
Understanding and Accelerating Particle-Based Variational Inference

Chang Liu 1 Jingwei Zhuo 1 Pengyu Cheng 2 Ruiyi Zhang 2 Jun Zhu 1 Lawrence Carin 2

Abstract
Particle-based variational inference methods
(ParVIs) have gained attention in the Bayesian
inference literature, for their capacity to yield
flexible and accurate approximations. We explore
ParVIs from the perspective of Wasserstein gradi-
ent flows, and make both theoretical and practical
contributions. We unify various finite-particle
approximations that existing ParVIs use, and rec-
ognize that the approximation is essentially a com-
pulsory smoothing treatment, in either of two
equivalent forms. This novel understanding re-
veals the assumptions and relations of existing
ParVIs, and also inspires new ParVIs. We pro-
pose an acceleration framework and a principled
bandwidth-selection method for general ParVIs;
these are based on the developed theory and lever-
age the geometry of the Wasserstein space. Exper-
imental results show the improved convergence by
the acceleration framework and enhanced sample
accuracy by the bandwidth-selection method.

1. Introduction
Bayesian inference provides powerful tools for modeling
and reasoning with uncertainty. In Bayesian learning one
seeks access to the posterior distribution p on the support
spaceX (i.e., the latent space) given data. As p is intractable
in general, various approximations have been developed.
Variational inference methods (VIs) seek to approximate p
within a certain distribution family by minimizing typically
the Kullback-Leibler (KL) divergence to p. The approximat-
ing distribution is commonly chosen to be a member of a
parametric family (Wainwright et al., 2008; Hoffman et al.,
2013), but often it poses a restrictive assumption and the
closeness to p suffers. Markov chain Monte Carlo (MCMC)
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methods (Geman & Geman, 1987; Neal et al., 2011; Welling
& Teh, 2011; Ding et al., 2014) aim to directly draw sam-
ples from p. Although asymptotically accurate, they often
converge slowly in practice due to undesirable autocorre-
lation between samples. A relatively large sample size is
needed (Liu & Wang, 2016) for a good result, increasing
the cost for downstream tasks.

Recently, particle-based variational inference methods
(ParVIs) have been proposed. They use a set of samples, or
particles, to represent the approximating distribution (like
MCMC) and deterministically update particles by minimiz-
ing the KL-divergence to p (like VIs). ParVIs have greater
non-parametric flexibility than classical VIs, and are also
more particle-efficient than MCMCs, since they make full
use of a finite number of particles by taking particle inter-
action into account. The availability of optimization-based
update rules also makes them converge faster. Stein Vari-
ational Gradient Descent (SVGD) (Liu & Wang, 2016) is
a representative method of this type; it updates particles
by leveraging a proper vector field that minimizes the KL-
divergence. Its unique benefits make SVGD popular, with
many variants (Liu & Zhu, 2018; Zhuo et al., 2018; Chen
et al., 2018b; Futami et al., 2018) and applications (Wang &
Liu, 2016; Pu et al., 2017; Liu et al., 2017a; Haarnoja et al.,
2017; Zhang et al., 2018; 2019).

SVGD was later understood as simulating the steepest de-
scending curves, or gradient flows, of the KL-divergence
on a certain kernel-related distribution space PH(X ) (Liu,
2017). Inspired by this, more ParVIs have been developed
by simulating the gradient flow on the Wasserstein space
P2(X ) (Ambrosio et al., 2008; Villani, 2008) with a finite
set of particles. The particle optimization method (PO)
(Chen & Zhang, 2017) and w-SGLD method (Chen et al.,
2018a) explore the minimizing movement scheme (MMS)
(Jordan et al. (1998); Ambrosio et al. (2008), Def. 2.0.6) of
the gradient flow and make approximations for tractability
with a finite set of particles. The Blob method (originally
called w-SGLD-B) (Chen et al., 2018a) uses the vector field
form of the gradient flow and approximates the update di-
rection with a finite set of particles. Empirical comparisons
of these ParVIs have been conducted, but theoretical under-
standing on their finite-particle approximations for gradient
flow simulation remains unknown, particularly for the as-
sumption and relation of these approximations. We also
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note that, from the optimization point of view, all existing
ParVIs simulate the gradient flow, but no ParVI yet exploits
the geometry of P2(X ) and uses the more appealing acceler-
ated first-order methods on the manifold P2(X ). Moreover,
the smoothing kernel bandwidth of ParVIs is found crucial
for performance (Zhuo et al., 2018) and a more principled
bandwidth selection method is needed, relative to the current
heuristic median method (Liu & Wang, 2016).

In this work, we examine the P2(X ) gradient flow perspec-
tive to address these problems and demands, and contribute
to the ParVI field a unified theory on the finite-particle ap-
proximations, and two practical techniques: an acceleration
framework and a principled bandwidth selection method.
The theory discovers that various finite-particle approxi-
mations of ParVIs are essentially a smoothing operation,
in the form of either smoothing the density or smoothing
functions. We reveal the two forms of smoothing, and draw
a connection among ParVIs by discovering their equiva-
lence. Furthermore, we recognize that ParVIs actually and
necessarily make an assumption on the approximation fam-
ily. The theory also establishes a principle for developing
ParVIs, and we use this principle to conceive two novel
models. The acceleration framework follows the Rieman-
nian version (Liu et al., 2017b; Zhang & Sra, 2018) of Nes-
terov’s acceleration method (Nesterov, 1983), which enjoys
a proved convergence improvement over direct gradient flow
simulation. In developing the framework, we make novel
use of the Riemannian structure of P2(X ), particularly the
inverse exponential map and parallel transport. We empha-
size that the direct application of Nesterov’s acceleration
on every particle in X is unsound theoretically, since the
KL-divergence is not minimized on X but on P2(X ), and
each single particle is not optimizing a function. For the
bandwidth method, we elaborate on the goal of smoothing
and develop a principled approach for setting the bandwidth
parameter. Experimental results show the improved sam-
ple quality by the principled bandwidth method over the
median method (Liu & Wang, 2016), and improved conver-
gence of the acceleration framework on both supervised and
unsupervised tasks.

