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Appendix
A. Proofs
A.1. PROOF OF LEMMA 1
Given the dynamics (1), the distribution curve (qt)t is gov-
erned by the Fokker-Planck equation (e.g., Risken (1996)):
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where we have used the symmetry of D and
skew-symmetry of Q in the last equality:
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The deterministic dynamics in the theorem dx = Wt(x) dt
with Wt(x) defined in Eq. (7) induces the curve:
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where we have also applied aforementioned properties in
the last equality. Now we see that the two dynamics induce
the same distribution curve thus they are equivalent.

A.2. DERIVATION OF EQ. (8)
Barbour’s generator is understood as the directional deriva-
tive (Af)(x) = d

dtFf (qt)
∣∣∣
q0=δx
t=0

on P(RM ). Due to the

definition of gradient, this can be written as (Af)(x) =
〈gradFf , πq0(W0)〉Tq0P = 〈gradFf ,W0〉L2

q0

, where

πq0(W0) is the tangent vector of the distribution curve (qt)t
at time 0 due to Lemma 1, and the last equality holds due
to that πq is the orthogonal projection from L2

q to TqP and
gradFf ∈ Tq0P (see Section 2.2.1).

Before going on, we first introduce the notion of weak
derivative (e.g., Nicolaescu (2007), Def. 10.2.1) of a distri-
bution. For a distribution with smooth density function q
and a smooth function f ∈ C∞c (RM ), the rule of integration
by parts tells us:∫
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f(x)(∂iq(x)) dx =

∫
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Due to Gauss’s theorem (e.g., Abraham et al.
(2012), Thm. 8.2.9),
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R, y ∈ SM−1, and vi is the i-th component of the unit
normal vector v (pointing outwards) on SM−1(R). Since f
is compactly supported and lim‖x‖→+∞ q(x) = 0, after a
sufficiently large R, f(y)q(y) = 0, so the integral vanishes,
and we have:∫
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We can use this property as the definition of ∂iq for non-
absolutely-continuous distributions, like the Dirac measure
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Now we begin the derivation. Using the form in Eq. (7) and
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noting q0 = δx0
, we have:
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where the second last equality holds due to Qij(∂i∂jf) = 0
from the skew-symmetry of Q. This completes the deriva-
tion.

A.3. PROOF OF LEMMA 2
Noting that the KL divergence KLp(q) =

∫
M log(q/p) dq

is a non-linear function on P(M), we need to first find its
linearization. We fix a point q0 ∈ P(M). Eq. (2) gives its
gradient at q0: grad KLp(q0) = grad log(q0/p). Consider
the linear function on P(M):

F : q 7→
∫
M

log(q0/p) dq.

According to existing knowledge (e.g., Villani (2008),
Ex. 15.10; Ambrosio et al. (2008), Lem. 10.4.1; Santambro-
gio (2017), Eq. 4.10), its gradient at q0 is given by:(

gradF
)
(q0) = grad

(
δF

δq

∣∣∣∣
q=q0

)
,

where δF
δq is the first functional variation of F , which is

log(q0/p) at q = q0. Now we find that gradF (q0) =
grad log(q0/p) = grad KLp(q0), so F (q) is the lineariza-
tion of KLp(q) at q = q0 and the corresponding f ∈

C∞c (M) in Eq. (6) is log(q0/p). Then we have:
XKLp(q0) = πq0(Xlog(q0/p)).

Referring to Eq. (4), Xlog(q0/p) = βij∂j log(q0/p)∂i. Due
to the generality of q0, this completes the proof.

A.4. PROOF OF THEOREM 5
For a fixed q ∈ P(M), two vector fields on M produce
the same distribution curve if they have the same projection
on TqP(M), so showing πq(W ) = WKLp(q) is sufficient
for showing the equivalence of the two dynamics. This
in turn is equivalent to show πq(W − WKLp(q)) = 0L2

q
,

or div
(
q(W − WKLp(q))

)
= div(q0L2

q
) = 0 (see Sec-

tion 2.2.1).

