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Abstract
We clarify what fairness guarantees we can and
cannot expect to follow from unconstrained ma-
chine learning. Specifically, we show that in many
settings, unconstrained learning on its own im-
plies group calibration, that is, the outcome vari-
able is conditionally independent of group mem-
bership given the score. A lower bound confirms
the optimality of our upper bound. Moreover, we
prove that as the excess risk of the learned score
decreases, the more strongly it violates separa-
tion and independence, two other standard fair-
ness criteria. Our results challenge the view that
group calibration necessitates an active interven-
tion, suggesting that often we ought to think of it
as a byproduct of unconstrained machine learning.

1. Introduction
Although many fairness-promoting interventions have been
proposed in the machine learning literature, unconstrained
learning remains the dominant paradigm among practition-
ers for learning risk scores from data. Given a prespeci-
fied class of models, unconstrained learning seeks to find
a predictor which minimizes the average prediction loss
over a labeled dataset, or some surrogate thereof, without
explicitly correcting for disparity with respect to sensitive
attributes, such as race or gender. Many criticize the practice
of unconstrained machine learning for propagating harmful
biases (Crawford, 2013; Barocas and Selbst, 2016; Craw-
ford, 2017). Others see merit in unconstrained learning for
reducing bias in consequential decisions (Kleinberg et al.,
2016; Corbett-Davies et al., 2017a;b).

In this work, we show that defaulting to unconstrained learn-
ing does not neglect fairness considerations entirely. Instead,
it prioritizes one notion of “fairness” over others: uncon-
strained learning achieves calibration with respect to one
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or more sensitive attributes, as well as a related criterion
called sufficiency (e.g., Barocas et al., 2018), at the cost of
violating other widely used fairness criteria, separation and
independence (see Section 1.2 for references therein).

A risk score is calibrated for a group if the risk score obvi-
ates the need to solicit group membership for the purpose of
predicting an outcome variable of interest. The concept of
calibration has a venerable history in statistics and machine
learning (Cox, 1958; Murphy and Winkler, 1977; Dawid,
1982; DeGroot and Fienberg, 1983; Platt, 1999; Zadrozny
and Elkan, 2001; Niculescu-Mizil and Caruana, 2005). The
appearance of calibration as a widely adopted and discussed
“fairness criterion” largely resulted from a recent debate
around fairness in recidivism prediction and pre-trial de-
tention. After journalists at ProPublica pointed out that a
popular recidivism risk score known as COMPAS had a
disparity in false positive rates between white defendants
and black defendants (Angwin et al., 2016), the organization
that produced these scores countered that this disparity was
a consequence of the fact that their scores were calibrated by
race (Dieterich et al., 2016): that is, for both black and white
individuals, the average probability of recidivism among of
given score was nearly identical.

Formal trade-offs dating back the 1970s confirm the ob-
served tension between calibration and other classification
criteria, including the aforementioned criterion of sepa-
ration, which is related to the disparity in false positive
rates (Darlington, 1971; Chouldechova, 2017; Kleinberg
et al., 2017; Barocas et al., 2018). In the context of COM-
PAS, for example, separation means that black and white
individuals with similar probabilies of recidivism would
receive similar scores.

Implicit in this debate is the view that calibration is a con-
straint that needs to be actively enforced as a means of
promoting fairness. Consequently, recent literature has pro-
posed new learning algorithms which ensure approximate
calibration in different settings (Hebert-Johnson et al., 2018;
Kearns et al., 2017).

The goal of this work is to understand when approximate
calibration can in fact be achieved by unconstrained ma-
chine learning alone. We define several relaxations of the
exact calibration criterion, and show that approximate group
calibration is often a routine consequence of unconstrained
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learning. Such guarantees apply even when the sensitive
attributes in question are not available to the learning algo-
rithm. On the other hand, we demonstrate that under similar
conditions, unconstrained learning strongly violates the sep-
aration and independence criteria. We also prove novel
lower bounds which demonstrate that in the worst case, no
other algorithm can produce score functions that are substan-
tially better-calibrated than unconstrained learning. Finally,
we verify our theoretical findings with experiments on two
well-known datasets, demonstrating the effectiveness of un-
constrained learning in achieving approximate calibration
with respect to multiple group attributes simultaneously.

