, (2. W), A.)] da

= Eatwi { [ (o w) exp (. (2, w), As)] da } %)
- mz(Azy Aw)

where we can move from (37) to (38), since (¢,(z,w),\.) = (¢p.(z,w),\, + da) = (¢,(z,w),.), Due to the
contradiction, F,(X) must be positive definite. This proves that both the blocks are positive definite and invertible.
O

Lemma 5 The gradient with respect to A can be expressed as the gradient with respect to m.:

ViL = [Vom"]| V£ = [Foy.(A)] Vi £ (39)

Proof: Using Lemma 3, and chain rule, we can establish the results for A :
Vi L=V, mZ()\) Vi, L] = F.(A) [Vin. L]

For A, this result holds trivially, which proves the statement. (Il
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B. Finite Mixture of Gaussians
The finite mixture of EF distribution has the following conditional distribution ¢(z|w):

K K

q(zlw) =Y L(w)a(zA) = Y Le(w)h.(z) exp [(Ae, $.(2)) — Az(A)]
= hz (Z) €xp {Z<H0<w)¢z (Z)a Ac> - Z Hc’(w>Az<)‘c’)}

where we assume each component admits the same parametric form.

From the above expression and using the EF form for the multinomial distribution, we can write the sufficient statistics,
natural parameters, and expectation parameters as shown below, where m. := E(. .- [¢.(2)] is the expectation parameter
of a component ¢(z|w = ¢).

I (w) log(m/mr) ] m
Iy (w) log(ma /7K ) T2
]IK 1(11)) log(wK;l/ﬂK) 71'[(',1
I (w)¢.(2) Al Timy
I (w )¢z(z) A2 TomMmy
L HK(wj¢z(z) i L Ak ] | TkMg |

From the last two vectors, we can see that the mapping between A and m is going to be one-to-one, when each EF ¢(z|\.)
is minimal (which makes sure that mapping A. and m, is one-to-one), and all A, are distinct.
B.1. The Model and ELBO

We consider the following model: p(D, z) = Hf:’zl p(D,,|z)p(z). We approximate the posterior by using the finite mixture
of EFs whose marginal is denoted by ¢(z) as given in (15). The variational lower bound is given by the following:

S p(z)
Z [log p(Dy,|z)] + log (z)]

=E,.)[—h(z)], where h(z) := — llog SEZ; + Z log p(D,,|z)

Note that the lower bound is defined with the marginal ¢(z) and the variable w is not part of the model but only the
variational approximation ¢(z, w).
B.2. Finite Mixture of Gaussians Approximation

We now give details about the NGD update for finite mixture of Gaussians. Note that the NGD update for A, and X\, can be
computed separately since the FIM is block-diagonal. We first derive the NGD update for each component ¢(z|w = ¢), and
then give an update for X,,.

As shown in Table 1, the natural and expectation parameters of the ¢’th component is given as follows:

A= _%2;1 M. := WC(H(:HZ + )
Ao =3 p, m; := T U,

The expectation parameters m. and M., are functions of 7., .., 3. and its gradient can be obtained in terms of the gradient
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with respect to these quantities by using the chain rule. The final expressions are shown below:

V£ = 2 (V£ —2[Vs. L] 1)

C

1
Vu L =—(Vs.L)

C

We can compute gradients with respect to . and 3. by using the gradient and Hessian of h(z) at a sample z from ¢(z, w).
This can be done by using the Bonnet’s and Price’s theorems (Bonnet, 1964; Price, 1958; Opper & Archambeau, 2009;
Rezende et al., 2014). Staines & Barber (2012) and Lin et al. (2019) discuss the conditions of the target function h(z) when

it comes to applying these theorems. Firstly, we define d. = q(z|w = ¢)/q(z) := N (z|p,, Z.)/ 25:1 e N (z|py, Ber).
Using these theorems, we obtain the following stochastic-gradient estimations for the mixture of Gaussian case:

Vi L) = =By la(w = c|2)V:h(z)] =~ —7d:V:h(z)

Tle
Ve, L(A) = — By [q(w = C|Z)V§h(z)] ~ —Tvih(z)-

where ¢(w = ¢|z) = 7.0, and z is sampled from ¢(z).

We can then plug these gradient estimations in the natural-gradient update for A.:
-1 -1
L [Ee] e AE VML = [E] B+ B0.92R(2)
Similar for A.:

—1
|:E£:new)j| H(Cnew) — Ec_lp’c + vacc
1
2 e+ (Vi £ = 2[Ve L pr,)
B

Te

—|Z0 -2

 [S2+ 865, [V2h(a)]] e + B (9,,8)

V.| o+ 5 (9,.0)

r _1 1
[0 e+ B (9,.0)
L Te
This gives the following update (by using the stochastic gradients):

I'L(CHEW) — . — Bécz(cnew)vzh(z)

B.3. Natural Gradients for ¢(w)

Now, we give the update for ¢(w|A,,). Its natural parameter and expectation parameter are

K—-1

Te K— —

A = {1og } My = () L)} = )55
TK c=1

To derive the gradients, we note that only ¢(z) depends on 7 since the model does not contain this as a parameter. Therefore,
we need the gradient of the variational approximation which can be written as follows:

K

Vrd(2) = Va, Y ma(zlAr) = a(zlA) — a(z|Ak).
k=1

The second term appears because the last 7 depends on 7.
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For the convenience of our derivation, we will separate the lower bound into terms that depend on ¢(z) and the rest of the
terms, as shown below:

Var. E(’\) =Vnr. EQ(Z>

N
> log p(Dylz) + log p(z) — log q(Z)]

n=1

=/ Vr.q(2) [Z logp(DnIZ)+10gp(Z)—logq(Z)] dZ_/Q(Z)vm log ¢(z)dz

gz o) —a(zlrk)
(logp (Dy|z) + log (Z)>] dz

= [latelr) - atzian) [Z 2

n=1

0

e [q<qz(|:)c> ) i (1est 1)+ lgggm iz
= { (0 — k) i(logpl? |z) + log Z;)”

—h(2)
~ —(0c = 0k )h(z)
where z is a sample from ¢(z).

Using this, we can perform the following NGD update:

log (7. /7k) + log (7we/mKr) — B(6c — Ok ) (2)

B.4. Extension to Finite Mixture of EF's

The algorithm presented in Section 4.1 can be extended to handle generic minimal EF components. We now present a
general gradient estimator to do so. The update of 7. remains unaltered, so we do not discuss them here. We only discuss
how to update natural parameters A, of ¢(z|A.).

The natural parameter and sufficient statistics are A. and I.(w)¢, (z) respectively. We wish to perform the following update:
Ae < A + B2V, L(A). In general, we can compute the gradient Vim.L(\) by computing the FIM of each component as
shown below:

VmL‘C(A) = (v/\L.mc)_l VALE()‘) = (v)\cEq(’w,z) [Hc(w)d)z(z)])_l v)\cﬁ(A)7

Both of these gradients can be obtained given V _z, where z is a sample from ¢(z) as shown below.
Vs By [L(w)6.(2)] V. [ mea(alw = ). )iz = [ malalw = o)V [6.(2)] [V, 2)dz
Vi, L(A) :/WCV,\CQ(Z\w =c)[-h(z)]dz + /q(z) [V, logq(z)] dz

0

- / Teq(zlw = &) [V (—h(2))] (V2] da

If we assume that ¢(z|w) is an univariate continuous exponential family distribution, we can use the implicitly re-
parameterization trick (Salimans & Knowles, 2013; Figurnov et al., 2018) to get the following gradient. Lin et al. (2019)
discuss the trick under a weaker assumption than Salimans & Knowles (2013); Figurnov et al. (2018).