We first consider case (b): given an fRP manifold (M, g̃, β),
we define an MCMC dynamics whose diffusion matrix D
and curl matrixQ are the coordinate expressions of the fiber-
Riemannian structure (g̃ij) and the Poisson structure (βij),
respectively. It is regular, as Assumption 4 is satisfied due to
properties of (g̃ij) (see Eq. (9)) and (βij) (see Section 2.2.2).
Its equivalent deterministic dynamics at q (see Lemma 1) is
given by:

W i = g̃ij∂j log(p/q) + βij∂j log p+ ∂jβ
ij .

So we have:
div
(
q(W −WKLp(q))

)
= div

(
q
(
g̃ij∂j log(p/q) + βij∂j log p+ ∂jβ

ij
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)
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(
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(
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ij + βij∂jq)∂i
)

= div
(
∂j(qβ

ij)∂i
)

=∂i∂j(qβ
ij)

=0,

where the last equality holds due to the skew-symmetry
of (βij). This shows that the constructed regular MCMC
dynamics is equivalent to the fiber-gradient Hamiltonian
flowWKLp onM.

For case (a), given any regular MCMC dynamics whose
matrices (D,Q) satisfy Assumption 4, we can define an
fRP manifold (M, g̃, β) whose structures are defined in
the coordinate space by the matrices: g̃ij := Dij , βij :=
Qij . Assumption 4 guarantees that such g̃ is a valid fiber-
Riemannian structure and β a valid Poisson structure. On
this constructed manifold, we follow the above procedure to
construct a regular MCMC dynamics equivalent to the fGH
flowWKLp on it, whose equivalent deterministic dynamics
is:

W i = Dij∂j log(p/q) +Qij∂j log p+ ∂jQ
ij ,

which is exactly the one of the original MCMC dynamics.
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This shows that the original regular MCMC dynamics is
equivalent to the fGH flowWKLp on the constructed fRP
manifold.

Finally, statement (c) is verified in both cases by the intro-
duced construction. This completes the proof.

B. Details on Flow Simulation of SGHMC Dynamics
We first introduce more details on the Blob method, refer-
ring to the works of Chen et al. (2018a) and Liu et al. (2018).
The key problem in simulating a general flow on the Wasser-
stein space is to estimate the gradient u(x) := −∇ log q(x)
where q(x) is the distribution corresponding to the current
configuration of the particles. The gradient has to be esti-
mated using the finite particles {x(i)}Ni=1 distributed obey-
ing q(x). The analysis of Liu et al. (2018) finds that an
estimate method has to make a smoothing treatment, in the
form of either smoothing density or smoothing functions.
The Blob method (Chen et al., 2018a) first reformulates
u(x) in a variation form:

u(x) = ∇
(
− δ

δq
Eq[log q]

)
,

then with a kernel function K, it replaces the density in the
log q term with a smoothed one:

u(x) ≈∇
(
− δ

δq
Eq[log(q ∗K)]

)
=−∇ log(q ∗K)−∇

(
q

(q ∗K)
∗K

)
,

where “*” denotes convolution. This form enjoys the benefit
of enabling the usage of the empirical distribution: take
q(x) = q̂(x) := 1

N

∑N
i=1 δx(i)(x), with δx(i)(x) denoting

the Dirac measure at x(i). The above formulation then
becomes:

u(x(i)) =−∇xlog q(x(i))

≈−
∑
k∇x(i)K(i,k)∑
jK

(i,j)
−
∑
k

∇x(i)K(i,k)∑
jK

(j,k)
,

where K(i,j) := K(x(i), x(j)). This coincides with
Eq. (15).

The vanilla SGHMC dynamics replaces the dynamics
dr = −C∇r log q(r) dt in Eq. (13) with dr = 2C dBt
or more intuitively dr = N (0, 2C dt), where Bt denotes
the standard Brownian motion. The equivalence between
these two dynamics can also be directly derived from the
Fokker-Planck equation: the first one produces a curve by
∂tqt = −∂i

(
qt(−Cij∂j log qt)

)
= ∂i(C

ij∂jqt), and the
second one by ∂tqt = ∂i∂j(qtC

ij) = ∂i(C
ij∂jqt) for a

constant C, so the two curves coincides. But dynamics (14)
cannot be simulated in a stochastic way, since −∇r log q(r)
and −∇θ log q(θ) are used to update θ and r, respectively,
that is, the correspondence of gradients and variables is
switched. In this case, estimating the gradient cannot be

avoided.