Related work On understanding SVGD, Liu (2017) first
views it as a gradient flow on PH(X ). Chen et al. (2018a)
then find it implausible to exactly formulate SVGD as a
gradient flow on P2(X ). In this work, we find SVGD ap-
proximates the P2(X ) gradient flow by smoothing func-
tions, achieving an understanding and improvement of all
ParVIs within a universal perspective. The PH(X ) view-
point is difficult to apply in general and it lacks appealing
properties.

On accelerating ParVIs, the particle optimization method
(PO) (Chen & Zhang, 2017) resembles the Polyak’s momen-
tum (Polyak, 1964) version of SVGD. However, it was not

derived originally for acceleration and is thus not theoreti-
cally sound for such; we observe that PO is less stable than
our acceleration framework, similar to the discussion by
Sutskever et al. (2013). More recently, Taghvaei & Mehta
(2018) also considered accelerating theP2(X ) gradient flow.
They use the variational formulation of optimization meth-
ods (Wibisono et al., 2016) and define components in the
formulation for P2(X ), while we leverage the geometry of
P2(X ) and apply Riemannian acceleration methods. Al-
gorithmically, Taghvaei & Mehta (2018) use a set of mo-
mentums and we use auxiliary particles. However, both
approaches face the problem of a finite-particle approxi-
mation, solved here systematically using our theory. Their
implementation is recognized, in our theory, as smoothing
the density. Moreover, our novel perspective on P2(X ) and
corresponding techniques provide a general tool that enables
other Riemannian optimization techniques for ParVIs.

On incorporating Riemannian structure with ParVIs, Liu &
Zhu (2018) consider the case for which the support space X
is a Riemannian manifold, either specified by task or taken
as the manifold in information geometry (Amari, 2016). We
summarize that they utilize the geometry of the Rieman-
nian support space X , while we leverage deeper knowledge
on the Riemannian structure of P2(X ) itself. Algorithmi-
cally, our acceleration is model-agnostic and computation-
ally cheaper. The work of Detommaso et al. (2018) con-
siders second-order information of the KL-divergence on
PH(X ). Our acceleration remains first-order, and we con-
sider the Wasserstein space P2(X ) so that with our theory
the acceleration is applicable for all ParVIs.

2. Preliminaries
We first introduce the Wasserstein space P2(X ) and the
gradient flow on it, and review related ParVIs. We only
consider Euclidean support X = RD to reduce unnecessary
sophistication, and highlight our key contributions.

We denote C∞c as the set of compactly supported RD-valued
smooth functions on X , and C∞c for scalar-valued functions.
Denote L2

q as the Hilbert space of RD-valued functions
{u : RD → RD |

∫
‖u(x)‖22 dq < ∞} with inner product

〈u, v〉L2
q

:=
∫
u(x) ·v(x) dq, and L2

q for scalar-valued func-
tions. The Lebesgue measure is taken if q is not specified.
We define the push-forward of a distribution q under a mea-
surable transformation T : X → X as the distribution of
the T -transformed random variable of q, denoted as T#q.

2.1. The Riemannian Structure of the Wasserstein
Space P2(X )

Figure 1 illustrates the related concepts discussed here.
Consider distributions on a support space X with distance
d(·, ·), and denote P(X ) as the set of all such distributions.
The Wasserstein space is the metric space P2(X ) := {q ∈
P(X ) :∃x0 ∈ X s.t. Eq[d(x0, x)2] < +∞} equipped with
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Figure 1. Illustration of the Wasserstein space P2(X ) and related
concepts.

the well-known Wasserstein distance W2 (Villani (2008),
Def. 6.4). Its Riemannian structure is then discovered (Otto,
2001; Benamou & Brenier, 2000), enabling explicit expres-
sion of quantities of interest, like gradient. The first step
is the recognition of tangent vectors and tangent spaces
on it. For any smooth curve (qt)t on P2(X ), there ex-
ists an a.e.-unique time-dependent vector field vt(x) on
X such that for a.e. t ∈ R, ∂tqt + ∇ · (vtqt) = 0 and

vt ∈ {∇ϕ : ϕ ∈ C∞c }
L2
qt where the overline means clo-

sure (Villani (2008), Thm. 13.8; Ambrosio et al. (2008),
Thm. 8.3.1, Prop. 8.4.5). The unique existence of such a
vt allows us to recognize vt as the tangent vector of the
curve at qt, and the mentioned closure as the tangent space
at qt, denoted by TqtP2 (Ambrosio et al. (2008), Def. 8.4.1).
The inherited inner product in TqtP2 from L2

qt defines a
Riemannian structure on P2(X ), and it is consistent with
the Wasserstein distance W2 due to the Benamou-Brenier
formula (Benamou & Brenier, 2000). Restricted to a para-
metric family as a submanifold of P2(X ), this structure
gives a metric in the parameter space that differs from the
Fisher-Rao metric (Amari, 2016), and it has been used in
classical VIs (Chen & Li, 2018). Finally, the vector field
representation provides a convenient means of simulating
the distribution curve (qt)t: it is known that (id +εvt)#qt is
a first-order approximation of qt+ε in terms of W2 (Ambro-
sio et al. (2008), Prop. 8.4.6). This means that given a set of
samples {x(i)}i of qt, {x(i) + εvt(x

(i))}i is approximately
a set of samples of qt+ε for small ε.