1.1. Summary of Results

We begin with a simplified presentation of our results. As is
common in supervised learning, consider a pair of random
variables (X,Y ) where X models available features, and Y
is a binary target variable that we try to predict from X. We
choose a discrete random variable A in the same probability
space to model group membership. For example, A could
represent gender, or race. In general, X may include A, or
features that are proxies for A. Our results do not require
that X perfectly encodes the attribute A, and hence also
apply to the setting where the sensitive attribute is unknown.

A score function f maps the random variable X to a real
number. We say that the score function f is sufficient with
respect to attribute A if we have E[Y | f(X)] = E[Y |
f(X), A] almost surely.1 In words, conditioning on A pro-
vides no additional information about Y beyond what was
revealed by f(X). This definition leads to a natural notion
of the sufficiency gap:

suff (A) = E[|E[Y | f(X)]− E[Y | f(X), A]|] , (1)

which measures the expected deviation from satisfying suf-
ficiency over a random draw of (X,A).

We say that the score function f is calibrated with respect
to group A if we have E[Y | f(X), A] = f(X). Note that
calibration implies sufficiency. We define the calibration
gap (see also Pleiss et al., 2017) as

calf (A) = E [|f(X)− E[Y | f(X), A]|] . (2)

Denote by L(f) = E[`(f, Y )] the population risk (risk, for
short) of the score function f . Think of the loss function `
as either the square loss or the logistic loss, although our
results apply more generally. Our first result relates the
sufficiency and calibration gaps of a score to its risk.

1This notion has also been referred to as “calibration” in previ-
ous work (e.g., Chouldechova, 2017). In this work we refer to it
as “sufficiency”, hence distinguishing it from E[Y | f(X), A] =
f(X), which has also been called “calibration” in previous work
(e.g., Pleiss et al., 2017). These two notions are not identical, but
closely related; we present analagous theoretical results for both.

Theorem 1.1 (Informal). For a broad class of loss functions
that includes the square loss and logistic loss, we have

max{suff (A), calf (A)} ≤ O
(√
L(f)− L∗

)
.

Here, L∗ is the calibrated Bayes risk, i.e., the risk of the
score function fB(x, a) = E[Y | X = x,A = a].

The theorem shows that if we manage to find a score func-
tion with small excess risk over the calibrated Bayes risk,
then the score function will also be reasonably sufficient
and well-calibrated with respect to the group attribute A.
We also provide analogous results for the calibration error
restricted to a particular group A = a.

In particular, the above theorem suggests that computing the
unconstrained empirical risk minimizer (Vapnik, 1992), or
ERM, is a natural strategy for achieving group calibration
and sufficiency. For a given loss ` : [0, 1] × {0, 1} → R,
finite set of examples Sn := {(Xi, Yi)}i∈[n], and class of
possible scores F , the ERM is the score function

f̂n ∈ arg min
f∈F

1

n

n∑
i=1

`(f(Xi), Yi) . (3)

It is well known that, under very general conditions,

L(f̂n)
prob→ minf∈F L(f); that is, the risk of f̂n converges

in probability to the least expected loss of any score function
f ∈ F .

In general, the ERM may not achieve small excess
risk, L(f) − L∗. Indeed, we have defined the
calibrated Bayes score fB as one that has access to both
X and A. In cases where the available features X do not
encode A, but A is relevant to the prediction task, the ex-
cess risk may be large. In other cases, the excess risk may
be large simply because the function class over which we
can feasibly optimize provides only poor approximations
to the calibrated Bayes score. In example 2.1, we provide
scenarios when the excess risk is indeed small.

The constant in front of the square root in our theorem
depends on properties of the loss function, and is typically
small, e.g., bounded by 4 for both the squared loss and the
logistic loss. The more significant question is if the square
root is necessary. We answer this question in the affirmative.

Theorem 1.2 (Informal). There is a triple of random vari-
ables (X,A, Y ) such that the empirical risk minimizer
f̂n trained on n samples drawn i.i.d. from (X,Y ) satis-
fies min{calf̂n(A), suf f̂n(A)} ≥ Ω(1/

√
n) and L(f̂n)−

L∗ ≤ O(1/n) with probability Ω(1).