S PN XC )
a(xhw =)
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where Q.(+|\.) is the cumulative distribution function (CDF) of ¢(z|w = c¢). Therefore, we now can compute the required
gradient as below:

Va. L(A) :/wcq(Z\w =) [-V:h(z)] [‘M] *
“E,., [WW [=V:h(2)] {mﬂ
TV, Qe(2[Ac)

et [ «2)

[vzmz)]} ,
and
Vo By 1e().2)] = [ meateh = 9. [6.(2) [

_ _W(:VACQC(ZP‘C) 5
_Eq(z) |: q(z) V. [¢z( )]:| :

This is not the most efficient way to compute NGDs, however, for the specific cases (e.g., Gaussian, exponential distribution,
inverse Gaussian), we can get simplifications whenever gradient with respect to the expectation parameters are easy to
compute.

VLA,
ETED }d

The Birnbaum-Saunders distribution, which is a finite mixture of inverse Gaussians, is presented in Appendix C. This
example is different from examples given in this section since we allow each mixing component takes a distinct but tied
parametric form.

B.5. Result for the Toy Example
See Figure 6

C. Birnbaum-Saunders Distribution

. . . . 1/2
Firstly, we denote the inverse Gaussian distribution by InvGauss(z; y, v) = (2;;3) / exp [—2”722 — i + % , where z > 0,

v > 0, and g > 0. We consider the following mixture distribution.
q(w) = p'=0 (1 — p)Iw=1)
zInvGauss(z; i, v)

q(z|w) = I(w = 0)InvGauss(z; p, v) + I(w = 1) . , (40)

where iInvGauss(z; 14, v) is a normalized distribution since it is the distribution of z = y~

! where y is distributed by

InvGauss(y; =1, v/pu?).
As we can observe from Eq (40), each mixing component has a distinct parametric form and variational parameters are

shared between the components, which is different from examples discussed in Appendix B. According to Desmond (1986);

Jgrgensen et al. (1991); Balakrishnan & Kundu (2019), the marginal distribution is known as the Birnbaum-Saunders

distribution (Birnbaum & Saunders, 1969) shown as below, where p = L

L
q(zlv, ) =) q(w)q(zlw)

w

1 ( v )1/2 ve v vl (7
=1 exp | ——= — — + — -
2 |\ 2723 P 2u2 2z pu 1

Vu 1 1 vz vow
= + exp|—— — — + —
o027 23/2 /,62'1/2 2/‘1’2 22 1

o 1/2 /2 v(i+§—2)
g () () e {5

Lemma 6 The joint distribution of the Birnbaum-Saunders distribution given in (40) can be written in a conditional EF
form.
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Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
0.06 0-1 0.1 - 0.1° 0.1
0.04
. 0.05 - 0.05 0.05
0.02 - 1
0 - - 0 0 . 0
- - -20-10 0 10 -20 -10 0 10 -20 0 20
Dim 6 Dim 7 Dim 8 Dim 9 Dim 10

0.1 - 0.1, 0.1 0.1 . . .
0.1
0’ * 0- ) 0o/ Y 0 ‘
0.1 0.1 .

0.05 -

o/ .
-20-10 0 10

Dim 18 01 Dim 19 0.15 Dim 20
0.1 0.1 ‘ approx
true
0.1
0.05 1 0.05 0.05
0.05
0 0 0 .
- -10 0 10 20 -20 0 20 -10 0 10 20

Figure 6. This is a complete version of the leftmost figure in Figure 2. The figure shows MOG approximation (with K = 20) to fit an
MOG model with 10 components in a 20 dimensional problem.

Proof: It is obvious that ¢(w) is Bernoulli distribution with p = %, which is an EF distribution. Now, we show that ¢(z|w)
is a conditional EF distribution as below.

vz v v v vz v
- I(w=0) |- — — +— + 21 I(w=1) |- 3log o— —1
o(ehw) = exp {10 = 0) |55 = £+ L4 blog 725 | + 10w >[ e - *H? o8 5=~ log| |
B vz v v _ 1 v
L si(w=0)/2 ~I(w=1)/2 { vz 1 }
= F N 2\ exp — — —|— +35lo I 1) log(
N P92 2Z g(v) — I(w g(u

The natural parameters and sufficient statistics are {— 5%

3,7 — g} and {z, 11 respectively. O
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According to Balakrishnan & Kundu (2019), the expectation parameters are

12
my =B [2] = p+ o

_ 1
ma =By [z = p7h + o

The sufficient statistics, natural parameters, and expectation parameters are summarized below:

v 2
HEEI R
-3 pt gy

Lemma 7 The joint distribution given in (40) is a minimal conditional-EF.

ISR

Proof: Since A, is known in this case, we only need to show there exists an one-to-one mapping between the natural
parameter and the expectation parameter. Just by observing the parameters given above, we can see that there exists
an one-to-one mapping between the natural parameter and {y, v} since 4 > 0 and v > 0. Furthermore, we know that
mimsy > 1 and my > 0. We can show that there also exists an one-to-one mapping between {x, v} and the expectation
parameter by noticing that

p=/mi/ms
1

2(m2 — \/mg/ml)

Since one-to-one mapping is transitive, we know that mapping between natural and expectation parameters is one-to-one.
Hence proved. ]

v =

Note that we can use the implicitly re-parametrization trick to compute the gradient w.r.t. p and v. Furthermore, the
expectation parameters m, and ms are functions of u, v and the gradients can be obtained in terms of the gradient with
respect to p and v by using the chain rule.

D. Studnet’s t-distribution
Lemma 8 The joint distribution N (z|p, wX)IG(w|a, a), where z € RY, is a curved exponential family distribution.

Proof: The joint-distribution can be expressed as a four-parameter exponential form as shown below:

N(z|p, wE)ZG(wla,a) = det (27rw2)_% exp{—3(z — w)T (wE)_1 (z — u)}%w‘“‘l exp{—%}

= (271-w)_d/2 w exp{—3(z — p)" (W) ' (z—p) — 1 log det ()
— % —alogw — (logT'(a) — aloga)}
= 2mw)” " w T exp{(— 127V wzzT) + (S, wz) + (—SuTE e w )
+ (—a,w™" +logw) — [logI'(a) — aloga + 1 logdet(%)]}
= (271-w)_d’/2 w™ exp{ (A1, wzz") + (Ao, wz) + (A3, w™ 1)
+ (Ag, 0w +logw) — [logT'(—As) + Aslog(—As) — 3 logdet(—2A1)]},

where the following are the natural parameters:
A= —%E_l, X=Xt Agi= —%NTE_l/,L, A= —a

We can see that A5 is fully determined by A; and Ao, i.e.,

T
o= === =1 (337 )" (370 = 1 (280 %) A
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In a minimal representation we can specify all four parameters freely, but in this case we have less degree of freedom.
Therefore, this is a curved EF representation.

O

Instead of using the above 4 parameter form, we can write the distribution in the conditional EF form given in Definition 2.

Lemma 9 The joint distribution of Studnet’s t-distribution given in (17) can be written in a conditional EF form.

Proof: We can rewrite the conditional ¢(z|w) in an EF-form as follows:

q(z|w) = N(z|p, w)

= (2m) P exp({Tr (1= 'wtzz") + WS w2 — L(w T2+ log det(wX) })
The sufficient statistics ¢, (z, w) = {w ™'z, w~'zz" } . The natural parameter is X, = {Eilu, 75271 }. Since g(w) is a
inverse Gamma distribution, which is a EF distribution as shown below, the joint ¢(z, w) is a conditional EF. The EF form
of the inverse gamma distribution is shown below:

g(wla,a) = w™" exp(—(log(w) + %)a — (logI'(a) — alog(a)))

We can read the sufficient statistics ¢,,(w) = —log(w) — < and the natural parameter \,, = a from this form. O

Using the fact that Ey(,|q) [1/w] = a/a = 1, and Ey(,,) [log w] = log a — ¥ (a), we can derive the expectation parameter
shown below:

m :—= Eq(w\a)q(zw,wz) [wilz] =K

M := Eq(w\a)q(z\u,wi}) [w_lzzT] = IJ’“T + 27

Mg = By =—1—loga+(a)

1
—— 1
— —log(w)

The sufficient statistics, natural parameters, and expectation parameters are summarized below:

—1/w — logw a —1—loga+(a)
z/w >y 7
zz” Jw —%2_1 ppt +%

The following lemma shows that the Student’s t-distribution is an MCEF obtained by establishing one-to-one mapping
between natural and expectation parameters.