2.2. Gradient Flows on P2(X )

Gradient flow of a function F is roughly the family of steep-
est descending curves {(qt)t} for F . It has various tech-
nical definitions on metric spaces (Ambrosio et al. (2008),
Def. 11.1.1; Villani (2008), Def. 23.7), e.g., as the limit of
the minimizing movement scheme (MMS; Ambrosio et al.
(2008), Def. 2.0.6):

qt+ε = argmin
q∈P2(X )

F (q) +
1

2ε
W 2

2 (q, qt), (1)

and these definitions all coincide when a Riemannian struc-
ture is endowed (Villani (2008), Prop. 23.1, Rem. 23.4;
Ambrosio et al. (2008), Thm. 11.1.6; Erbar et al. (2010),
Lem. 2.7). In this case the gradient flow (qt)t has its tangent

vector at any t being the gradient of F at qt, defined as:

gradF (qt) :=max · argmax
v: ‖v‖TqtP2

=1

d

dε
F
(
(id+εv)#qt

)∣∣∣
ε=0

, (2)

where “max · argmax” denotes the scalar multiplication of
the maximum and the maximizer. For Bayesian inference
tasks, given an absolutely continuous target distribution
p, we aim to minimize the KL-divergence (a.k.a relative
entropy) KLp(q) :=

∫
X log(q/p) dq. Its gradient flow (qt)t

has its tangent vector at any t being:
vGF
t := − grad KLp(qt) = ∇ log p−∇ log qt, (3)

whenever qt is absolutely continuous (Villani (2008),
Thm. 23.18; Ambrosio et al. (2008), Example 11.1.2). When
KLp is geodesically µ-convex on P2(X ),1 the gradient
flow (qt)t enjoys exponential convergence: W2(qt, p) ≤
e−µtW2(q0, p) (Villani (2008), Thm. 23.25, Thm. 24.7; Am-
brosio et al. (2008), Thm. 11.1.4), as expected.
Remark 1. The Langevin dynamics dx = ∇ log p(x) dt+√

2 dBt(x) (Bt is the Brownian motion) is also known to
produce the gradient flow of KLp on P2(X ) (e.g., Jordan
et al. (1998) from the MMS perspective). It produces the
same distribution curve (qt)t as the deterministic dynamics
dx = vGF

t (x) dt.

2.3. Particle-Based Variational Inference Methods
Stein Variational Gradient Descent (SVGD) (Liu & Wang,
2016) uses a vector field v to update particles: x(i)

k+1 =

x
(i)
k +εv(x

(i)
k ), and v is selected to maximize the decreasing

rate: − d
dεKLp

(
(id +εv)#q

)∣∣
ε=0

, where q is the distribution
that {x(i)}i obeys. When v is optimized over the vector-
valued reproducing kernel Hilbert space (RKHS)HD of a
kernel K (Steinwart & Christmann (2008), Def. 4.18), the
solution can be derived in closed-form:
vSVGD(·) := Eq(x)[K(x, ·)∇ log p(x) +∇xK(x, ·)]. (4)

Noting that the optimization problem fits the form of Eq. (2),
Liu (2017) interprets SVGD as the gradient flow on PH, a
distribution manifold that takes HD as its tangent space.
Equation (4) can be estimated by a finite set of parti-
cles, equivalently taking q(x) as the empirical distribution
q̂(x) := 1

N

∑N
i=1 δx(i)(x).

Other methods have been developed to simulate the P2(X )
gradient flow. The Blob method (Chen et al., 2018a) esti-
mates Eq. (3) with a finite set of particles. It reformulates
the intractable part uGF := −∇ log q from the perspective
of variation: uGF = ∇

(
− δ

δqEq[log q]
)
, and then partly

smooths the density q by convolving with a kernel K:

uBlob = ∇
(
− δ

δq
Eq[log(q ∗K)]

)
= −∇ log q̃ − ∇

(
(q/q̃) ∗ K

)
, where q̃ := q ∗ K and “∗”

denotes convolution. This form enables the usage of q̂.

1E.g., p is µ-log-concave on X (Villani (2008), Thm. 17.15).
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The particle optimization method (PO) (Chen & Zhang,
2017) simulates the P2(X ) gradient flow by MMS (1),
where the Wasserstein distance W2 is estimated by solv-
ing a dual optimal transport problem that optimizes over
quadratic functions. The resulting update rule x(i)

k =

x
(i)
k−1 + ε(vSVGD(x

(i)
k−1) +N (0, σ2I)) + µ(x

(i)
k−1 − x

(i)
k−2)

(with parameters ε, σ, µ) comes in the form of the Polyak’s
momentum (Polyak, 1964) version of SVGD. The w-SGLD
method (Chen et al., 2018a) estimates W2 by solving the
primal problem with entropy regularization. The algorithm
is similar to PO.

3. ParVIs as Approximations to P2(X )
Gradient Flow

This part of the paper constitutes our main theoretical con-
tributions. We find that ParVIs approximate the P2(X )
gradient flow by smoothing, either smoothing the density
or smoothing functions. We make recognition of existing
ParVIs, analyze equivalence and the necessity of smoothing,
and develop two novel ParVIs based on the theory.