In other words, our upper bound sharply characterizes the
worst-case relationship between excess risk, sufficiency and
calibration. Moreover, our lower bound applies not only to
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the empirical risk minimizer f̂n, but to any score learned
from data which is a linear function of the features X . Al-
though group calibration and sufficiency is a natural conse-
quence of unconstrained learning, it is in general untrue that
they imply a good predictor. For example, predicting the
group average, f = E[Y | A] is a pathological score func-
tion that nevertheless satisfies calibration and sufficiency.

Although unconstrained learning leads to well-calibrated
scores, it violates other notions of group fairness. We show
that the ERM typically violates independence—the criterion
that scores are independent of group attribute A—as long
as the base rate Pr[Y = 1] differs by group. Moreover,
we show that the ERM violates separation, which asks for
scores f(X) to be conditionally independent of the attribute
A given the target Y (see Barocas et al., 2018, Chapter 2).
In this work, we define the separation gap:

sepf (A) := EY,A[|E[f(X) | Y,A]− E[f(X) | Y ]|],

and show that any score with small excess risk must in
general have a large separation gap. Similarly, we show that
unconstrained learning violates indf (A) := EA[|E[f(X) |
A]− E[f(X)]|], a quantitative version of the independence
criterion (see Barocas et al., 2018, Chapter 2).

Theorem 1.3 (Informal). For a broad class of loss functions
that includes the square loss and logistic loss, we have

sepf (A) ≥ CfB ·QA −O(
√
L(f)− L∗),

where CfB and QA are problem-specific constants indepen-
dent of f . CfB represents the inherent noise level of the
prediction task, and QA is the variation in group base rates.
Moreover, indf (A) ≥ QA−O(

√
L(f)− L∗) for the same

constant QA.

The lower bound for sepf is explained in Section 2.2; the
lower bound for indf is deferred to Appendix F.

Experimental evaluation. We explore the extent to
which the result of empirical risk minimization satisfies suffi-
ciency, calibration and separation, via comprehensive exper-
iments on the UCI Adult dataset (Dua and Karra Taniskidou,
2017) and pretrial defendants dataset from Broward County,
Florida (Angwin et al., 2016; Dressel and Farid, 2018). For
various choices of group attributes, including those defined
using arbitrary combinations of features, we observe that
the empirical risk minimizing score is fairly close to being
calibrated and sufficient. Notably, this holds even when the
score is not a function of the group attribute in question.

1.2. Related Work

Calibration was first introduced as a fairness criterion by the
education testing literature in the 1960s. It was formalized
by the Cleary criterion (Cleary; 1968), which compares the

slope of regression lines between the test score and the out-
come in different groups. More recently, machine learning
and data mining communities have rediscovered calibration,
and examined the inherent tradeoffs between calibration
and other fairness constraints. Chouldechova (2017) and
Kleinberg et al. (2017) independently demonstrate that ex-
act group calibration is incompatible with separation (equal
true positive and false positive rates), except under highly re-
strictive situations such as perfect prediction or equal group
base rates; further generalizations have been established by
Pleiss et al. (2017).

There are multiple post-processing procedures which
achieve calibration, (see e.g. Niculescu-Mizil and Caru-
ana, 2005, and references therein). Notably, Platt scaling
(Platt, 1999) learns calibrated probabilities for a given score
function by logistic regression. Recently, Hebert-Johnson
et al. (2018) proposed a polynomial time agnostic learn-
ing algorithm that achieves both low prediction error, and
multi-calibration, or simultaneous calibration with respect
to all, possibly overlapping, groups that can be described by
a concept class of a given complexity. Complementary to
this finding, our work shows that low prediction error often
implies calibration with no additional computational cost,
under very general conditions. Unlike Hebert-Johnson et al.
(2018), we do not aim to guarantee calibration with respect
to arbitrarily complex group structure; instead we study
when usual empirical risk minimization already achieves
calibration with respect to a given group attribute A.