Lemma 10 The joint distribution of Student’s t-distribution shown in (17) is a minimal conditional-EF.

Proof: The proof is rather simple. First we note that the expectation parameters for ¢(z|w) do not depend on A, := a. In
fact, the mapping between the last two natural and expectation parameter is one-to-one since they correspond to a Gaussian
distribution which has a minimal representation.

The only thing remaining is to show that the mapping between a and m,(a) := —1 — loga + ¥(a) is one-to-one.
Since Vamy,(a) is the Fisher information of ¢(w), we can show this when V,m,,(a) > 0. The gradient V,m,,(a) =
Vat(a) — 1/a. According to Eq. 1.4 in Batir (2005), we have V9 (a) — 1/a — 1/(2a%) > 0 when a > 0. Therefore,
Vat(a) — 1/a > 0 which establishes that the Fisher information is positive, therefore the distribution is a minimal EF. This
completes the proof. ([

D.1. Derivation of the NGD Update

Let’s consider q(w) = ZG(w|a,a) and ¢(z|w) N (z|p,wX). We denote the log-likelihood for the n’th data
point by f,,(z) := —logp(Dy,|z) with a Student’s t-prior on z expressed as a scale mixture of Gaussians p(z,w) =
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ZG (w|ag, ag)N (z|0, wI). We use the lower bound defined in the joint-distribution p(D, z, w):

‘C(A) = IEq(z,'w) [logp(pﬂ z, 'lU) - log Q(D? z, U})}

N (z|0, wI) ZG(wlag, ao)

=E, w0 I (D log——"—"~ +log —————=

atzw) ZM* % Nalmws) % TG(wla,a)
—fn(2)

Our goal is to compute the gradient of this ELBO with respect to the expectation parameters.

n=1

Since the expectation parameters m, only depend on p and ¥, we can write the gradient with respect to them using the
chain rule (similar to the finite mixture of Gaussians case):

VL) = VL) — 2V L(A)
VuL(A) = VsL(A)

These gradients of the lower bound can be obtained as follows:

N
VL) == VB [fn(2)] — 1

n=1

VEL Z vEIEq(z w) [fn( )] - %I + %271

n=1

Plugging these in the natural-gradient updates (14), we get the following updates (we have simplified these in the same way
as explained in Appendix B.2; more details in Khan et al. (2018)):

N
ST (1-B8)27 428 VsEyw) [fa(2)] + AT

n=1
N
wip—p Z 3 (VuEy) [fu(2)] + 1)
n=1

To compute the gradients, the reparametrization trick (Kingma & Welling, 2013) can be used. However, we can do better
by using the extended Bonnet’s and Price’s theorems for Student’s t-distribution (Lin et al., 2019). Assuming that f,,(z)
satisfies the assumptions needed for these two theorems, we can use the following stochastic-gradient approximations for
the graidents:

Vi EgwnGluws [f(2)] =Eqg) [V f(2 )] ~V.f(z )
VsEqgwnGws) [ (2)] =3B [u(z)V ] ~ su(z )VZf( )s

where z € R¢ is generated from ¢(z), w is generated from ¢(w) , and

a+3(z—p)' 3" (z—p)

u(@) = (a+d/2—1)

Using these gradient, we get the following update:
S (1827 + 8 [u(2)VEfa(2) + I/N],
B p— BE[V. fu(z) + p/N].

Now we derive the NGD update for a. Recall that the natural parameter is a and the expectation parameter is m, =
—1 —loga + ©(a). The gradient of the lower bound can be expressed as

N
Vi L) = =3 Vi, Bytew [ (2)] + a0 — a

n=1
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which gives us the following update:

N
— (1 - ﬂ)a + B <a0 - Z V7”17,Q]Eq(z,w) [fn(z)]> (41)
n=1

While the gradient with respect to the expectation parameter does not admit a closed-form expression, we can compute the
gradient using the re-parametrization trick. According to (39), the gradient V,,, E,(. ., [ f»(2z)] can be computed as

Vi Eqizw) [fn(2z)] = (vama)_l VaEq(zw) [fn(z)] = (vaEq(w) [st(w)})_l VaEq(zw) [fn(2)]

Note that Vo E, ) [¢w (w)] = V4 (m,) has a closed-form expression. However we have found that using stochastic approxi-
mation for both the numerator and denominator works better. Salimans & Knowles (2013) show that such approximation
reduces the variance but introduce a bit bias. We use the reparameterization trick for both terms. Since ¢(w) is (implicitly)
re-parameterizable (Salimans & Knowles, 2013; Figurnov et al., 2018) , the gradient can be computed as

Voo [6u(w)] = ~ [ Z0(ula,a) (V. [0 +logu]) (Vow)dw = (0 = w )V
where w is generated from ZG(w|a, a). Similarly,
VaBew ()] = [ [ aw) (Vuatale)) (Vo) fu(a)duds
— [ [ 26(wle.0) (VN (el ) (V) foa)ddz

For stochastic approximation, we generate w from ¢(w) and let 3 = wX. The above expression can be approximated as
below.

VB Ufn(2)] / (Vo (2|, wE)) (Vaw) fr(2)dz
= /TI‘ (EVEN(Z‘IM 2)) (vaw) fn(Z)dZ
= VawTr (EVQEN(W,E) [fn(z)})

= v;wTr (EEN(;W.E) [ngn(z)]) ’

where we use the Price’s theorem V¢ En.,.5) [f1(2)] = 3Enps) [VEfa(2)].
We then use stochastic approximation to get the desired update.

V,w

va]Eq(z,w) [.fn(z)] ~

Tr (EVifn(z))

where z is generated from ¢(z) and w is generated from ¢(w).

Anther example is the symmetric normal inverse-Gaussian distribution, which can be found at Appendix H.

E. Multivariate Skew-Gaussian Distribution

We consider the following variational distribution .
q(z, w) = N(z|p + [w]o, B)N (w]0, 1) 42)

The marginal distribution is known as the multivariate skew Gaussian distribution (Azzalini, 2005) as shown in the following
lemma.

z-p)'E o
VitarY l'a

Lemma 11 The marginal distribution q(z) is 2® ( ) N(z|p,E + aal), where ®(:) is the CDF of the

standard univariate Gaussian distribution.
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Proof: The marginal distribution z is

+oo
q(z) =2 N(w|0, DN (z|p + wa, X)dw
0
+oo
=2 N(w|0, )N (z — wa|p, X)dw
0

By grouping terms related to w together and completing a Gaussian form for w, we obtain the following expression

e 2= p) Y

:2 _—_—
T 1

=29 ((z;¢)§]a> N(z|p, T+ aa®)

V1i+ oS ta

where we move from the first step to the second step using the fact that

(14 aTE_la)il)N(zm, Y+ aal)dw

+oo +oo
N(w|u, 0?)dw = N(w')0,1)dw’

0 —u/o
— 1~ B(—u/o)
= ®(u/o).

O

Lemma 12 The joint distribution of skew-Gaussian distribution given at Eq. (42) can be written in a conditional EF form.