3.1. SVGD Approximates P2(X ) Gradient Flow
Currently SVGD is only known to simulate the gradient
flow on the distribution space PH(X ). We first interpret
SVGD as a simulation of the gradient flow on the Wasser-
stein space P2(X ) with a finite set of particles, so that all
existing ParVIs can be analyzed from a common perspective.
Noting that vGF is an element of the Hilbert space L2

q , we
can identify it by:

vGF = max · argmax
v∈L2

q,‖v‖L2q=1

〈
vGF, v

〉
L2
q
. (5)

We then find that by changing the optimization domain
from L2

q to the vector-valued RKHS HD of a kernel K,
the problem can be solved in closed-form and the solution
coincides with vSVGD. This connects the two notions:
Theorem 2 (vSVGD approximates vGF). The SVGD vector
field vSVGD defined in Eq. (4) approximates the vector field
vGF of the gradient flow on P2(X ), in the following sense:

vSVGD = max · argmax
v∈HD,‖v‖HD=1

〈
vGF, v

〉
L2
q
.

The proof is provided in Appendix A.1. We will see that
HD is roughly a subspace of L2

q , so vSVGD can be seen as
the projection of vGF onHD.

The current PH(X ) gradient flow interpretation of SVGD
(Liu, 2017; Chen et al., 2018a) is not fully satisfying. We
point out that PH is not yet a well defined Riemannian
manifold. It is characterized by taking HD as its tangent
space, but it is only known that the tangent space of a mani-
fold is determined by the manifold’s topology (Do Carmo,
1992), and it is unknown if there uniquely exists a mani-
fold with a specified tangent space. Particularly, the tangent

vector of any smooth curve should uniquely exist in the
tangent space. Wasserstein space P2(X ) satisfies this (Vil-
lani (2008), Thm. 13.8; Ambrosio et al. (2008), Thm. 8.3.1,
Prop. 8.4.5), but it remains unknown for PH. The manifold
PH also lacks appealing properties like an explicit expres-
sion of the distance (Chen et al., 2018a). SVGD has also
been formulated as a Vlasov process (Liu, 2017; Chen et al.,
2018a); this shows that SVGD keeps p invariant, but does
not provide much knowledge on its convergence behavior.

3.2. ParVIs Approximate P2(X ) Gradient Flow by
Smoothing

With the above knowledge, all ParVIs approximate the
P2(X ) gradient flow. We then find that the approxima-
tion is made by a compulsory smoothing treatment, either
smoothing the density or smoothing functions.

Smoothing the Density We note that the Blob method
approximates the P2(X ) gradient flow by replacing q with a
smoothed density q̃ := q̂ ∗K in the variational formulation
of the gradient flow. In the w-SGLD method (Chen et al.,
2018a), an entropy regularization is introduced to the primal
optimal transport problem. This term avoids the density
solution being highly concentrated, and thus effectively
poses a smoothing requirement on densities.

Smoothing Functions We note in Theorem 2 that SVGD
approximates the P2(X ) gradient flow by replacing the
function family L2

q withHD in an optimization formulation
of the gradient flow. We then reveal the fact that a function
inHD is roughly a kernel smoothed function inL2

q , as stated
formally in the following theorem:

Theorem 3 (HD smooths L2
q). For X = RD, a Gaussian

kernel K on X and an absolutely continuous q, the vector-
valued RKHS HD of K is isometrically isomorphic to the

closure G := {φ ∗K : φ ∈ C∞c }
L2
q .

The proof is presented in Appendix A.2. Noting that C∞c is

roughly L2
q in the sense C∞c

L2
q =L2

q (Kováčik & Rákosnı́k
(1991), Thm. 2.11), the closure G is roughly the set of kernel
smoothed functions in L2

q , and it is roughlyHD.

As mentioned in Section 2.3, the particle optimization
method (PO) (Chen & Zhang, 2017) restricts the optimiza-
tion domain to be quadratic functions when solving the dual
optimal transport problem. Since quadratic functions have
restricted sharpness (no change in second-order derivatives),
this treatment effectively smooths the function family.

Equivalence The above analysis draws more importance
when we note the equivalence between the two smoothing
approaches. Recall that the objective in the optimization
problem that SVGD uses, Eq. (5), is 〈vGF, v〉L2

q
= Eq[vGF ·v].

We generalize this objective in the form Eq[L(v)] with a
linear map L : L2

q → L2
q . Due to the interchangeability of
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the integral and the linearity of L, we have the relation:
Eq̃[L(v)] = Eq∗K [L(v)] = Eq[L(v) ∗K] = Eq[L(v ∗K)],

which indicates that smoothing the density q ∗K is equiva-
lent to smoothing functions v ∗K. This equivalence bridges
the two types of ParVIs, making the analysis and techniques
(e.g., our acceleration and bandwidth methods in Secs. 4
and 5, respectively) for one type also applicable to the other.

Necessity and ParVI Assumption We stress that this
smoothing endeavor is essentially required by a well-defined
gradient flow of the KL-divergence KLp(q). It returns infin-
ity when q is not absolutely continuous, as is the case q = q̂,
thus the gradient flow cannot be reasonably defined. So we
recognize that ParVIs have to make the assumption that q is
smooth, and this can be implemented by either smoothing
the density or smoothing functions.

