Acceleration of SVRG and Katyusha X by Inexact Preconditioning

A. Proof of Lemma 1

In this section, we prove the results on the error generated
when solving the subproblem (3.2) inexactly by Procedure
1. Before proving Lemma 1, we will first prove a simpler
case in Lemma 3, where the subproblem iterator S is the
proximal gradient step.

Lemma 3. Take Assumption 1. Suppose in Procedure I,

we choose S as the proximal gradient step with step size
v = ni‘\;li% and is repeat it p times, where p > 1.

max

Then, w41 = wf "1 is an approximate solution to (3.2) that
satisfies
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0 €0Y(wit1) + HM(th —wy) + Vi + Meyy,

(A1)
c
et iallar < “2 e = el (a2
where
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= M)+ 1)r(M)————
e(p) = (s(01) + V(a0 T
andT=/1—-Kk2(M) < 1

Proof of Lemma 3. The optimization problem in (3.2) is of
the form

minimize hy (y) + ha(y), (A.3)
y€eRd
for h1(y) = ¥(y) and ha(y) = o lly — will3; + (V,9).

With our choice of S as the proximal gradient descent step,
the iterations in Procedure 1 are

w?+1 = Wt,
wifi = prox,,, (wiy —7Vha(wis,)),
Wi41 = warp
where ¢ = 0,1, ..., p — 1. From the definition of prox
we have

vh1®

_ 1 _
0e ahl(wf-u) + th(wf+11) + ;(wf-&-l - wf+ 1)-
Compare this with (A.1) gives
1 —1 —1
Mff-s-l = ;(wf-i-l - wf+1 )+ th(wa ) — th(wf+1).

To bound the right hand side, let wy, ; be the solution of
(A3),a = ’\"““‘T(M), and 8 = ’\'“%(M) Then h; (y) is convex
and ho(y) is a-strongly convex and S-Lipschitz differen-
tiable. Consequently, Prop. 26.16(ii) of (Bauschke et al.,
2017) gives

sz@rl - w;rl” < Tin?Jrl - wf+1||, Vi=0,1,..,p,

where 7 = /1 — v(2ac — v532).

Leta; = ||w},, — w}, |- Then, a; < Tag. We can derive
P 1 P p—1

[Mey ]l < (5 + B)llwiyr —wiy |l

< <§ +B)(ap + ap1) < g +B)( + 7 V)ag,

On the other hand, we have
[wes1 —wel| = a0 —ap = (1 —77)ao.
Combining these two equations yields
[Me} ]l < b(p)|lweg1 — well, (A4)

where

T Amax(M) 7P + 7971
. A.S
+ ) 1 (A.S)

Finally, let the eigenvalues of M be 0 < A; < Ao < ... <
A4, with orthonormal eigenvectors vy, vg, ..., vgq. Let 5f 11
and w1 — wy be decomposed by

d

p —

5t+1 = g V4,
i=1

d
Wiyl — Wy = E Biv;.
i=1

then
d 1 d
letillar = ;)\ia% < om0 ;)\fa?
= Jiar Ml
‘ ] ‘“
[wisr —wi = ;51' < N (V) ;)‘iﬂi

1
m”wm — w|| -

Combine these two inequalities with (A.4), we arrive at

letiallar < e(p)|wesr — wellar, (A.6)
where
c(p) = ! b(p) = “1/+Ama);7(M) TP 4 P71
P )\r‘mn(M) b A111111(]\4) 1—7P
O
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Now, we are ready to prove Lemma 1, the techniques are
similar to the proof of Lemma 3.