Proof: We first rewrite ¢(z|w) in a EF-form as follows:

q(z|w) = N(z|p + |wla, X)
= (2m) Y exp({Tr (-4 '2z") + jw[a" =7 'z + p'2 7'z - L((p + [w]a) "= (1 + |w|@) + logdet(X) })
The sufficient statistics ¢, (z,w) = {z, |w|z,zz” } and the natural parameter A, = {Eilu, > la, 75271} can be

read from the form. Since ¢(w) is a univariate Gaussian distribution with known parameters, which is a EF distribution.
Therefore, the joint distribution ¢(z, w) is a conditional EF. O

Letc = \/g . Using the fact that E, 0.1y [Jw|] = ¢, we can derive the expectation parameter shown below:

m = K 00N Gt folas) [Z} = p +co
My = Ex ool et [|W|2] = cp + o,

M 1= EN (w00 Gl olons) [ZZT] = MILT +aal +¢ (;LOLT + OéuT) +X

The sufficient statistics, natural parameters, and expectation parameters are summarized below:

z >'u um+ ca
|w|z > la cp+a
zz” —ixt pp’ +aa® +c(pa® +ap’) + 2

The following lemma shows that the skew-Gaussian distribution is indeed a minimal conditional-EF.

Lemma 13 Multivariate skew Gaussians is a minimal conditional-EF.
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Proof: Since A\, is known in this case, we only need to show there exists an one-to-one mapping between the natural
parameter and the expectation parameter. Just by observing the parameters given above, we can see that there exists an
one-to-one mapping between the natural parameter and {u, a, ¥}. We can show that there also exists an one-to-one
mapping between {p, o, X2} and the expectation parameter by noticing that

m — cm,

= 43

" 1—¢2 “43)

m, —cm
oa=—+H— 44
I — (44)
T T T T
mm-° +m,m_, —c(m,m- +mm
T=M- attly ¢ (Ma o) (45)
1—¢2

Since one-to-one mapping is transitive, we know that mapping between natural and expectation parameters is one-to-one.
Hence proved. U

E.1. Derivation of the NGD Update

Let’s consider the variational approximation using the skew-Gaussian distribution g(z|\). We consider the following model
with a Gaussian-prior A/(z|0, 6~ *I) on z, where the log-likelihood for the n’th data point is denoted by p(D,,|z).

N
p(D.z) = [ p(Dul2)N (2|0,67'T)
n=1
We use the lower bound defined in the following distribution p(D, z):

N
L) =Eyepy | Y logp(Dylz) +log N (2]0,67'T) —logg(z|A) | |

n=1

5:7fn(z)

where ¢(z) = 29 (%) N (z|p, E + aa’) and recall that ®(-) denotes the CDF of the standard univariate
1+ a

normal distribution.

Our goal is to compute the gradient of this ELBO with respect to the expectation parameters.

E.2. Natural Gradient for ¢(z|w)

We do not need to compute these gradients with respect to the expectation parameters directly. The gradients can be
computed in terms of {u, o, X}.

Using the mapping at (43)-(45) and the chain rule, we can express the following gradients with respect to the expectation
parameters in terms of the gradients with respect to p, o, and 3.

1 c

1—
1 c
Vmaﬁ = mvaﬁ — mvﬂﬁ -2 (Vgﬁ) (a1
VuLl=VsL

By plugging the gradients into the update in (14) and then re-expressing the update in terms of p, ¢, 3 (we have simplified
these in the same way as explained in Appendix B.2), we obtain the natural gradient update in terms of u, ¢, and X.

DIEIRE R JEAVASYS (46)

1 c

1_02Va£> 47)

1 c
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Recall that the lower bound is

N
LX) =Egpn | — Z fn(z) +log N (20, 5_11) —logq(z[A) |
n=1

prior entropy

For the prior term, there is a closed-form expression for gradient computation.

E,.) [logN(z]0,67'T)] = fg log(27) + %5 — g (a’a+2cp"a+Tr () + p'p)
It is easy to show that the gradients about the prior term are
gl = —0 (u+ ca)
gl = 6 (o + cp)
g = 51

For the entropy term, by Contreras-Reyes & Arellano-Valle (2012); Arellano-Valle et al. (2013), it can be expressed as
follows.

d
By [~ loga(zl )] = 5 (log(27) + 1) + $10g|£ + @] = 2B, oars v [@ (22) og (B (2)) | ~log(2)  (49)

We can use the re-parametrization trick to compute the gradients about the entropy term. However, we can found out the
exact gradients usually works better. Using the expression in (49), the gradients of the entropy term are given as follows:

gem — (50)
-1
genroPy — (2 + aaT)il O — B yonrs oo i) log (® (23)) 22327104 (51)
’ -1\ al'Y o
\/ 21 (1+ a2 ar)
-1 log (® (2 23X Taa?D !
gr" " =5 (B +aa’) + B 2(0) 2 (52)

) —
J2r(1+aTs la) @' ‘o

where the expectations involve 1d integrations, which can be computed by Gauss-Hermite quadrature.

The remaining thing is to compute the gradients about E,.) [f»(z)]. To compute the gradients, the reparametrization trick
can be used. However, we can do better by using the extended Bonnet’s and Price’s theorems for skew-Gaussian distribution
(Lin et al., 2019). Assuming that f,, (z) satisfies the assumptions needed for these two theorems, we obtain the following
gradient expression:

g

= V,uE ) [fn(z)] =Ey.) [van(Z)] ~ szn(z)
gy = Vo E

5 o) [fn(2)]
Eqy) [w(2) V2 fr(2)] + VEN s [V fn(2)] = u(2)V . fr(2) + vV 5 fr(2)
Eqw.z WV fu(2)] = 0]V fr(2)

g4 = 2VsE,.) [fu(2)] = By [Vifn(2)] = V2 f0(2)

Ju(z) = BT g~ N (w]0,1), 2 ~ N (2|1, B), 2 = 2 + w]a.

where v = =
1+atY¥ o

e
1+aTX o)

Putting together, we can express the gradients in the following form, which will be used for deriving the extended variational
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Adam update.

n=1 — .
0 gi{lol’
N
=— Z gl —d(p+ ca) (53)
n=1 v
::g,’j
N
VaLA) ==Y | g5 —gd"”/N | —6(a+cp) (54)
n=1 .
—gn g
al 5
VL) =~ 3 () — 25 /N) ~nd(mt =Y
n—1 —~—
gpzrlor
N )
=3 |8 —2"/N+ SN | - ST gu (55)

=1

3

—g

For stochastic approximation, we can sub-sampling a data point n and use MC samples to approximate g7, g5, and g¥%.
Plugging these stochastic gradients into (46)-(48), we obtain the NGD update:
S (1-B8)=7" 4+ (0T + Ng?)
N n n
B p— 5z(m(g# —cgq) +Op)

N

702(g2 —cgy) + o)

aeafﬂﬁ(l_

F. Multivariate Exponentially Modified Gaussian Distribution
We consider the following mixture distribution.
q(z,w) = N(z|p + wa, 3)Exp(w|1)

The marginal distribution is a multivariate extension of the exponentially modified Gaussian distribution (Grushka, 1972)
and the Gaussian minus exponential distribution (Carr & Madan, 2009) due to the following lemma.

Lemma 14 The marginal distribution q(z) (o # 0) is

((z e ta— 1)2

=)
oY '

)=z,

N|—

7% z—p) ' 2 o —
q(z):\/ﬁdet(zwz) q)(( w''s 1>exp

vValysla Valsla

where ®(-) is the CDF of the standard univariate Gaussian distribution.

In the univariate case, the marginal distribution becomes the exponentially modified Gaussian distribution when o« > 0 and
the Gaussian minus exponential distribution when o < 0.
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Proof: The marginal distribution z is

“+o0o
dlali %) = [ Bxp(wl0, )N (alu + wee, Z)du
0

By grouping terms related to w together and completing a Gaussian form for w, we obtain the following expression.