A variety of other fairness criteria have been proposed to
address concerns of fairness with respect to a sensitive at-
tribute. These are typically group parity constraints on
the score function, including, among others, demographic
parity (also known as independence and statistical parity),
equalized odds (also known as error-rate balance and sepa-
ration), as well as calibration and sufficiency (see e.g. Feld-
man et al., 2015; Hardt et al., 2016; Chouldechova, 2017;
Kleinberg et al., 2017; Pleiss et al., 2017; Barocas et al.,
2018). Beyond parity constraints, recent works have also
studied dynamic aspects of group fairness, such as the im-
pact of model predictions on future welfare (Liu et al., 2018)
and user demographics (Hashimoto et al., 2018). There
are tensions between notions of group fairness and those
of individual fairness (Dwork et al., 2012; Speicher et al.,
2018). For a more complete treatment of algorithmic fair-
ness literature, the reader is referred to Barocas et al. (2018);
Chouldechova and Roth (2018); Corbett-Davies and Goel
(2018).

2. Formal Setup and Results

We consider the problem of finding a score function f̂ which
encodes the probability of a binary outcome Y ∈ {0, 1},
given access to features X ∈ X . We consider functions
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f : X → [0, 1] which lie in a prespecified function class F .
We assume that individuals’ features and outcomes (X,Y )
are random variables whose law is governed by a probability
measure D over a space Ω, and will view functions f as
maps Ω → [0, 1] via f = f(X). We use PrD[·],Pr[·] to
denote the probability of events under D, and ED[·],E[·] to
denote expectation taken with respect to D.

We also consider aD-measurable protected attributeA ∈ A,
with respect to which we would like to ensure sufficiency
or calibration, as defined in Section 1.1 above. While
assume that f = f(X) for all f ∈ F , we compare
the performance of f to the benchmark that we call the
calibrated Bayes score2

fB(x, a) := E [Y | X = x,A = a] , (4)

which is a function of both the feature x and the attribute a.
As a consequence, fB /∈ F , except possibly whenever Y is
conditionally independent of A given X . Nevertheless, fB

is well defined as a map Ω→ [0, 1] and it always satisfies
sufficiency and calibration:
Proposition 2.1. fB is sufficient and calibrated, that is
E[Y | fB(X)] = E[Y | fB(X), A] and fB = E[Y |
f(X), A], almost surely. Moreover, if Φ : X → X ′ is
any map, then the classifier fΦ(X) := E[Y | Φ(X), A] is
sufficient and calibrated.

Proposition 2.1 is a direct consequence of the tower property
(proof in Appendix A.1). In general, there are many chal-
lenges to learning perfectly calibrated scores. As mentioned
above, fB depends on information about A which is not
necessarily accessible to scores f ∈ F . Moreover, even in
the setting where A = A(X), it may still be the case that F
is a restricted class of scores, and fB /∈ F . Lastly, if f̂ is
estimated from data, it may require infinitely many samples
to achieve perfect calibration. To this end, we introduce the
following approximate notion of sufficiency and calibration:
Definition 1. Given a D-measurable attribute A ∈ A and
value a ∈ A, we define the sufficiency gap of f with respect
to A for group a, denoted suff (a;A), as

ED [|E[Y | f(X)]− E[Y | f(X), A]| | A = a] . (5)

and the calibration gap for group a as

calf (a;A) = ED [|f − E[Y | f(X), A]| | A = a] . (6)

We shall let suff (A) and calf (A) be as defined above in (1)
and (2), respectively.

2.1. Sufficiency and Calibration

We now state our main results, which show that the suffi-
ciency and calibration gaps of a function f can be con-
trolled by its loss, relative to the calibrated Bayes score

2Note that this is not the perfect predictor unless Y is determin-
istic given A and X .

fB . All proofs are deferred to the supplementary mate-
rial. Throughout, we let F denote a class of score func-
tions f : X → [0, 1] . For a loss function ` : [0, 1] ×
{0, 1} → R and any D-measurable f : Ω → [0, 1], re-
call the population risk L(f) := E[`(f, Y )]. Note that
for f ∈ F , L(f) = E[`(f(X), Y )], whereas for the
calibrated Bayes score fB , we denote its population risk
as L∗ := L(fB) = E[`(fB(X,A), Y )]. We further assume
that our losses satisfy the following regularity condition:
Assumption 1. Given a probability measure D, we assume
that `(·, ·) is (a) κ-strongly convex: `(z, y) ≥ κ(z − y)2,
(b) there exists a differentiable map g : R → R such that
`(z, y) = g(z)−g(z)−g′(z)(z−y) (that is, ` is a Bregman
Divergence), and (c) the calibrated Bayes score is a critical
point of the population risk, that is

E
[
∂

∂z
`(z, Y )

∣∣
z=fB

]
= 0 .