Proof of Lemma 1. We want to find ¢(p) such that

— U)t) + @t + M€€+17
(A7)

1
0 €9 (wit1) + 5M(U}t+1

c\p
letiallar < (n)|wt+1 — wil|ar, (A.8)

Take ¢ = r—1 and j = py — 1, then the optimality condition
of the problem in line 5 of Algorithm 3 is

1
0 € d(w;"")+

compare this with (A.7), we have

r—1, r—1 r—1
Mgf_H —Q( t(+ ro) ul(H- o) )+ Vh2(ut+1 pO))
1 ~
— EM(thrl — wt) — Vt
1 r—1, r—1,
:;(wt(-',-l po) u§+1 pO))

1 T,
- EM(U£+1LPO) — Wiy1)

r—1 r—1 r—1
’Y( §+1 pO)_ug o) )+Vhs (“z£,+1 »)

On the other hand, the strong convexity of ¥ = hy + ho
gives

5 * )\min(M) i,
\I’(wgﬂ)) U(wyyq) > THU}&]R - wt+1||2'
Therefore,
”wt”) —wi | < || t+1 —wyyqll. (A1)

Now, let us use (A.11) repeatedly to bound the right hand
side of (A.10). For example, the first term can be bounded
as

),

1 —1,p0—1
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Similarly, the rest of the terms can be bounded as follows,

where
2= L (r=lpo-1) _ (-=1.p0-2)
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u§+11’p0) (;117100 DA p; 2 : (wt(vﬂlmo 1)7w£1117100 2 (po—)l t“( ) Wit
Po— 1 Ak (M =1, 4K M 0,0 «
<) T () ) —wi |
As a result, Y po (po—1)
1 4k(M) r=1, k(M) |1 00) N
- T (———5)?||w —wiy ],
268, <= (3 =) (a9) T )T Gy b il
(r—1
M — ) L ey
r—1,po—
Lpo) _ , (r=1,po—1) I M ey = vl
< - (r—1, r—1,po—
| ( +1 t+1 | <)\maX(M)(4n(M))%( 4k(M) )%” (0,0) I
< w —wiy ],
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+ ||5M(wt+1 T —wen) || 0
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= M (w0 —wl 16, 2—1 e e
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Let the solution of (3.2) be wy, ;. By Theorem 4.4 of (Beck < " ( P )z ((p0_1)2)2||wt+1 — w4 ||
& Teboulle, 2009), f 0<i<r—land0<j<
li:ou e ), for any i<r—1lan J = Po Aax(M) 45(M) o 46(M) 1 00)
we have + n ( p(2) ) ((p0_2)2) Hthrl wt+1||7

2Amax (M
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)ngil) - w:—&-l”Q
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W(w ) — oy

U(wiy,) <

1
where in the first and third estimate we have used L <
P

0o—1
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zp“—’f < 1. On the other hand, we have
Po—
-1, 0,0
wesr — we|l = [lwliy 7 —wS |
0,0 -1,
> [[wSY — wi || — w7 P — wi
AK(M) = (0,0
> (1— (g D)) w0 — wi |l
0

Amax (M) w(O,O)

— (T*l,pg) —
n o Wil = Wi, Wiy =

As aresult, taking v =

w1 and 7 = (%)ﬁ yields
0

Amax(M) b(p)
008 < 270 22 PPy —
where
_ 4I<;(M) 1 4I<;(M) 1
b —P~Po 2 4 2
®) (((po — 1)2) ((po - 2)2) )
_ 4H(M) 1
+ 7P 4 PP ()2, (A.12)
G012
Similar to the end of proof of Lemma 3, we have
k(M) b(p)

[PUEARY PV QTm”th — wilar-
Now, let us choose pg such that 7 = (w)ﬁ is mini-
mized, a simple calculation yields

Py = 2e/Kk(M).
In order for p to be an integer, we can take
po = [2ev/k(M)],
then
. (4I€(M) )% < (%)2(26\/1W1 < (%)2(26\/%44)

D3 e e

1
B exp(72e\//€(M) + 1)'

Finally, Let us show that b(p) in (A.12) can be bounded by
777, and the desired bound (A.8) on ||ef, || as follows.

First, we have
Ar (M) 1 _(_Po
po—1 po—1

o )%

)

and
po = [2e\/K(M)] = [2e] =6.

1
On the other hand, a simple calculation shows that (; Lo )
is decreasing in pg, therefore

_ 4H(M) 1 6 1
Po < (=
e SR LR

Similarly, one can show that

4k(M) 1 6,1
PO 2)2 < ()6 < 2.
T < (i <
Combining these two inequalities with (B.2) yields

b(p) < 77P.