2
T g1
_ det (27%)~ /+°°N —p'E a1 1 Jexp ) 1 ((z—u) b a—l) e )" (2 p)
) — X 9 — - - -
lary'a o'y la o'y la Py 2 o2 S H H
2
(56)
2
1 T s—1
_\/27rdet(2772)_2q) (z—p) T la—-1 oxp 4 L <(Z_H) > a_l) (=) = (z—p)
- VaTs la VaTsa E JeX Yate H H
(57
where we move from Eq. (56) to Eq. (57) using the fact that fo N(w|u,0?)dw = ®(u/o). O

Similar to the skew-Gauss1an case, in this example, the sufficient statistics ¢, (z,w) = {z, wz, ZZT} and the natural
parameter A, = {E_lu, > la, —72 1} can be read from g(z|w) = N (z|p + wa, ). The joint distribution ¢(z, w) is
a conditional EF since g(w) is an exponentlal distribution with known parameters, which is an EF distribution. Likewise, we
can show that the joint distribution is also a minimal conditional EF. We can derive the expectation parameter shown below:

m = EegpuNepws (2] = o+ o
my 1= ]EExp(uu |t wa,s) [wz = p+ 2a,

M := ]EExpwuwww,m [22"] = pp” + 200" + (pa” +ap’) + %

The sufficient statistics, natural parameters, and expectation parameters are summarized below:

Z > u m+ o
wz >l pm+2a
zzT izt pp’ +2aa” + (pa® +ap”) + %

F.1. Derivation of the NGD Update

As shown in Appendix E.1, we consider the variational approximation using the exponentially modified Gaussian distribution
q(z|\). We consider the same model as Appendix E.1 with a Gaussian-prior A/(z|0, 6~ 'T) on z. The lower bound is defined
as below:

N
L(A) = Eyin Z log p(Dn|z) +log N'(2]0,57'T) — log ¢(z|A) |

n=1

3:7fn(z)

Vars'a Vars'a ary¥ o
call that ®(-) denotes the CDF of the standard univariate normal distribution.

mde T — la— - Tz_l _12
where g(z) = 2Tl 2r>) 2 <I>(<Z W'y« 1)exp{;[<(z WIE ) T )

} and re-

Our goal is to compute the gradient of this ELBO with respect to the expectation parameters.

F.2. Natural Gradient for ¢(z|w)

We do not need to compute these gradients with respect to the expectation parameters directly. The gradients can be
computed in terms of {u, o, X}

dw
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Similarly, by the chain rule, we can express the following gradients with respect to the expectation parameters in terms of
the gradients with respect to p, o, and 3.

Vil =2V, L — VoLl —2(VsL)
Voo £ = Vol =V, L—2(VsL) o
Vul = Vsl

By plugging the gradients into the update in (14) and then re-expressing the update in terms of p, o, 35, we obtain the
natural gradient update in terms of p, o, and X.

Sl x93Vl (58)
W p+ BE(2V,L— VL) (59)
a+ a+BE(Val —V,L) (60)

Recall that the lower bound is

N
‘C(A) = Eq(z\)\) - Z f’n(z) + 10gN(Z|0, 6711) u log q(Z|A) )
n=1

prior entropy

For the prior term, there is a closed-form expression for gradient computation.

E,.) [log N(2[0,67'T)] = —g log(27) + d; - g 2aTa+2pTa+ Tr (2) + pl u)
It is easy to show that the gradients about the prior term are
g = 6 (1 + @)
glior — 5 (2 + )
g 0y

For the entropy term, it can be expressed as follows.

1 Osziloé 1 1
Eq.) [—logq(z)] = 5 < logdet (2X) + log o - iy +(d+1)p — Epponvarsay |logé [ 20 — /s
(61)
Using the expression in (61), the gradients of the entropy term are given as follows:
gZmropy -0 (62)
_ _ _2 _
entropy __ > o + > la _E, v €Xp ( 2 log ¢(t)> <w N 1 > < »1q )
T of¥la (afme) T Var oz o) \Vars Ta
(63)
2
ooy _ 2 2 laa"sT wlaa™y o exp (~4 ~ logo(1)) (0 i) (E_laaTz_l)
= - - Xp(w| 1N (22]0,1 w —
. 2 afs e a(armile)’ T Var o)\ oVals T

(64)

where t = 29 + = and the expectations involve 2d integrations, which can be computed by Gauss-Hermite
at¥ '«

quadrature and Gauss-Laguerre quadrature.
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The remaining thing is to compute the gradients about E(,) [f,(2z)]. To compute the gradients, the reparametrization trick
can be used. However, we can use the extended Bonnet’s and Price’s theorems (Lin et al., 2019). Assuming that f,,(z)
satisfies the assumptions needed for these two theorems, we obtain the following gradient expression:

81 = VuEq) [fn(2)] = Ey) [V fr(2)] = V. fr(2)
82 = VaEy.) [fn(2)]
=E,.) [w(2)V. fu(2)] + vEns [Vafa(2)] = w(2)V. fu(2) + 0V 5 fo(2)
=E . WV fn(2)] = WV, fr(2)
g5 = 2VsE,(.) [fu(2)] = Boe) [VESfa(2)] = V2 f0(2)
sy i) = TR

Putting together, we can express the gradients in the following form, which will be used for deriving the extended variational
Adam update.

where v = ,and w ~ Exp(w|1), z ~ N(2|p, X2), z = 2 + wa.

N
Vi) ==Y | &t =g /N | ~d(n+a)
n=1 —_— ior
0 gl
N
= g ot “5)
n=1 .—on
T Ou
N
VoL = - [ g8 - e v | —sea+ ) ©0
n=t =g gh
N
) _ —
Vac) = 43" 6 - 26/N) ST hE -5
el —~—
gs”
N 4]
=—3)_ g —2"Y/N+ YN | - T4 357 “
n=1
—g2

Similarly, for stochastic approximation, we can sub-sampling a data point n and use MC samples to approximate g7, g5,
and g7 . Plugging these stochastic gradients into (58)-(60), we obtain the NGD update:

Sl (1827 + B(ST + Ng?)
w < p— BE(N(2g; —ga) +0p)
o+ a— E(N(g, —g),) +da)

G. Multivariate Normal Inverse-Gaussian Distribution

We consider the following mixture distribution (Barndorff-Nielsen, 1997), which is a Gaussian variance-mean mixture
distribution. For simplicity, we assume A is known.

q(w,z) = N(z|p + wa, wE)InvGauss(w|1, \)

1
where InvGauss(w|1,A) = (325) 2 exp {—% (w+w~!) + A} denotes the inverse Gaussian distribution.
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Lemma 15 The marginal distribution is

. s (e o)

d+1 —d—1 )
) aTY a4
(Z— )T X" (Z— )+

where IC,,(x) denotes the modified Bessel function of the second kind.

Proof: By definition, we can compute the marginal distribution as follows.

+oo
4(z) = / ¢(zlw)g(w)dw

/;Oo det (2rw3) /2 exp{*% [(Z —p—wa) (W) (z fufwa)}} ( A )1/2 exp {;‘ (w+ i}) +>\] dw

2mws3

By grouping all terms related to w together, we have

1
2 +oo d — T, —
:(2/\)d+1 det (E)_l/Qexp [(z—p,)T Z_la—i-/\} / w exp{—é [w (aTE_la—i-/\) + (=) w(z W+
)= 0

By completing a generalized inverse Gaussian form, we have

2K s <\/(aT21a + ) ((z ) - )+ A))

—d_1
ary taya ’
(Z— )T (2~ )+
We obtain the last step by the fact that IC,,(z) = K_, ()

:7’\% det ()% exp [(z W' s +A] e <\/(aTzla+/\) ((Z —w)' Bz p) +/\))

dt1

(2m) 5

}dw

1
2
z)\idet (2)71/2 exp {(z e o+ )\}

(27 =

—d—1

a™Y a4
Z-p)TE" (Z—p)+2

]

Similarly, the sufficient statistics ¢, (z,w) = {z/w, z,zz” /w} and the natural parameter A, = {Z~'p, 5" ', = 127"}
can be read from ¢(z|w) = N (z|p + wa, wX). The joint distribution ¢(z, w) is a conditional EF because g(w) is an
inverse Gaussian distribution with known parameters, which is a EF distribution. Likewise, we can show that the joint
distribution is also a minimal conditional EF.