Assumption 1 is satisfied by common choices for the loss
function, such as the square loss `(z, y) = (z − y)2 with
κ = 1, and the logistic loss, as shown by the following
lemma, proved in Appendix A.2.
Lemma 2.2 (Logistic Loss). The logistic loss `(f, Y ) =
−(Y log f + (1 − Y ) log(1 − f)) satisfies Assumption 1
with κ = 2/ log 2.

We are now ready to state our main theorem (proved in Ap-
pendix B), which provides a simple bound on the sufficiency
and calibration gaps, suff and calf , in terms of the excess
risk L(f)− L∗:
Theorem 2.3 (Sufficiency and Calibration are Upper
Bounded by Excess Risk). Suppose the loss function `(·, ·)
satisfies Assumption 1 with parameter κ > 0. Then, for any
score f ∈ F and any attribute A,

max{calf (A), suff (A)} ≤ 4

√
L(f)− L∗

κ
. (7)

Moreover, it holds that for a ∈ A,

max{calf (a;A), suff (a;A)} ≤ 2

√
L(f)− L∗

Pr[A = a] · κ
. (8)

Theorem 2.3 applies to any f ∈ F , regardless of how f is
obtained. As a consequence of Theorem 2.3, we immedi-
ately conclude the following corollary for the empirical risk
minimizer:
Corollary 2.4 (Calibration of the ERM). Let f̂ be the output
of any learning algorithm (e.g. ERM) trained on a sample
Sn ∼ Dn, and let L(f) be as in Theorem 2.3. Then, if f̂
satisfies the guarantee

Pr
Sn∼Dn

[
L(f̂)−min

f∈F
L(f) ≥ ε

]
≤ δ,
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and if ` satisfies Assumption 1 with parameter κ > 0, then
with probability at least 1− δ over Sn ∼ Dn, it holds that

max{calf (A), suff (A)} ≤ 4

√
ε+ minf∈F L(f)− L∗

κ
.

The above corollary states that if there exists a score in the
function class F whose population risk L(f) is close to
that of the calibrated Bayes optimal L∗, then empirical risk
minimization succeeds in finding a well-calibrated score.

In order to apply Corollary 2.4, one must know when the
gap between the best-in-class risk and calibrated Bayes
risk, minf∈F L(f) − L∗, is small. In the full information
setting where A = A(X) (that is, the group attribute is
available to the score function), minf∈F L(f)− L∗ corre-
sponds to the approximation error for the class F (Bartlett
et al., 2006). When X may not contain all the information
about A, minf∈F L(f)− L∗ depends not only on the class
F but also on how well A can be encoded by X given the
class F , and possibly additional regularity conditions. We
now present a guiding example under which one can mean-
ingfully bound the excess risk in the incomplete information
setting. In Appendix B.3, we provide two further examples
to guide the readers’ intuition. For our present example, we
introduce as a benchmark the uncalibrated Bayes optimal
score

fU (x) := E[Y |X = x],

which minimizes empirical risk over all X measurable func-
tions, and is necessarily in F . Our first example gives a
decomposition of L(f)− L∗ when ` is the square loss.
Example 2.1. Let `(z, y) := (z − y)2 denote the squared
loss. Then,

L(f̂)− L∗ =

(
L(f̂)− inf

f∈F
(f)

)
(i)

+

(
inf
f∈F
L(f)− L(fU )

)
(ii)

+ EX
[
VarA

[
fB | X

]]
(iii)

, (9)

where VarA[fB | X] = E[(fB − EA[fB | X])2 | X]
denotes the conditional variance of fB given X .