B. Proof of Theorem 1

In this section, we proceed to establish the convergence of
inexact preconditioned SVRG as in Algorithm 1. The proof
is similar to that of Theorem D.1 of (Allen-Zhu, 2018).

Before proving Theorem 1, let us first prove several lemmas.

First, the inexact optimality condition (4.1) gives the follow-
ing descent:

Lemma 4. Under Assumption 1, suppose that (4.1) holds.
Then, for any u € RY we have

(Ve we — ) + ¥(wis1) — (u)
[|u — wll3,

< (V -

<AV, wp — Wwipr) + 2
2 1 2

- %HU —wiy|ly — %”wﬂ-l — w3y

+ (Mefy 1, u — wit).

Proof. First, let us rewrite the left hand side as

(Vi,wp = u) + 9h(wig1) — 1b(u)

= (Vi we — wep1) + (Vi wign — u) + 9 (wigr) — (w).
By (4.1) and the definition of subdifferential we have

~ 1
Y(u) > w(wtﬂ)*(Vt+5M(wt+1*wt)+M5f+1,U*wt+1>~

Combining these two gives

(Vi,wy — u) + (wig1) — ¥(w)
§<@t7wt — Weg1)
1
+ <5M(wt+1 —wy) + Mej, 1, u— wiy)

2
~ U—w
=(Vy, wy — wyp1) + ”277“\4
A 2 L _ 2
277”“ Wit |[ar 2n||wzt+1 we|3,
+ <M5€+1,U — Wii1),
where in the last equality we have applied

1 1 1
(a=b,c=a)n = = lla=bli =S lla=clis+ 5 b=clln.
O
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Based on lemma 4, we have

Lemma 5. Under Assumption 1, if the iterator S in Proce-
dure 1 is proximal gradient descent or FISTA with restart,

then, for any a > 0, n < 1_2251(\5))(1, and u € RY we have
/

E[F(wi41) — F'(u)]

- 5 1-— 770]4/[ 9
<E[n[|Ve = Vf(w)llar- + o [lw — well3y
1 c(p) 9
(277 2na)|lu w1 3]

Proof. We have

E[F (we+1) — F(u)
= E[f (wi+1) — f(uw) + ¢ (wig1) — P(w)]
<E[f (we) + (Vf (we) , w1 — wy)
LM
= llwe = wa [y — £ () + 4 (we1) = H(w)
JM
E[(Vf (we) we = u) = == [lu— wil3,
FAVS () wes —we) + = fwe = weia [y

+ 9 (wig1) — P (u)

]

~ Uf 2
=E[(Vi,we —u) — - lu — well3y (B.1)
H (V[ (we), wep1 — wy)
LM
+ o = wea |y +9 (i) = $(w)]l, (B2)

where the first and second inequality are due to the strong
convexity and smoothness under || - [|57 in Assumption 1,
respectively. the last equality is due to E[V,] = V f(w;).

On the other hand, recall that Lemma 4 gives

(Vi wy — u) + (wig1) — ¥(w)

- [l — wy|

Vi, ws — 4 M

< +, Wt wt+1> 277

- *277HU - wt+1||%4 - 72n||wt+1 - wt||ﬁ4

+ <M€f+1) U= wt+1>’
For the last term we can apply Cauchy-Schwartz as follows,
(Me} 1, u—wisr) < ey llallu = werallar,

from Lemma 3 and Lemma 1 we know that

c(p)
et il < THth — wy||ar-

Therefore, by Young’s inequality, we have for any a > 0
that

<M€f+1, U — Wip1)