This claim seems straightforward for smoothing density
methods, but is perhaps obscure for smoothing function
methods. We now make a direct analysis for SVGD, that
neither smoothing the density (take q = q̂) nor smoothing
functions (optimize over L2

p
2) leads to an unreasonable

result.

Theorem 4 (Necessity of smoothing for SVGD). For q = q̂
and v ∈ L2

p, problem (5) has no optimal solution. In fact
the supremum of the objective is infinite, indicating that a
maximizing sequence of v tends to be ill-posed.

The proof is given in Appendix A.3. SVGD claims no as-
sumption on the form of the approximating density q as long
as its samples are known, but we find it actually transmits
the restriction on q to the functions v. The choice for v in
HD is not just for a tractable solution, but more importantly,
for guaranteeing a valid vector field. We see that there is
no free lunch in making the smoothing assumption. ParVIs
have to assume a smoothed density or functions.

3.3. New ParVIs with Smoothing
The theoretical understanding of smoothing for the finite-
particle approximation constructs a principle for developing
new ParVIs. We conceive two new instances based on the
smoothing-density and smoothing-function formulations.

GFSD We directly approximate q with smoothed density
q̃ := q̂ ∗K and adopt the vector field form of gradient flow
(Eq. (3)): uGFSD := −∇ log q̃. We call the corresponding
method Gradient Flow with Smoothed Density (GFSD).

GFSF We discover another novel optimization formulation
to identify uGF, which could build a new ParVI by smoothing
functions. We reform the intractable component uGF :=
−∇ log q, as quGF +∇q = 0, and treat it as an equality that
holds in the weak sense. This means Eq[φ · u − ∇ · φ] =

2Why not L2
q: v ∈ L2

p is required by the condition of Stein’s
identity (Liu, 2017), on which SVGD is based. Also, q̂ is not abso-
lutely continuous so L2

q̂ is not a proper Hilbert space of functions.

0,∀φ ∈ C∞c ,3 or equivalently,
uGF = argmin

u∈L2

max
φ∈C∞c ,
‖φ‖L2q=1

(
Eq[φ · u−∇ · φ]

)2
.

We take q = q̂ and smooth functions φ ∈ C∞c with kernel
K, which is equivalent to taking φ from the vector-valued
RKHSHD according to Theorem 3:

uGFSF := argmin
u∈L2

max
φ∈HD,
‖φ‖HD=1

(
Eq̂[φ · u−∇ · φ]

)2
. (6)

The closed-form solution is ûGFSF = K̂ ′K̂−1 in matrix
form, where ûGFSF

:,i := uGFSF(x(i)), K̂ij := K(x(i), x(j)),
and K̂ ′:,i :=

∑
j ∇x(j)K(x(j), x(i)) (see Appendix B.1).

We call this method the Gradient Flow with Smoothed test
Functions (GFSF). Note that the above objective fits the
form Eq[L(φ)] with L linear, indicating the equivalence to
smoothing the density, as discussed in Section 3.2. An
interesting relation between the matrix-form expression
of GFSF and SVGD is that v̂GFSF = ĝ + K̂ ′K̂−1 while
v̂SVGD = ĝK̂ + K̂ ′, where ĝ:,i := ∇ log p(x(i)). We also
note that the GFSF estimate of −∇ log q coincides with the
method of (Li & Turner, 2017), which is derived by Stein’s
identity and approximating the `2 space with RKHSH.

Due to Remark 1, all these ParVIs aim to simulate the same
path on P2(X ) as the Langevin dynamics (LD) (Roberts
& Stramer (2002)). They directly utilize the particle inter-
action via the smoothing kernel, so every particle is aware
of others and they could be more particle-efficient (Liu &
Wang, 2016) than the vanilla LD simulation. To scale to
large datasets, LD has employed stochastic gradient in sim-
ulation (Welling & Teh, 2011), which is appropriate (Chen
et al., 2015). Due to the connection to LD, ParVIs can also
adopt stochastic gradient for scalability. Finally, our theory
could utilize more techniques for developing ParVIs, e.g.,
implicit distribution gradient estimation (Shi et al., 2018).

4. Accelerated First-Order Methods on P2(X )
We have developed a unified understanding on ParVIs under
the P2(X ) gradient flow perspective, which corresponds to
the gradient descent method on P2(X ). It is well-known
that the Nesterov’s acceleration method (Nesterov, 1983)
can give a faster convergence rate, and its Riemannian vari-
ants have been developed recently, such as Riemannian
Accelerated Gradient (RAG) (Liu et al., 2017b) and Rie-
mannian Nesterov’s method (RNes) (Zhang & Sra, 2018).
We aim to employ ParVIs with these methods. However,
this requires more knowledge on the geometry of P2(X ).

4.1. Leveraging the Riemannian Structure of P2(X )

RAG and RNes require the exponential map (and its in-
verse) and parallel transport on P2(X ). As depicted in

3We also consider scalar-valued functions ϕ ∈ C∞c smoothed
inH, which gives the same result, as shown in Appendix B.2.
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Figure 2. Illustration of the concepts exponential map (left) and
parallel transport (right)

Fig. 2, the exponential map Expq : TqP2(X )→ P2(X ) is
the displacement from position q to a new position along the
geodesic (a “straight line” on a manifold) with a given direc-
tion, and the parallel transport Γrq : TqP2(X )→ TrP2(X )
is the transformation of a tangent vector at q to another one
at r in a certain sense of parallel along the geodesic from q
to r. We now examine these components and find practical
estimation with a finite set of particles.