The decomposition in Example 2.1 follows immediately
from the fact that the excess risk of fU over fB , L(fU )−
L∗, is precisely VarA[fB | X] when ` is the square loss.
Examining (9), (i) represents the excess risk of f̂ over the
best score in F , which tends to zero if f̂ is the ERM. Term
(ii) captures the richness of the function class, for as F
contains a close approximation to fU . If f̂ is obtained by a
consistent non-parametric learning procedure, and fU has
small complexity, then both (i) and (ii) tend to zero in the
limit of infinite samples. Lastly, (iii) captures the additional
information about A contained in X . Note that in the full
information zero, this term is zero.

2.2. Lower Bounds for Separation

In this section, we show that empirical risk minimization
robustly violates the separation criterion that scores are
conditionally independent of the groupA given the outcome
Y . For a classifier that exactly satisfies separation, we have
E[f(X) | Y,A] = E[f(X) | Y ] for any group A and
outcome Y . We define the separation gap as the average
margin by which this equality is violated:
Definition 2 (Separation gap). The separation gap is

sepf (A) := EY,A[|E[f(X) | Y,A]− E[f(X) | Y ]|].

Our first result states that the calibrated Bayes score fB , has
a non-trivial separation gap. The following lower bound is
proved in Appendix F:
Proposition 2.5 (Lower bound on separation gap). Denote
q := Pr[Y = 1], and qA := Pr[Y = 1|A] for a group
attribute A. Let Var(·) denote variance, and Var(· | X)
denote conditional variance given a random variable X .
Then, sepfB (A) ≥ CfB ·QA, where

QA := EA|q − qA| and CfB :=
EDVar[Y | X,A]

Var[Y ]
.

Intuitively, the above bound says that the separation gap of
the calibrated Bayes score is lower bounded by the product
of two quantities: QA = EA|qA − q| corresponds to the
L1-variation in base-rates among groups, and CfB corre-
sponds to the intrinsic noise level of the prediction problem.
For example, consider the case where perfect prediction is
possible (that is, Y is deterministic given X,A). Then, the
lower bound is vacuous because CBf = 0, and indeed fB

has zero separation gap.

Proposition 2.5 readily implies that any score f which has
small risk with respect to fB also necessarily violates the
separation criterion:
Corollary 2.6 (Separation of the ERM). Let L be the risk
associated with a loss function `(·, ·) satisfying Assump-
tion 1 with parameter κ > 0. Then, for any score f̂ ∈ F ,
possibly the ERM, and any attribute A,

sepf̂ ≥ CfB · EA|qA − q| − 2

√
L(f̂)− L∗

κ
.

In prior work, Kleinberg et al. (2017)’s impossibility result
(Theorem 1.1, 1.2), as well as subsequent generalizations
in Pleiss et al. (2017), states that a score that satisfies both
calibration and separation must be either a perfect predictor
or the problem must have equal base rates across groups,
that is, q = qA. In contrast, Proposition 2.5 provides a quan-
titative lower bound on the separation gap of a calibrated
score, for arbitrary configurations of base rates and close-
ness to perfect prediction. This is crucial for approximating
the separation gap of the ERM in Corollary 2.6.
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2.3. Lower Bounds for Sufficiency and Calibration

We now present two lower bounds which demonstrate that
the behavior depicted in Theorem 2.3 is sharp in the worse
case. In Appendix C, we construct a family of distributions
{Dθ}θ∈Θ over pairs (X,Y ) ∈ X × {0, 1}, and a family
of attributes {Aw}w∈W which are measurable functions
of X . We choose the distribution parameter θ and attribute
parameter w to be drawn from specified priors πΘ and πW .
We also consider a class of score functions F mapping
X → [0, 1], which contains the calibrated Bayes classifer
for any θ ∈ Θ and w ∈ W (this is possible because the
attributes are X-measurable). We choose L to be the risk
associated with the square loss, and consider classifiers
trained on a sample Sn = {(Xi, Yi)}ni=1 of n i.i.d draws
from Dθ. In this setting, we have the following:

Theorem 2.7. Let f̂ ∈ F denote the output of any learning
algorithm trained on a sample Sn ∼ Dn, and let f̂n denote
the empirical risk minimizer of L trained on Sn. Then,
with constant probability over θ ∼ πΘ, w ∼ πW , and
Sn ∼ Dθ, min{calf̂ (Aw), suf f̂ (Aw)} ≥ Ω(1/

√
n) and

L(f̂n)− L∗ ≤ O(1/n).