We can derive the expectation parameter shown below:

R —1 _ -1
m := EinGaussolt N Gt waws) [w Z] = (1 + A ) M+ o
mg = EInvGauss(wu,A)N(z\wm,uvx) [Z} = u+ «,

M := EIHVG&USS(W\l,k)./\/’(z“z-%—u:a,u;z) [wilzZT} = (]- + >\71) IJIII/T + aaT + IJJaT + a/J/T + X

The sufficient statistics, natural parameters, and expectation parameters are summarized below:

z/w > I+Xx Hp+a
Z > la m+ o
zz” Jw —%E_l 1+ A Y pp” + aa” + pa® + ap” + %
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G.1. Derivation of the NGD Update

We consider the variational approximation using the normal inverse Gaussian distribution g(z|\). We consider the same
model as Appendix B.1 with a Gaussian-prior NV(z|0, §~ 1) on z. The lower bound is defined as below:

N
LX) = Eq2n Z log p(Dp|z) 4 1og N'(2|0,07'T) — log ¢(z|A)
n=1
—1
— By [h(2)], where h(z) = MgA“Z£;§”+2;kgpazlm].

Our goal is to compute the gradient of this ELBO with respect to the expectation parameters.

G.2. Natural Gradient for ¢(z|w)

Likewise, we do not need to compute these gradients with respect to the expectation parameters directly. The gradients can
be computed in terms of { i, , 3 }. Similarly, by the chain rule, we can express the following gradients with respect to the
expectation parameters in terms of the gradients with respect to p, o, and 3.

Vil = AV, L — AVoLl —2(VsL)
Vi, £ = (14X Vol — AV, L —2(VsL)
VLl =VsL

By plugging the gradients into the update in (14) and then re-expressing the update in terms of u, o, 35, we obtain the
natural gradient update in terms of u, o, and 3.

>l n - 28Vl (68)
pi— 4 BE(AV,L — AV, L) (69)
a+—oa+E((1+ AV L—-AV,L) (70)

We can compute gradients with respect to p, o, and 3 by the extended Bonnet’s and Price’s theorem (Lin et al., 2019). In
Lin et al. (2019), they discuss the conditions of the target function h(z) when it comes to applying these theorems.

VL) = — By [Voh(s)  ~—V.h(z)

VoL(X) = —Eyw [WV hy(2)] & —wV  hy,(2)
=—E,.) [w(z)V.h,(2)] = —u(z)V_.h,(2)

=~ 1B, [wVh(z)] ~ —%Vgh(z).

<

4

5

ks
\

== %]EQ(Z) [U(Z)Vgh(z)] ~ _u(zz) V2h(z).

- Ka1 artX aa) (-t X z— )+ A
where u(z) := \/(Z_“)Tz (Zph)+A _ 7 (\/( )( ) and w ~ InvGauss(w|1, A), z ~

arY oA ;cﬂ<\/(aTz*a+A)((zfmTE’l(zfu)H)
2

N—— N

N(z|p + wa, wX).

Directly calculating the ratio between the modified Bessel functions of the second kind is expensive and numerically unstable
when v is large. However, the ratio between consecutive order has a tight and algebraic bound (Ruiz-Antolin & Segura,
2016) as given below. When v € R and v > % the bound of the ratio is

’Cv,1 (LL')

<
ngfl(’(),.’f) = ’Cv (JC)

S DO(U, x)
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where function D, (v, x) is defined as below.

Yo (v,2) + 1/ ($a (v, 2))* + 22

Yo (v,2) = (v — %) _ To (V) _ a1

, Ta(v) i=v—
2/ (1o (v))? + 22 2

For natural number v € N, a tighter bound (see Eq (3.10) at Yang & Chu (2017)) with higher computation cost can be used,
where we make use of the following relationship due to Eq (72) and (73).
Ky-1 (z) _ Kys1 (z) 2
Ky () Ky (z) T

Dy (v,z) :=

To compute the ratio, we propose to use the following approximation when v > % A similar approach to approximate the
ratio between two modified Bessel functions of the first kind is used in Oh et al. (2019) and Kumar & Tsvetkov (2018).

Ko-1(x) ~ Day—1(v,2) + Do(v, )
Ky () 2

(71)

Now, we discuss how to compute V. log K, (z) and V2 log K, (x). The first term appears when we compute V. h(z).
Similarly, the second term appears when we compute V2h(z).

First, we make use of the recurrence forms of the modified Bessel function of the second kind for v € R (see page 20 at
Culham (2004)).

VKo (2) = —Ko_i () — gicv (z) (72)
VoK, () = %/cv () = Kysr () (73)

Using these recurrence forms, we have

Voo (z) — Kooa(@) v
Ko(x) K, (x) T 74

Furthermore, we have the following result due to the recurrence forms.

Ve ICy ()

V2K, (2) = Vy | ~Ko1 (2) — %/cv (z)

v v
=—-V.K,_1(x)— EVJ}K’U () + ﬁle (x)
—1
= | Tk (@) =K () | - gvx/cy (z) + %/cv ()
VaKy—1(x)

v—1 v+ a2 v
- Kyo1(x) + e Ky (z) — ;VIICU (x)

v—1 v+ 22 v v
= — " ICU_l (I’) + TICU (I) — 5 7IC1)_1 (SC) — E’CU (l’)

VKo (z)
1 2 2

= 2K (@) + Y e ()
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which implies that

VIR, (#) 1Ky (z) | v+a® 407

Ky oz K, (2) 2 (75)
Using Eq (74) and (75), we have
VK,
V. logK, () =~ (x()“
_ Ko (x) v
Ky (o) x
VoK, (o) = ¥, | Sl
_ VK (z) (vxzcv @:))2
Ky (o) Ky (x)
1K () v+ 22 + v? Ko—1(z) v 2
SE o el )

where the ratio can be approximated by Eq (71).

H. Multivariate Symmetric Normal Inverse-Gaussian Distribution

The symmetric normal inverse-Gaussian distribution is a scale mixture distribution. A difference between the distribution at
Appendix G is shown in red. Such difference allows this distribution to have heavy tails.

q(w,z) = N (z|p, w " 3)InvGauss(w|1, \)

1

where we assume A is fixed for simplicity and InvGauss(w|1, \) = (273;1}3 Y2exp{—3 (w+w™t)+ A}

Similarly, we can show that the marginal distribution is

o) )\%d et (5 e 24 (\/A ((z — ) 'E (2 du)l + )\)>
(2m) <\/<z—u>TE;<z—u>+A> 7

Furthermore, the mixture distribution is a minimal conditional EF distribution. The sufficient statistics, natural parameters,
and expectation parameters are summarized below:

WZ E_lu 72
wzz! —%271 ppt + 3

Likewise, we can derive the natural-gradient update in terms of p and 3 as shown below.

DI EIRE e JEAVASY S
K p+ BEV,LL

Now, we discuss the gradient computation of the following lower bound.