Exponential Map on P2(X ) For an absolutely contin-
uous measure q, Expq(v) = (id +v)#q (Villani (2008),
Coro. 7.22; Ambrosio et al. (2008), Prop. 8.4.6; Erbar et al.
(2010), Prop. 2.1). Finite-particle estimation is just an appli-
cation of the map x 7→ x+ v(x) on each particle.

Inverse of the Exponential Map With details in Ap-
pendix A.4, we find that the inverse exponential map
Exp−1

q (r) for q, r ∈ P2(X ) can be expressed by the op-
timal transport map from q to r. We can approximate the
map by a discrete one between particles {x(i)}Ni=1 of q and
{y(i)}Ni=1 of r. However, this is still a costly task (Pele
& Werman, 2009). Faster approaches like the Sinkhorn
method (Cuturi, 2013; Xie et al., 2018) still require empir-
ically O(N2) time, and it appears unacceptably unstable
in our experiments. We consider an approximation when
{x(i)}i and {y(i)}i are pairwise close: d(x(i), y(i)) �
min

{
minj 6=i d(x(i), x(j)),minj 6=i d(y(i), y(j))

}
. In this

case we have the result (deduction in Appendix A.4):

Proposition 5 (Inverse exponential map). For pairwise
close samples {x(i)}Ni=1 of q and {y(i)}Ni=1 of r, we have(

Exp−1
q (r)

)
(x(i)) ≈ y(i) − x(i).

Parallel Transport on P2(X ) There has been formal re-
search on the parallel transport onP2(X ) (Lott, 2008; 2017),
but the result is expensive to estimate with a finite set of
particles. Here we utilize Schild’s ladder method (Ehlers
et al., 1972; Kheyfets et al., 2000), a first-order approxima-
tion of parallel transport that only requires the exponential
map. We derive the following estimation with a finite set of
particles (deduction in Appendix A.5):

Proposition 6 (Parallel transport). For pairwise close
samples {x(i)}Ni=1 of q and {y(i)}Ni=1 of r, we have(
Γrq(v)

)
(y(i)) ≈ v(x(i)), ∀v ∈ TqP2(X ).

Both results may not seem surprising. This is because the
geometry ofP2(X ) is determined by that ofX . We consider
Euclidean X , so P2(X ) also appears flat. Extension to non-
flat Riemannian X can be done with the same procedure.

Algorithm 1 The acceleration framework with Wasserstein
Accelerated Gradient (WAG) and Wasserstein Nesterov’s
method (WNes)

1: WAG: select acceleration factor α > 3;
WNes: select or calculate c1, c2 ∈ R+ (Appendix C.2);

2: Initialize {x(i)
0 }Ni=1 distinctly; let y(i)

0 = x
(i)
0 ;

3: for k = 1, 2, · · · , kmax, do
4: for i = 1, · · · , N , do
5: Find v(y

(i)
k−1) by SVGD/Blob/GFSD/GFSF;

6: x
(i)
k = y

(i)
k−1 + εv(y

(i)
k−1);

7: y
(i)
k = x

(i)
k +{

WAG: k−1
k (y

(i)
k−1−x

(i)
k−1)+ k+α−2

k εv(y
(i)
k−1);

WNes: c1(c2 − 1)(x
(i)
k − x

(i)
k−1);

8: end for
9: end for

10: Return {x(i)
kmax
}Ni=1.

4.2. Acceleration Framework for ParVIs
Now we apply RAG and RNes to the Wasserstein
space P2(X ) and construct an accelerated sequence
{qk}k minimizing KLp. Both methods introduce an
auxiliary variable rk ∈ P2(X ), on which the gradient
is evaluated: vk := − grad KL(rk). RAG (Liu et al.,
2017b) needs to solve a nonlinear equation in each
step. We simplify it with moderate approximations to
give an explicit update rule: qk = Exprk−1

(εvk−1), rk =

Expqk

[
−Γqkrk−1

(
k−1
k Exp−1

rk−1
(qk−1)− k+α−2

k εvk−1

)]
(details in Appendix C.1). RNes (Zhang & Sra, 2018)
involves an additional variable. We collapse the variable
and reformulate RNes as: qk = Exprk−1

(εvk−1), rk =

Expqk
{
c1 Exp−1

qk

[
Exprk−1

(
(1 − c2) Exp−1

rk−1
(qk−1) +

c2 Exp−1
rk−1

(qk)
)]}

(details in Appendix C.2). To imple-
ment both methods with a finite set of particles, we leverage
the geometric calculations in the previous subsection
and estimate vk with ParVIs. The resulting algorithms
are called Wasserstein Accelerated Gradient (WAG) and
Wasserstein Nesterov’s method (WNes), and are presented
in Alg. 1 (deduction details in Appendix C.3). They form
an acceleration framework for ParVIs. In the deduction,
the pairwise-close condition is satisfied, so the usage of
Propositions 5 and 6 is appropriate.

In theory, the acceleration framework inherits the proved
improvement on the convergence rate from RAG and RNes,
and it can be applied to all ParVIs, since our theory has rec-
ognized the equivalence of ParVIs. In practice, the frame-
work imposes a computational cost linear in the particle
size N , which is not a significant overhead. Moreover, we
emphasize that we cannot directly apply the vanilla Nes-
terov’s acceleration method (Nesterov, 1983) in X on every
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particle, since a single particle is not optimizing a certain
function. Finally, the developed knowledge on the geometry
of P2(M) (Propositions 5, 6) also makes it possible to ap-
ply other optimization techniques on Riemannian manifolds
to benefit ParVIs, e.g., Riemannian BFGS (Gabay, 1982; Qi
et al., 2010; Yuan et al., 2016) and Riemannian stochastic
variance reduction gradient (Zhang et al., 2016).