In particular, taking f̂ = f̂n, we see that the for any sample
size n, we have that

min{calf̂n(Aw), suf f̂n(Aw)}/
√
L(f̂n)− L∗ = Ω(1).

with constant probability. In addition, Theorem 2.7 shows
that in the worst case, the calibration and sufficiency gaps
decay as Ω(1/

√
n) with n samples.

We can further modify the construction to lower bound
the per-group sufficency and calibration gaps in terms of
Pr[A = a]. Specifically, for each p ∈ (0, 1/4), we construct
in Appendix D a family of distributions {Dθ;p}θ∈Θ and X-
measurable attributes {Aw}w∈W such that, for all (θ, w),
mina∈A Pr(X,Y )∼Dθ;p [Aw(X) = a] = p, for all θ ∈ Θ
and w ∈ W . The construction also entails modifying the
class F ; in this setting, our construction is as follows:

Theorem 2.8. Fix p ∈ (0, 1/4). For any score f̂ ∈ F
trained on Sn, and the empirical risk mnimizer f̂n, it
holds that min{calf̂ (Aw), suf f̂ (Aw)} ≥ Ω(1/

√
pn) and

L(f̂n) − L∗ ≤ O(1/n), with constant probability over
θ ∼ πΘ, w ∼ πW , and Sn ∼ Dθ;p.

3. Experiments
In this section, we present numerical experiments on two
datasets to corroborate our theoretical findings. These are
the Adult dataset from the UCI Machine Learning Repos-
itory (Dua and Karra Taniskidou, 2017) and a dataset of
pretrial defendants from Broward County, Florida (Angwin
et al., 2016; Dressel and Farid, 2018) (henceforth referred
to as the Broward dataset).

The Adult dataset contains 14 demographic features for
48842 individuals, for predicting whether one’s annual in-
come is greater than $50,000. The Broward dataset contains
7 features of 7214 individuals arrested in Broward County,
Florida between 2013 and 2014, with the goal of predicting
recidivism within two years. It is derived by Dressel and
Farid (2018) from the original dataset used by Angwin et al.
(2016) to evaluate a widely used criminal risk assessment
tool. We present results for the Adult dataset in the current
section, and those for the Broward dataset in Appendix G.2.

Score functions are obtained by logistic regression on a
training set that is 80% of the original dataset, using all
available features, unless otherwise stated.

We first examine the sufficiency of the score with respect
to two sensitive attributes, gender and race in Section 3.1.
Then, in Section 3.2 we show that the score obtained from
empirical risk minimization is sufficient and calibrated with
respect to multiple sensitive attributes simultaneously. Sec-
tion 3.3 explores how sufficiency and separation are affected
differently by the amount of training data, as well as the
model class.

We use two descriptions of sufficiency. In Sections 3.1
and 3.2, we present the so-called calibration plots (e.g., Fig-
ure 1), which plots observed positive outcome rates against
score deciles for different groups. The shaded regions in-
dicate 95% confidence intervals for the rate of positive out-
comes under a binomial model. In Section 3.3, we report
empirical estimates of the sufficiency gap, suff (A), using
a test set that is 20% of the original dataset. More details
on this estimator can be found in Appendix G.1. In gen-
eral, models that are more sufficient and calibrated have
smaller suff and their calibration plots show overlapping
confidence intervals for different groups.

3.1. Training with Group Information has Modest
Effects on Sufficiency
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Figure 1. Calibration plot for score using group attribute

In this section, we examine the sufficiency of ERM scores,
with respect to gender and race. When all available features
were used in the regression, including sensitive attributes,
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Figure 2. Calibration plot for score not using group attribute

the empirical risk minimizer of the logistic loss is sufficient
and calibrated with respect to both gender and race, as seen
in Figure 1. However, sufficiency can hold approximately
even when the score is not a function of the group attribute.
Figure 2 shows that without the group variable, the ERM
score is only slightly less calibrated; the confidence intervals
for both groups still overlap at every score decile.