N
L(A) = Eyizpn Z log p(Dn|2) +log N'(2]0,5 1) — log q(z|A)

n=1

37fn(z)
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For the prior term, we have

d s ¢
E,.) [log NV (2]0,67'T)] = -5 log(27) + 3 "3 (BTp+ 1+ 2 T(E)) (76)
Due to Eq (76), the closed-form gradients are given below.
gzrior — _6N
g _ 9 (1+271) ;
= 2
In this example, we can re-express the entropy term as below.
1 -1 A)
d+1)log(2r)  logdet (X d+1 QICd,—( Aw=lz + )
IEq(z) [_ log Q(Z)] :( )2 ( ) + 2 ( ) —A- T IOg (/\) - ElnvGauSS(w\l.)\)Xz(Md) 1Og : d—1
(w™lz; +A) 1%
(77)

where x?(z1|d) denotes the chi-squared distribution with d degrees of freedom. The expectation can be computed by the
inverse Gaussian quadrature (Choi et al., 2018) and the generalized Gauss-Laguerre quadrature.

By Eq (77), the closed-form gradients of the entropy term are shown below.
tropy __
gzn 0py — ()
E - 1
2

entropy

The remaining step is to compute the gradients about E, ., [f,(z)]. To compute the gradients, we use the extended the
Bonnet’s and Price’s theorems (Lin et al., 2019). Assuming that f,,(z) satisfies the assumptions needed for these two
theorems, we obtain the following gradient expression:

81 = Vil [fn(2)] = Eoeo) [Vafn(2)] = V2 fn(2)
g5 = 2VsE,.) [fn(2)]

=E,0 [u(z)Vﬁfn(z)} ~ u(2z)V? f(2)

= Eq(w,») [wvzfn(z)] ~ w_lvgfn(z)

e () 1= /T g Eiiiii‘“iii“‘“””
41 WS @) )

can be approximated by Eq (71) when d > 2, and w ~ InvGauss(w|1, \), z ~ N (z|p, w™1X).

, where the ratio between the Bessel functions

Putting together, we can express the gradients in the following form:

N
VLA =— T = (78)
B (A) ; g1 12
::gn
N
51+ _
— 1 n B S | 1 1
VsL(A) 2; g7 5 +1x (79)
=82

Similarly, for stochastic approximation, we can sub-sampling a data point n and use MC samples to approximate g7’ and g5 .
Plugging these stochastic gradients into

ST e (1= 4+ B0 (L+ A1) I+ Ngl)
p o p— BE(Ng), +p)
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I. Matrix-Variate Gaussian Distribution

We first show that MVG is a multi-linear exponential-family distribution.

Lemma 16 Matrix Gaussian distribution is a member of the multi-linear exponential family.

Proof: LetA; =W, Ay = U ! and As = VL. The distribution on Z € R%*? can be expressed as follows.
MN(Z|W,U, V)
= (2m) " exp [-1Tr (V7HZ - W)TUH(Z — W)) — (d/21og Det(V) + p/2log Det (U))]
= (2m) " exp {Tr (As (~3Z + A1) As2Z)

-1 {Tr <A3A,{A2A1) + dlog Det(A3) + plog Det(Ag)} }

The function Tr <A3 (—%Z + A 1)T A, Z) is linear with respect each A ; given others. ]

We now derive the NGVI update using our new expectation parameterization. We can obtain function ¢;, ¢2, and ¢3 from
the multi-linear function

F(ZA) =T (As (<32 + A1) AsZ).
For example, we can obtain function ¢; from f(Z, A) as shown below:

T
F(Z,A) = (A1, AsZAy ) —1Tr (A3Z A2z).

$1(Z,A_1)

r1(Z,A 1)

Similarly, we can obtain functions ¢5 and ¢3. The corresponding expectation parameters of the Matrix Gaussian distribution
can then be derived as below:

Ml = EM/\/’(Z\W,U.V) [AZZAB] = A2A1A3
Ms = Exnomon, {—%ZAng + ZAAT } ~1 (A1A3A1T _ pA2_1)

M; = Envizmon) {—%ZTAQZ n A{Azz} =1 (AlTAgAl - dAgl)

We can then compute the gradient with respect to the expectation parameters using chain-rule:

leEq(Z\/\) [h(Z)] = (AZ)il VwEmnvzwoy [h(Z)] (ABY1
—2
szEq(Z\/\) [h(Z)} = ?VU]EM/\/(Z\WU,V) [h(Z)]

-2
Vs Byzn [M(Z)] = FVVEM/\RZ\WJ/,V) [h(Z)]
We will now express the gradients in terms of the gradient of the function h(Z). This leads to a simple update because
gradient of h(Z) can be obtained using automatic gradients (or backpropagation when using a neural network). Let
z = vec(Z) and Z = Mat(z). The distribution can be re-expressed as a multivariate Gaussian distribution NV (z|p, 3),
where p = vec(W), ¥ = V® U, and ® denotes the Kronecker product. Furthermore, the lower bound can be re-expressed

as Earps [—ﬁ(z)} , where h(z) = h(Z). We make use of the Bonnet’s and Price’s theorems (Opper & Archambeau, 2009):

VuEN Gl [h(z)} =Encps {Vzﬁ(z)}

VEEN(W& {Vzﬁ(z)} = %EN(Z\N,Z) [Viﬁ(z)}
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These identities can be used to express the gradient with respect to the expectation parameters in terms of the gradient with
respect to Z:

Vi B, [MZ)] = Mat (Exiu | V2h(2)] )
= Eypnvizwown) [VzI(Z)]

VB [MB)] = (Vo) VB |V:h(2)]
(VoE) Exips {Vfﬁ(z)}

L(VuS) Exeps {vzi}(z)vzi}(z)ﬂ (80)
= LEsvviwon [VZR(Z)VV Zh(Z)T]
VVEmiaan HZ)] = (Vv E) V5B [ Vahz)]
(VvE) B [V2h(2)]
L (Vv E) Bxs |Voh(2)V20(2)" | 81)
LE v o [V2(Z)TUV 2h(2Z)] -

(SIS

Q

o[

Q

To avoid computation of the Hessian, we have used the Gauss-Newton approximation (Khan et al., 2018) in Eq (80) and Eq.
(81).

We choose the step-size as § = {1, pf2, d2}. The update with the Gauss-Newton approximation can be expressed as

Al — Al - Bl (AQ)_l EMN(Z\W,U.V) [vzh(z)] (AB)_1
AQ — A2 + /BQEMN(Z\W.,U,V) [VZh(Z)Vth(Z)T]
Az < A3 + B2Epmnzimwo [th(Z)TUVZh(Z)]

We can re-express these in terms of {W, U V_l} to get the final updates:

W+« W — ,BlUEM/\/(Z\w:U,V) [th(Z)] \%
(U)_1 — (U)_l + BeEmnzwow,) [VZh(Z)Vth(Z)T}
(V)_1 — (V)_l + BQEMN(Z\W.U,V) [VZh(Z)TUth(Zﬂ

J. Extensions to Variational Adam

For simplicity, we consider a case when variational parameters of g(w|\,,) are fixed. Since A,, is fixed, using the same
derivation as Khan et al. (2018), we obtain the following natural-gradient update with the natural momentum (0 < m < 1).

AL - mmxg—l n Lvmzco\z)

AT =
1-m 1— 1-m

(82)

A=Al

We assume the model prior is a Gaussian prior p(z) = A (2|0, 1) to derive extensions of the variational Adam update,
where the variational distribution is a Gaussian mixture distribution such as skew Gaussian, exponentially modified Gaussian,
symmetric normal inverse-Gaussian, and Student’s t-distribution.
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J.1. Extension for Skew Gaussian

Re-expressing the update (82) in terms of p, o, 3 (the same derivation as Khan et al. (2018)), we obtain the following
update:

I} m

thrll = 2;1 — 2WVZ,£ + m (2;1 — 2;,11)
I5; 1 c m —

Bipr =yt mztﬂ mvmﬁ - mvatﬁ + mzt-‘rlxt—ll(“t — M)
153 1 c m _

api=ont T (7o z Vel - Tzl )+ T T B (e — o)

where we use a skew Gaussian distribution as the variational distribution, V,,, £, V, L, and Vg, £ are defined at (53) -(55).