5. Bandwidth Selection via the Heat Equation
Our theory points out that all ParVIs need smoothing, and
this can be done with a kernel. Thus it is an essential prob-
lem to choose the bandwidth of the kernel. SVGD uses the
median method (Liu & Wang, 2016) based on a heuristic
for numerical stability. We work towards a more principled
method. We first analyze the goal of smoothing, then build
a practical algorithm.

As noted in Remark 1, the deterministic dynamics dx =
vGF(x) dt and the Langevin dynamics produce the same
rule of density evolution. In particular, the deterministic
dynamics dx = −∇ log qt(x) dt and the Brownian motion
dx =

√
2 dBt(x) produce the same evolution rule specified

by the heat equation (HE): ∂tqt(x) = ∆qt(x). So a good
smoothing kernel should let the evolving density under the
approximated dynamics match the rule of HE. This is the
principle for selecting a kernel bandwidth.

We implement this principle for GFSD, which estimates qt
by the kernel smoothed density q̃(x) = q̃(x; {x(i)}i) =
1
N

∑N
i=1K(x, x(i)). The approximate dynamics dx =

−∇ log q̃(x) dt moves particles {x(i)}i of qt to {x(i) −
ε∇ log q̃(x(i))}i, which approximates qt+ε. On the other
hand, according to the evolution rule of the HE, the new
density qt+ε should be approximated by qt + ε∂tqt ≈ q̃ +
ε∆q̃. The two approximations should match, which means
q̃
(
x; {x(i) − ε∇ log q̃(x(i))}i

)
should be close to q̃ + ε∆q̃.

Expanding up to first order in ε, this requirement translates
to imposing that the function λ(x) := ∆q̃(x; {x(i)}i) +∑
j ∇x(j) q̃(x; {x(i)}i) · ∇ log q̃(x(j); {x(i)}i) should be

close to zero. To achieve this practically, we propose to min-
imize N

hD+2Eq(x)[λ(x)2] ≈ 1
hD+2

∑
k λ(x(k))2 w.r.t. the

bandwidth h. We introduce the factor 1
hD+2 (note that x2/h

is dimensionless) to make the final objective dimensionless.

We call this the HE method. Although the derivation is
based on GFSD, the resulting algorithm can be applied to
all kernel-based ParVIs, like SVGD, Blob and GFSF, due
to the equivalence of smoothing the density and functions
from our theory. See Appendix D for further details.

6. Experiments
Detailed experimental settings and parameters are pro-
vided in Appendix E, and codes are available at https:
//github.com/chang-ml-thu/AWGF. Correspond-
ing to WAG and WNes, we call the vanilla gradient flow sim-

ulation of ParVIs as Wasserstein Gradient Descent (WGD).

6.1. Toy Experiments

Figure 3. Comparison of HE (right
column) with the median method
(left column) for bandwidth selec-
tion. Rows correspond to SVGD,
Blob, GFSD and GFSF, respectively.

We first investigate
the benefit of the HE
method for selecting
the bandwidth, with
comparison to the me-
dian method. Fig-
ure 3 shows 200 parti-
cles produced by four
ParVIs using both the
HE and median meth-
ods. We find that
the median method
makes the particles col-
lapse to the modes,
since the numerical
heuristic cannot guar-
antee the effect of
smoothing. The HE
method achieves an at-
tractive effect: the par-
ticles align neatly and
distribute almost uni-
formly along the con-
tour, building a more
representative approx-
imation. SVGD gives
diverse particles also with the median method, which may
be due to the averaging of gradients for each particle.

6.2. Bayesian Logistic Regression (BLR)
We show the accelerated convergence of the proposed WAG
and WNes methods (Alg. 1) for various ParVIs on BLR. Al-
though PO is not developed for acceleration, we treat it as an
empirical acceleration. We follow the same settings as Liu
& Wang (2016) and Chen et al. (2018a), except that results
are averaged over 10 random trials. Results are evaluated
by test accuracy (Fig. 4) and log-likelihood (Fig. 8 in Ap-
pendix F.1). For all four ParVIs, WAG and WNes notably
improve the convergence over WGD and PO. Moreover,
WNes gets better results than WAG, especially at the early
stage, and it is also more stable w.r.t. hyperparameters. The
performance of the PO method is roughly the same as WGD,
matching the observation by Chen & Zhang (2017). We also
note that the four ParVIs have a similar performance, which
is natural since they approximate the same gradient flow
with equivalent smoothing treatments.

6.3. Bayesian Neural Networks (BNNs)
We test all methods on BNNs for a fixed number of iter-
ations, following the settings of Liu & Wang (2016), and
present results in Table 1. We observe that WAG and WNes
acceleration methods outperform the WGD and PO for all

https://github.com/chang-ml-thu/AWGF
https://github.com/chang-ml-thu/AWGF
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Table 1. Results on BNN on the Kin8nm dataset (one of the UCI datasets (Asuncion & Newman, 2007)). Results averaged over 20 runs.