3.2. Simultaneous Sufficiency with respect to Multiple
Group Attributes
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Figure 3. Calibration plot with respect to other group attributes

Furthermore, we observe that empirical risk minimization
with logistic regression also achieves approximate suffi-
ciency with respect to any other group attribute defined on
the basis of the given features, not only gender and race. In
Figure 3, we show the calibration plot for the ERM score
with respect to Age, Education-Num, Workclass, and Hours
per week; Figure 4 considers combinations of two features.
In each case, the confidence intervals for the rate of positive
outcomes for all groups overlap at all, if not most, score
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Figure 4. Calibration plot with respect to combinations of features:
linear combination (left), intersectional combination (right)

deciles. In particular, Figure 4 (right) shows that the ERM
score is close to sufficient and calibrated even for a newly
defined group attribute that is the intersectional combina-
tion of race and gender. The calibration plots for other
features, as well as implementation details, can be found in
Appendix G.3.

3.3. Sufficiency Improves with Model Accuracy and
Model Flexibility

Our theoretical results suggest that the sufficiency gap of a
score function is tightly related to its excess risk. In general,
it is impossible to determine the excess risk of a given clas-
sifier with respect to the Bayes risk L∗ from experimental
data. Instead we shall examine how the sufficiency gap of a
score trained by logistic regression varies with the number
of samples and the model class, both of which were chosen
because of their impact on the excess risk of the score.

Specifically, we explore the effects of decreased risk on suffi-
ciency gap due to (a) increased number of training examples
(Figure 5) and (b) increased expressiveness of the class F
of score functions (Figure 6). As the number of training
samples increases, the gap between the ERM and least-
risk score function in a given class F , argminf∈F L(f),
decreases. On the other hand, as the number of model pa-
rameters grows, the class F becomes more expressive, and
minf∈F L(f) may become closer to the Bayes risk L∗.

Figures 5 and 6 display, for each experiment, the sufficiency
gap and logistic loss on a test set averaged over 10 ran-
dom trials, each using a randomly chosen training set. The
shaded region in the figures indicates two standard devia-
tions from the average value. In Figure 5, as the number
of training examples increase, the logistic loss of the score
decreases, and so does the sufficiency gap. For the race
group attribute, we even observe that the sufficiency gap is
going to zero; this is predicted by Theorem 2.3 as the risk of
the score approaches the Bayes risk. Figure 5 also displays
the separation gap of the scores. Indeed, the separation gap
is bounded away from zero, as predicted by Corollary 2.6,
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Figure 5. Sufficiency, Separation, and Logistic Loss vs. Number of training examples
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Figure 6. Sufficiency for models trained with different L1 regu-
larization parameters (top) and with different number of features
(bottom)

and does not decrease with the number of training examples.
This corroborates our finding that unconstrained machine
learning cannot achieve the separation notion of fairness
even with infinite data samples.

In Figure 6 (bottom), we gradually restrict the model class
by reducing the number of features used in logistic regres-
sion. As the number of features decreases, the logistic
loss increases and so does the sufficiency gap. In Figure
6 (top), we implicitly restrict the model class by varying
the regularization parameter: with a smaller parameters
corresponding to more severe regularization, constraining
the learned weights to be inside a smaller L1 ball. As we
increase regularization, the logistic loss increases and so
does the sufficiency gap. Both experiments show that the
sufficiency gap is reduced when the model class is enlarged,
again demonstrating its tight connection to the excess risk.

Conclusion Our results show that group calibration fol-
lows from closeness to the risk of the calibrated Bayes
optimal score function. Consequently, unconstrained ma-
chine learning (e.g. via empirical risk minimization or some
surrogate thereof) may serve as a simple recipe for achiev-
ing group calibration, provided that (1) the function class
is sufficiently rich, (2) there are enough training samples,
and (3) the group attribute can be approximately predicted
from the available features. On the other hand, we show
that group calibration does not and cannot solve fairness
concerns that pertain to the Bayes optimal score function,
such as the violation of separation and independence.

Our findings suggest that group calibration is an appropri-
ate notion of fairness only when we expect unconstrained
machine learning to be fair, given sufficient data. Thus, fo-
cusing on calibration alone is likely insufficient to mitigate
the negative impacts of unconstrained machine learning.
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