_cp)a
<7

_ 2 c(p) _ 2
llwir1 — w3 + 2a1 lu — wit1ll3-

Applying this to Lemma 4 yields

(Vi,wr — u) + Y(wepr) — ¥(u)
||U—wt‘|?w

<(Vi,wp —
<V, we —wegr) + 2

1 1
- %HU - wt+1||?w - 27}||sz+1 - th?w

+ <M€1I£)+17u - wt+1>

= [l = w|3,
v _ = Weliv
(Vi, we — wipr) + 2
L cp)
- (% - M)Hu - wt+1||?v1
1 c(p)a
—( Nwe1 — wt||?\4

m 2
Applying this to (B.2), we arrive at

E[F (wt+1) - F(u)]
<E[(Vi — V£ (w) ,w; — wip1)
B 1—c¢(p)a— nL?/[

[we — wepr |3

2n
+ ‘2’777”?4 o= el = (- - ‘;gjbnuwwlﬁd
0= c(p)na — L) IVe = ftwe -
o =l = G = D= e

where in the second inequality we have applied

_1 1
(ur,ug) = (M~ 2uy, M2 ug) < [lual|ar-1 [Juzll

1
< %Hulﬂfwfl + 5””2”?‘4% for any b > 0.
. . 1-2
Finally, since n < 2;55’)“, we have m <,
which gives the desired result.
O

Lemma 6. Under Assumption 1, we have

E[[[Ve = V£ (we)l|3-1] < (L) [lwo — wel3,-
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Proof. We have

E[|Ve = Vf(w)|3;-1]

[
=E[|Vf(wo) + Vi, (wi) = V fi,(wo) = V f(we)[|37-1]
=E[|(Vfi,(w) = Vfi,(wo)) = (Vf(we) = V f(wo)) [ 37-1]
<E[|IV fi, (we) =V fi, (wo)[|37-1]
(L) [Jwr — woll3s,

where in the first inequality, we have applied E[||¢ —
E¢)?) = E[J¢ll* - IE€|I? with & = M2 (V fi, (we) —
V f;,(wp)), and in the second inequality follows from As-
sumption 1. O

Lemma 7. (Fact 2.3 of (Allen-Zhu, 2018)). Let C1, Cs, ...
be a sequence of numbers, and N ~Geom(p), then

1. ]EN [CN — ON-H} = %]EN [Co — CN], and

2. Ex[Cn] =1 —p)E[Cnt1] + pCo.

Lemma 8. Under Assumption 1, if n <
min{lfzﬁéf)a,z\/mzy} and m > 2, then, for any

u € RY we have

E[F(wpy1) — F(u)]

1 (wo — Wp41,Wo — U) M
<E[——— — w2 ’
<E| 4m7]||wD+1 wo |3 + mn
M
75 _cp)
R S ) — a2
( 1 2a7])HwD+1 ul 3]

Proof. By Lemmas 5 and 6, we know that

E[F(wi1) — F(u)]

M2 2 1- 7705‘\4 2
E[n(Ly )= [lwo — we |3, + o l[w — welly
1 c(p) 2
(5 = 2 = w3

Let D ~ Geom(-1) as in Algorithm 1 and take ¢ = D, then

E[F(wpt1) = F(u)]

1
<E[n(L}")?lwo — wpli; + %Ilu —wpll3s

1 ¥

- %llu —wpi1ll3 — 7||u —wplly
c(p)

+ 2777“” —wpt1 ]

llu — woll3, — llu —wpll,
2(m — 1)y

=En(L})*|lwp — woll3; +

Uj”w 2 C(p) 2
- THU —wpl| + %HU —wp1|3y]
m—1

:E[TU(L?I)QHWDH - U’OH?W

lu = woll iy — llu— wD+1H%q
2mn
0}\/[ J}VI(m— 1)

—_— —_— — 2 —
L — woll3y -

(

c(p)
+ %HU — wp41l3]

+

lu = wp I3

lu = wolli = llu = w13,

<E[n(L}")?|lwps1 — woll3, +

2mn
M
a c(p)
=~ e = wpnlliy + 5l = wpsalfy]
1 2
<E[- dmn [wo — wp1[3
2 2 2
L lu = wolliy — llw = wpsalliy + wo — woia 3y
2mn
M
g 2 c(p)
= = lepe = ully + 5l = wpsal]
1 (wo — wp41,wWo — U>M
=RE[—-—— - 2
[ 4mnHU)D+1 wollar + i
M
oy cp)
= (4~ g w1 —ullh,

where the first equality follows from the item 1 of Lemma 7
with Cy = |[u—wy||3;, the second inequality follows from
item 2 with Cy = |lwg — wol|3,, item 2 with Cy = |ju —
wol|%; — [lu —wn |3/, and item 1 with Cy = ||u —wp|3,,
then third inequality makes use of m > 2 and the fourth
inequality makes use of 7 < W

O

Now, let us proceed to prove Theorem 1. With Lemma 8, it
can be proved in a similar way as Theorem 3 of (Hannah
et al., 2018b).