Method Avg. Test RMSE (×10−2) Avg. Test LL

SVGD Blob GFSD GFSF SVGD Blob GFSD GFSF

WGD 8.4±0.2 8.2±0.2 8.0±0.3 8.3±0.2 1.042±0.016 1.079±0.021 1.087±0.029 1.044±0.016
PO 7.8±0.2 8.1±0.2 8.1±0.2 8.0±0.2 1.114±0.022 1.070±0.020 1.067±0.017 1.073±0.016

WAG 7.0±0.2 7.0±0.2 7.1±0.1 7.0±0.1 1.167±0.015 1.169±0.015 1.167±0.017 1.190±0.014
WNes 6.9±0.1 7.0±0.2 6.9±0.1 6.8±0.1 1.171±0.014 1.168±0.014 1.173±0.016 1.193±0.014
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Figure 4. Acceleration effect of WAG and WNes on BLR on the
Covertype dataset. Curves are averaged over 10 runs.

the four ParVIs. The PO method also improves the perfor-
mance, but not to the extent of WAG.

6.4. Latent Dirichlet Allocation (LDA)
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Figure 6. Comparison of SVGD
and SGNHT on LDA, as rep-
resentatives of ParVIs and
MCMCs. Average over 10 runs.

We show the improved per-
formance by the acceler-
ation methods on an un-
supervised task: posterior
inference of LDA (Blei
et al., 2003). We fol-
low the same settings as
Ding et al. (2014), includ-
ing the ICML dataset4 and
the Expanded-Natural pa-
rameterization (Patterson
& Teh, 2013). The parti-
cle size is fixed at 20. Inference results are evaluated by the
conventional hold-out perplexity (the lower the better).

The acceleration effect is shown in Fig. 5. We see again that
WAG and WNes improve the convergence rate over WGD.
PO has a comparable empirical acceleration performance.
We note that WAG is sensitive to its parameter α and ex-

4https://cse.buffalo.edu/˜changyou/code/
SGNHT.zip
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Figure 5. Acceleration effect of WAG and WNes on LDA. Curves
are averaged over 10 runs.

hibits minor oscillation, while WNes is more stable. We also
compare ParVIs with stochastic gradient Nosé-Hoover ther-
mostats (SGNHT) (Ding et al., 2014), an advanced MCMC
method. Its samples are taken as either the last 20 samples
from one chain (-seq), or the very last sample from 20 par-
allel chains (-para). From Figure 6, we observe the faster
convergence of ParVIs over the MCMC method.

7. Conclusions
By exploiting the P2(X ) gradient flow perspective of
ParVIs, we establish a unified theory on the finite-particle
approximations of ParVIs, and propose an acceleration
framework and a principled bandwidth-selection method
to improve ParVIs. The theory recognizes various approxi-
mations as a smoothing treatment, by either smoothing the
density or smoothing functions. The equivalence of the
two smoothing forms connects existing ParVIs, and their
necessity reveals the assumptions of ParVIs. Algorithm
acceleration is developed via a deep exploration on the ge-
ometry of P2(X ) and the bandwidth method is based on a
principle of smoothing. Experiments show more representa-
tive particles by the principled bandwidth method, and the
speed-up of ParVIs by the acceleration framework.

https://cse.buffalo.edu/~changyou/code/SGNHT.zip
https://cse.buffalo.edu/~changyou/code/SGNHT.zip
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metric spaces and in the space of probability measures.
Springer Science & Business Media, 2008.

Asuncion, A. and Newman, D. Uci machine learning repos-
itory, 2007.

Benamou, J.-D. and Brenier, Y. A computational fluid me-
chanics solution to the monge-kantorovich mass transfer
problem. Numerische Mathematik, 84(3):375–393, 2000.

Blei, D. M., Ng, A. Y., and Jordan, M. I. Latent dirichlet
allocation. Journal of machine Learning research, 3(Jan):
993–1022, 2003.

Chen, C. and Zhang, R. Particle optimization in stochastic
gradient mcmc. arXiv preprint arXiv:1711.10927, 2017.

Chen, C., Ding, N., and Carin, L. On the convergence of
stochastic gradient mcmc algorithms with high-order in-
tegrators. In Advances in Neural Information Processing
Systems, pp. 2278–2286, 2015.

Chen, C., Zhang, R., Wang, W., Li, B., and Chen, L.
A unified particle-optimization framework for scalable
bayesian sampling. arXiv preprint arXiv:1805.11659,
2018a.

Chen, W. Y., Mackey, L., Gorham, J., Briol, F.-X., and Oates,
C. J. Stein points. arXiv preprint arXiv:1803.10161,
2018b.

Chen, Y. and Li, W. Natural gradient in wasserstein statisti-
cal manifold. arXiv preprint arXiv:1805.08380, 2018.

Cuturi, M. Sinkhorn distances: Lightspeed computation
of optimal transport. In Advances in neural information
processing systems, pp. 2292–2300, 2013.

Detommaso, G., Cui, T., Marzouk, Y., Spantini, A., and
Scheichl, R. A stein variational newton method. In
Advances in Neural Information Processing Systems, pp.
9187–9197, 2018.

Ding, N., Fang, Y., Babbush, R., Chen, C., Skeel, R. D.,
and Neven, H. Bayesian sampling using stochastic gra-
dient thermostats. In Advances in neural information
processing systems, pp. 3203–3211, 2014.

Do Carmo, M. P. Riemannian Geometry. 1992.

Ehlers, J., Pirani, F., and Schild, A. The geometry of free
fall and light propagation, in the book “general relativ-
ity”(papers in honour of jl synge), 63–84, 1972.

Erbar, M. et al. The heat equation on manifolds as a gradient
flow in the wasserstein space. In Annales de l’Institut
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