Finally, we write the explicit update rule of the proposed
methods using Blob with particles {(θ, r)(i)}Ni=1. Let Kθ,
Kr be the kernel functions for θ and r, and ε be a step size.
The update rule for pSGHMC-det in Eq. (13) becomes:
θ(i) ← θ(i) + εΣ−1r(i),

r(i) ← r(i) + ε∇θ log p(θ(i))

− εC
(

Σ−1r(i) +
∑
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(i,k)
r∑

jK
(i,j)
r

+
∑
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∇
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r∑

jK
(j,k)
r

)
,

and for pSGHMC-fGH in Eq. (14):
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∇
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r

)
,

r(i) ← r(i) + ε∇θlog p(θ(i))

− ε
(∑

k∇θ(i)K
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θ∑

jK
(i,j)
θ

+
∑
k

∇
θ(i)

K
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θ∑
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θ
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∇
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,

where K(i,j)
θ := Kθ(θ

(i), θ(j)) and similarly for K(i,j)
r .

C. Detailed Settings of Experiments
C.1. DETAILED SETTINGS OF THE SYNTHETIC
EXPERIMENT

For the random variable x = (x1, x2), the target distribution
density p(x) is defined by:

log p(x) =− 0.01×
(

1

2
(x2

1 + x2
2) +

0.8

2
(25x1 + x2

2)2

)
+ const,

which is inspired by the target distribution used in the work
of Girolami & Calderhead (2011). We use the exact gradient
of the log density instead of stochastic gradient. Fifty parti-
cles are used, which are initialized by N

(
(−2,−7), 0.52I

)
.

The window range is (−7, 3) horizontally and (−9, 9) verti-
cally. See the caption of Fig. 3 for other settings.

C.2. DETAILED SETTINGS OF THE LDA EXPERIMENT

We follow the same settings as Ding et al. (2014), which is
also adopted in Liu et al. (2018). The data set is the ICML
data set2 developed by Ding et al. (2014). We use 90%
words in each document to train the topic proportion of the
document and the left 10% words for evaluation. A random
80%-20% train-test split of the data set is conducted in each
run.

For the LDA model, parameters of the Dirichlet prior of
topics is α = 0.1. The mean and standard deviation of
the Gaussian prior on the topic proportions is β = 0.1 and
σ = 1.0. Number of topics is 30 and batch size is fixed
as 100. The number of Gibbs sampling in each stochastic
gradient evaluation is 50.

2https://cse.buffalo.edu/˜changyou/code/
SGNHT.zip

https://cse.buffalo.edu/~changyou/code/SGNHT.zip
https://cse.buffalo.edu/~changyou/code/SGNHT.zip
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All the inference methods share the same step size ε = 1×
10−3. SGHMC-related methods (SGHMC, pSGHMC-det
and pSGHMC-fGH) share the same parameters Σ−1 = 300
and C = 0.1. ParVI methods (Blob, pSGHMC-det and
pSGHMC-fGH) use the HE method for kernel bandwidth
selection (Liu et al., 2018). To match the fashion of ParVI
methods, SGHMC is run with parallel chains and the last
samples of each chain are collected.

C.3. DETAILED SETTINGS OF THE BNN EXPERIMENT

We use a 784-100-10 feedforward neural network with sig-
moid activation function. The batch size is 500. SGHMC,
pSGHMC-det and pSGHMC-fGH share the same parame-
ters ε = 5 × 10−5, Σ−1 = 1.0 and C = 1.0, while Blob
uses ε = 5 × 10−8 (larger ε leads to diverged result). For
the ParVI methods, we find the median method and the HE
method for bandwidth selection perform similarly, and we
adopt the median method for faster implementation.