Proof of Theorem 1. Without loss of generality, we can as-
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sume z* = arg min,cpa F(z) = 0 and F'(z*) = 0.
According to Lemma 8, for any u € Rd, and n <
min{=2spla } we have

2L§V1 ’ 2mL}W

E[F(27*1) = F(u)]

1 .

e Ll
<.’L’J —l’j+17.'1,‘j _U>M O'f c(p) 41 9
= (= S — i

or equivalently,

E[F(2/"") — F(u)]
. 1 )
<E[4W7Hffj+1 |3 + %IW —ully
IR ol ).,
NI N S _(Zf APy g 2
g |27 =l = (S = Gl =l

In the following proof, we will omit E.

Setting u = z* = 0 and u = 2’ yields the following two

inequalities:
F@*) < (7 =213 + 200713
- (1 Jn(at = 22 ot
(B.3)
F(27™) — F(a7) (B.4)

1 2¢(p) \\ 1 ;
<—-_— (1 M AP Vg g2
<~ im (1+mn(oy an )|z 2’ ||

(B.5)

Define 7 = 3mn(o} — 20(77 )y, multiply (1 + 27) to (B.3),
then add it to (B.5) yields
21+ 7)F(2/th) — F(a?)

1 , ,
Sy (LF 27) (7113, — (L + )l 13,)-

Multiplying both sides by (1 + 7)7 gives

201+ 7)I TP (29T — (14 7)T F(29)

(L4 27) (1 + 7)Y |73, — (1 + )7 H 27T R).

<
~2mn

Summing over j = 0,1, ...,k — 1, we have

N

-1

A+ FE®) +Y (1 +7)VF(2') - F(z%)

J

1
<o (1 27) (12”1~

I
=)

(L +7)*l|2*]13,)-

Since F(27) > 0, we have

FM(1+1)k < F@% + in(l +27)|12°2.

2m
M
By the strong convexity of F', we have F'(z°) > % 12°)13.
therefore
X 1
F(z®) 1+ 1)k < F(2%)(2+ 77)- (B.6)
T

Finally, recall that @ > 0 can be chosen arbitrarily, so we
can take

4
- i)
Nos
and
. 1 —2¢(p)a
n < min{ ) }
203" 7 2y/mLY
_ 8(p)
in{ na ! 1 ) (B.7)
=min , , .
203 T 2y/mLy
1 2¢(p) 1
7= —mn(c¥ — )= Zmna}”

2 ! an

In order for the choice of 7 in (B.7) to be possible, we need
A(p

207" —n+38 05;4)

<0 (B.8)

to have one solution at least, which requires
64/£M *(p) <1,

under which n = ﬁ satisfy (B.8). As aresult, m > 4
¥
makes (B.7) into

1
”7 S A{7
2\/mLf

and the desired convergence result follows from (B.6). [J

C. Proof of Lemma 2

Proof. From Lemma 1, we know that
7P
c(p) = 14x(M) T——,

where

T < exp(—

\/7+1

Therefore, in order for 6427 fe 2(p) < 1, we need

M 2 Ry
M <
(M=) < g

= C1,
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which is equivalent to

fﬂy k(M) + \/c1
Thus, it suffices to require that

c

1 P
[eXp(72e\/m+ 1)] < WH(M) N \/av

which gives

kM (M c1
p> (2en/6(M)+1)In \/7 ( )+\F

C1

D. Proof of Theorem 2

The proof of Theorem 2 is similar to that of Theorem 4.3 of
(Allen-Zhu, 2018), so we provide a proof sketch here and
omit the details.

