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A. An example with countably infinite K

We give an example to demonstrate our method when there
is a countably infinite number of categories. Consider the
N-mixture model,

N ∼ Poisson(λ) (43)
yi ∼ Binomial(N, p) for i = 1, ..., n, (44)

a model used in ecological modeling of species
counts (Royle, 2004).

In our experiment, we take p and λ to be known param-
eters. We want to infer N given data y1, ..., yn. Since
the support of N is the integers greater than or equal to
ymax := maxn {yn}, we use a negative binomial distri-
bution shifted by ymax to approximate the posterior. Let
r̂ and p̂ be the number of failures and the probability of
success, respectively, for a negative binomial. We optimize
the ELBO,

L(r̂, p̂) = Eq(N ;r̂,p̂)[log p(y|N)p(N)− log q(N ; r̂, p̂)]
(45)

This expectation is taken over N , and is given by an infinite
sum. The exact expectation is intractable. However, we
have a closed form variational distribution, and for any r̂
and p̂, it is easy to find the integers N where q(N ; r̂, p̂)
places most of its mass. We therefore can apply our Rao-
Blackwellization procedure to compute stochastic gradients
of the ELBO.

In our experiment, we take the true N = 10 and p = 0.2.
We drew 1000 data points from Equation (44). We set our
Poisson prior with λ = 10.

We found that the REINFORCE estimator was too high
variance to be useful in this example, so we start with
REINFORCE+. Figure 7 compares the REINFORCE+ esti-
mator with its Rao-Blackwellization, using either k = 1 or
k = 3 categories summed.

We find that our Rao-Blackwellization improves the con-
vergence rate of the ELBO. This is because our variational
distribution eventually concentrates around the true N (Fig-
ure 8), and only a few categories have significant mass.

B. Experimental details
Implementations of all methods in our paper as well as
code to reproduce our results can be found in the git repos-
itory https://github.com/Runjing-Liu120/
RaoBlackwellizedSGD.

B.1. Generative semi-supervised classification

In this experiment, our classifier qφ(y|x) consists of three
fully connected hidden layers, each with 256 nodes and

Figure 7. Negative ELBO per iteration in the N-mixture experi-
ment. We compare the REINFORCE+ estimator with its Rao-
Blackwellization, using either k = 1 or k = 3 categories summed.
Vertical lines denote standard errors over 10 trials from the same
initialization.

Figure 8. Negative binomial variational distribution q at conver-
gence for the N-mixture experiment.

ReLU activations. The inference and generative models,
qφ(z|x, y) and pθ(x|z, y), both have one hidden layer with
128 nodes and ReLU activations, similar to the MLPs used
in Kingma et al. (2014). The latent variable z is five dimen-
sional and qφ(z|x) is multivariate Gaussian with diagonal
covariance.

For all methods, we used performance on a validation set to
choose between the possible step-sizes, {5e-5, 1e-4, 5e-4,
1e-3, 5e-3}. For Gumbel-softmax, we also chose the anneal-
ing rate among {1e-5, 5e-5, 1e-4, 5e-4}. For RELAX, the
relaxation temperature was chosen adaptively using gradi-
ents, while the scaling parameter was set at 1.0.

The step-size for REINFORCE was chosen to be 1e-4 and
the step-size for RELAX was chosen to be 5e-4. The step-
size for the remaining methods were chosen to be 1e-3. The
annealing rate for Gumbel-softmax was chosen to be 5e-4.

Optimization was done with Adam (Kingma & Ba, 2015),
with parameters β1 = 0.9, β2 = 0.999. An initializa-
tion for qφ(z|x, y) and pθ(x|z, y) was obtained by first op-
timizing LL(x, y) on the labeled data only. We also initial-
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ized qφ(y|x) on the labeled data using cross-entropy loss.
The results in the paper show the optimization of the semi-
supervised ELBO starting from this initialization.

B.1.1. CONDITIONAL GENERATION RESULTS

Figure 9 displays the conditional generation of MNIST
digits obtained after 100 epochs of running our Rao-
Blackwellized gradient method.

Figure 9. The conditional generation of MNIST digits. Each
row displays five draws from the learned generative model z ∼
N (0, I), x ∼ pθ(x|y, z), for a different digit y in each row.

B.2. Moving MNIST

For the decoder p(x|l, z) we use one fully connected hidden
layer with 256 nodes and tanh activations, similar to the
architecture described in Kingma and Welling (2014). Our
z is 5 dimensional.

The attention mechanism q(l|x) contains four convolutional
layers, each with 7 output channels and ReLU activations;
the final layer is a fully connected layer with a softmax.
The encoder network q(z|x) has one fully connected hidden
layer with 256 nodes and tanh activations, mirroring the
decoder network.

We again used performance on the validation set to choose
between the possible step-sizes and model parameters as
described in the section above. The learning rate and an-
nealing rate for Gumbel-sofmax was chosen to be 5e-5 and
5e-4, respectively. For RELAX, the learning rate was 5e-4.
The step-sizes for the remaining procedures were chosen
to be 1e-3. We again use Adam (Kingma & Ba, 2015) for
optimization, and we set β1 = 0.9, β2 = 0.999.

B.2.1. VAE RECONSTRUCTION

Figure 10 displays (1) the original non-centered MNIST
digit; (2) the reconstruction of the MNIST digits after pass-
ing through our attention mechanism and VAE; and (3) the
learned pixel locations.

Figure 10. (Left column) The original MNIST digit. (Center col-
umn) The reconstructed MNIST digit. (Right column) The learned
probability distribution over the grid of pixels. Brighter spots
indicate higher probabilities.