We make use of the same approximations as Khan et al. (2018) such as the gradient-magnitude of the Hessian ap-
proximation, the square root approximation, 3;_; ~ 3, and a diagonal covariance structure in X to obtain an exten-

sion of the variational skew-Adam update. Recall that g&"™" and g™ are defined at (51) and (52) and ¢ = \/g )

Using the same algebra manipulation used in Khan et al. (2018), we obtain the variational Adam update with Gaus-

-1
sian prior p(z) = N (z|0,6 1), where £~ = Diag(Ns + 6), v = (CAY LD Y]

and u(z) = oS o

1+at¥ o)’

Skew Gaussian extension
1: while not converged do
z<+ p+ooe wheree ~N(0,I),0 < 1/\/Ns+46
z + 7+ |w|a, where w ~ N(0,1)
Randomly sample a data example D;
g, < —Vlogp(D;|z)
optionI: g, + —|w|V log p(D;|z)
option II: g, < — [vV log p(D;|z) + u(z)V log p(D;|z)]
8o ga - geaerPY/N
g, < g, 0g, —diag (2g5"") /N + (s + §/N)
my, < 7ypmy + (1 =) (g‘i:izga + 5N/N)

1 my 7 me+ (1—9) (g‘i:;,g“ —|—5a/N)

122 s+ ms+(1—7)e,

3t e my/(1—00), tie e ma/(1=1), 8+ (s+6/N)/(1- %)
14 pp—pBm,/VE a+a-—fBm,/Vs)

150 t+t+1

16: end while

D A A

—_
e

J.2. Extension for Exponentially Modified Gaussian

Similarly, re-expressing the update (82) in terms of u, o, 3, we obtain the following update:

8 m

S =2 - 27— Vs L+ (= -32)

153 m _
Posr =+ 7 Bep1 2V L = Vo, £) + = Tea B (g — )

I} m _
Q1 = o+ 7Bt (Va, £ = Vi, £) + mzt+12t—ll(at —oy1)
where we use an exponentially modified Gaussian distribution as the variational distribution, V,, £, V,, £, and Vy, L are
defined at (65) -(67).

Likewise, we can obtain the variational Adam update with Gaussian prior p(z) = A(z|0,5'I) as shown below, where

1
g&" and g&" are defined at (63) and (64), X! = Diag(Ns + ), v @) S a1

,and u(z) = D Sears

_ 1
T @artY o)
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Exponentially Modified Gaussian extension
1: while not converged do
2:  Z+4 p+ooe wheree~N(0,I),0+ 1/v/Ns+4d
3:  z < z+wa, where w ~ Exp(1)
4:  Randomly sample a data example D;
5. g, « —Vlogp(D;|z)
6: optionI: g, + —wV logp(D;|z)
7 optionIL: g, + — [vV1og p(D;|z) + u(z)V log p(D;|z)]
&: 8o < ga - ggnthY/N
9: g, g,og, —diag (2g5"™) /N + (s + 6/N)
10: m,u, — 71 m,u + (1 - ’Yl) (Qg,u - g(y + 6”’/]\])
11: my +—ymy+(1—m) (ga—gu—l—(Sa/N)
122 s<yes+(1—72)g,
130 ai, e m/ (1=, e e ma/(L—91), 8« (s+0/N)/(1— )
14 pp—pBm,/Vs aca—pBm,/VE
150 t+t+1
16: end while

J.3. Extension for Student’s t-distribution

Likewise, re-expressing the update (82) in terms of p, 33, we obtain the following update:

B

=2 e

m _ _
Vs, L+ g (= -3Y)

I5) m _
M1 = My + mEtHVME + mzﬂ-lzt}l(y’t - y’t—l)

where we use a Student’s t-distribution with fixed « > 1 as the variational distribution, V,, £ and V', £ are defined at (83) -
(84).

Now, we consider the following lower bound (z € RY.

N
L) =Eyepy) | Y logp(Dylz) +log N (2]0,67'T) — log g(z| )

n=1 —(Z)

where

(o +d/2) (Qa t -2 (2 u)) e

q(z) = det (72) /2

I'(a) (20)"
We use the results from Kotz & Nadarajah (2004).
3 1 (2am)?/? I'(d/2)I'(a) -
By [ log a(2I)] = §log [] 4 log " +108 g+ (a+d/2) (i a-+ 4/2) ¢ (a)
d dlog(d ) 1)
E,) [log N'(2/0,07'D)] = — log(2m) + 02g( ) _ ST §ai T (%)

where t(-) is the digamma function.

The remaining thing is to compute the gradients about E ) [ f,(z)]. To compute the gradients, the reparametrization trick
can be used. However, we can do better by the extended Bonnet’s and Price’s theorems for Student’s t-distribution (Lin
etal., 2019). Assuming that f,,(z) satisfies the assumptions needed for these two theorems, we obtain the following gradient
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expression:

81 = VB [fn(2)] = Eq) [Vafu(2)] = V. fu(2)
8y = 2VsEy) [fn(2)]

=Ey.) [u(2)V2fa(2)] = u(2)V3f0(2)

= Eqqw,2) [wVifn(Z)] ~ wVEfN(Z)

where z € R¢ is generated from ¢(z), w is generated from q(w) , and

at+3(z-—p)' 'S (z—p)

u(@) = (a+d/2—1)
The gradients of £(A) can be expressed as
N
VL) == gl —op (83)
n=1
ol 0 a
— _1 n 1y—1
Vs L )**in;gz — oI +33 (84)
Likewise, we can obtain the variational Adam update with Gaussian prior p(z) = N(z]0,6 1) as
hown bl h Re, £°' = Diag(N as d S LTk Ul
shown below, where z € , = iag(Ns + *%4), and u(z) = atd/z=T) .

Student’s t (« > 1) extension
1: while not converged do
2: zZ<+ ptooe wherew ~ZG(a,a), e ~N(0,1), 0 < (/w/(Ns+ aa—_‘;l)
Randomly sample a data example D;
g, + —Vlogp(Dilz)
optionI: g, <~ wg,og,
option II: g, + u(z)g, og,
m, < ym,+(1—-v) (g, + ou/N)
s s+ (1—1)e,
iy, ¢ my/(1- ), 84 (s+ y@iy)/(1— )
100 p< p—pBm,/Vs
1 t+t+1
12: end while

D AN A

J.4. Extension for Symmetric Normal Inverse-Gaussian Distribution

Re-expressing the update (82) in terms of p and X (the same derivation as Khan et al. (2018)), we obtain the following
update:

B

—m

=% -2 V2t5+%(2t_1—2t_—11)

B m _
Pipr =My + 7BV L+ mztﬂztfl(ﬂt — Hy_1)

where we use a symmetric normal inverse-Gaussian distribution with fixed A > 0 as the variational distribution, V,, £ and
Vs, L are defined at (78) -(79).

Likewise, we can obtain the variational Adam update with Gaussian prior p(z) = N (z|0, 5~ 1I) as shown below. where
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zc R X! = Diag(Ns + 6(1 + A71)), and

Recall that the ratio about the Bessel functions can be approximated by Eq (71) when d > 2.

Symmetric Normal Inverse-Gaussian (A > () extension
1: while not converged do
2. z+< p+o o€ where w ~ InvGauss(1, \), € ~ N(0,1), o < /1/[w(Ns + §(1 + A~1))]
Randomly sample a data example D;
g, < —Vlogp(D;|z)
optionl: g, < w™'g,0g,
option II: g, < u(z)g, o g,
m, < y1m, +(1-7) (g, + ou/N)
s« s+ (1—12)8,
my, ¢y, /(1-41), 8 (s+ 200270 /(1 - o)
100 g p—pBm,/Vs
1 t+t+1
12: end while
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