1. In (Allen-Zhu, 2018), the proof of Theorem 4.3 is
based on Lemma 3.3, here the proof of Theorem 2 is
based on Lemma 8, which is an analog of Lemma of
3.3 in our settings.

2. Based on Lemma 8, the proof of Theorem 2 follows
in nearly the same way as Theorem 4.3 of (Allen-Zhu,
2018), the only difference is that one needs to replace

o by o} = 2.
3. By setting
_ 4c(p)
= """
No¢

and
64/f§cw Ap) <1

as in the proof of Theorem 1, the 7 in Theorem 4.3 of
(Allen-Zhu, 2018) becomes %mna}” , and the conver-
gence result of Theorem 2 follows.

E. Proof of Theorems 3 and 4

Proof of Theorem 3. From Remark 5, we know that the gra-
dient complexity of SVRG can be expressed as

n+m 1
In -).

C =0(———m——
1(m. ) (ln(l + imnaf) €

Taking the largest possible step size n = as in

1
2\/ mLf
Theorem 1, we have

n+m

In(l + 42)

1
Ci(m,e) = O In E)

Let us first find the optimal m = m* for SVRG, let

(m) n+m
gm)=——"—>——-,
Vm
In(1+ Sy )
then
Vm % ntm
I 1H(1+m)*1+@ .
g'(m) = 2
In“(1+ 2)
Taking derivative to the numerator gives
Jm
(14 Y™y _ & _ntmy,

Supl 1442 2m

3 "
m 4+ 2(1%1Kf)2

(L+ ¥

_1
_ (TL + m) 32Ky

>0,

Therefore, m* is given by ¢’(m) = 0. Let z = é/g > 0,
then

g/(m) _ ln(l + Z) - 1—7—2 n;::l
In?(1 + 2)

Since In(1 + 2) > 15

therefore, m* < n.

for z > 0, we know that ¢’(n) > 0,

Let m = n® where 0 < s < 1, we would like to have
g (n®) <0,ie.,

In(1+2) 1+nt=s
R
142z

so that m* € (n°,n).
Since ky > n%, we have z = ;{TT < %, on the other hand,

we have

In(1 1 1=s
[n( Z+Z)< tn . >0.
1+=z 2

Therefore, it suffices to have

nt=s > 181n§ —1:=1c>1.
As aresult, we have m* € (-, n), and
n+m* 1
Ci(m*,e) = O(————=—=—1In-)
In(l+ %) €
Y N Yy
B 8@ e’ ! e’

~

where in the second equality we have used xf > ne.

For our iPreSVRG in Algorithm 1, we have

1 1
n+ (1+ pd)m I

o =0
1(m.€) (ln(l + 2mnoM) e’
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thanks to Lemma 2, p can be chosen as

p=0O(VK(M)In (, /ff}”n(M)),
furthermore, we can take = ﬁ due to Theorem 1.

Under these settings, we have

n+ (1 +pd)m In 1)

Ci(m,e) =0
1(m.) (1n(1+§{§7) 3

Let us take m = m' = [75;].

If n > 1+ pd, or equivalently x; < n?d~2, then

n
cl(m,e)=O(—————In-).
111(1 + é\/[%;y) €

Since p = O(\/H(M) In (WK(M))), we know that

when (k}1)2\/k(M)d < n, or equivalently y < n*d~?,

we have Ja
1 n
In(1+ = =0l
therefore )
Ci(m',e) = O(nln g),
and

min,,>; C1(m,¢) < Ci(m',e) 70(@)
Ky

mianl C’l(m,s) - C’l(m*,s)

and
Cilm )= O ),
Ry
therefore
m%nmzl Ci(m,e) < Ci(1,¢) _ k(M)d )
min,>1 C1(m,e) = Ci(m*,¢) rpy/nn(l+ §—7)

=
-~

Since k(M) = Ky > 59/[, this ratio becomes O(—4=)

nK§f

O

Proof of Theorem 4. The proof of Theorem 4 is similar and
is omitted. O



