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1. Proof of Theorem 2
We first need to generalize (Bonnotte, 2013)[Lemma 5.4.3] to distribution ρ ∈ L∞(B(0, r)), r > 0.

Theorem S1. Let ν be a probability measure on B(0, 1) with a strictly positive smooth density. Fix a time step h > 0,
regularization constant λ > 0 and a radius r >

√
d. For any probability measure µ0 on B(0, r) with density ρ0 ∈

L∞(B(0, r)), there is a probability measure µ on B(0, r) minimizing:

G(µ) = Fνλ (µ) +
1

2h
W2

2 (µ, µ0),

where Fνλ is given by (5). Moreover the optimal µ has a density ρ on B(0, r) and:

||ρ||L∞ ≤ (1 + h/
√
d)d||ρ0||L∞ . (S1)

Proof. The set of measures supported on B(0, r) is compact in the topology given byW2 metric. Furthermore by (Ambrosio
et al., 2008)[Lemma 9.4.3]H is lower semicontinuous on (P(B(0, r)),W2). Since by (Bonnotte, 2013)[Proposition 5.1.2,
Proposition 5.1.3], SW2 is a distance on P(B(0, r)), dominated by d−1/2W2, we have:

|SW2(π0, ν)− SW2(π1, ν)| ≤ SW2(π0, π1) ≤ 1√
d
W2(π0, π1).

The above means that SW2(·, ν) is continuous with respect to topology given byW2, which implies that SW2
2 (·, ν) is

continuous in this topology as well. Therefore G : P(B(0, r)) → (−∞,+∞] is a lower semicontinuous function on the
compact set (P(B(0, r)),W2). Hence there exists a minimum µ of G on P(B(0, r)). Furthermore, sinceH(π) = +∞ for
measures π that do not admit a density with respect to Lebesgue measure, the measure µ must admit a density ρ.

If ρ0 is smooth and positive on B(0, r), the inequality S1 is true by (Bonnotte, 2013)[Lemma 5.4.3.] When ρ0 is just in
L∞(B(0, r)), we proceed by smoothing. For t ∈ (0, 1], let ρt be a function obtained by convolution of ρ0 with a Gaussian
kernel (t, x, y) 7→ (2π)d/2 exp(‖x− y‖2 /2), restricting the result to B(0, r) and normalizing to obtain a probability density.
Then (ρt)t are smooth positive densities, and it is easy to see that limt→0 ||ρt||L∞ ≤ ||ρ0||L∞ . Furthermore, if we denote
by µt the measure on B(0, r) with density ρt, then µt converge weakly to µ0. For t ∈ (0, 1] let µ̂t be the minimum of
Fνλ (·) + 1

2hW
2
2 (·, µt), and let ρ̂t be the density of µ̂t. Using (Bonnotte, 2013)[Lemma 5.4.3.] we get

||ρ̂t||L∞ ≤ (1 + h
√
d)d||ρt||L∞ .

so ρ̂t lies in a ball of finite radius in L∞. Using compactness of P(B(0, r)) in weak topology and compactness of closed
ball in L∞(B(0, r)) in weak star topology, we can choose a subsequence µ̂tk , ρ̂tk , limk→+∞ tk = 0, that converges along
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that subsequence to limits µ̂, ρ̂. Obviously ρ̂ is the density of µ̂, since for any continuous function f on B(0, r) we have:∫
ρ̂fdx = lim

k→∞

∫
ρtkfdx = lim

k→∞

∫
fdµtk =

∫
fdµ.

Furthermore, since ρ̂ is the weak star limit of a bounded subsequence, we have:

||ρ̂||L∞ ≤ lim sup
k→∞

(1 + h
√
d)d||ρtk ||L∞ ≤ (1 + h

√
d)d||ρ0||L∞ .

To finish, we just need to prove that µ̂ is a minimum of G. We remind our reader, that we already established existence of
some minimum µ (that might be different from µ̂). Since µ̂tk converges weakly to µ̂ in P(B(0, r)), it implies convergence
inW2 as well since B(0, r) is compact. Similarly µtk converges to µ0 inW2. Using the lower semicontinuity of G we now
have:

Fνλ (µ̂) +
1

2h
W2

2 (µ̂, µ0) ≤ lim inf
k→∞

(
Fνλ (µ̂tk) +

1

2h
W2

2 (µ̂tk , µ0)

)
≤ lim inf

k→∞
Fνλ (µ) +

1

2h
W2

2 (µ, µtk)

+
1

2h
W2

2 (µ̂tk , µ0)− 1

2h
W2

2 (µ̂tk , µtk)

= Fνλ (µ) +
1

2h
W2

2 (µ, µ0),

where the second inequality comes from the fact, that µ̂tk minimizes Fνλ (·) + 1
2hW

2
2 (·, µtk). From the above inequality and

previously established facts, it follows that µ̂ is a minimum of G with density satisfying S1.

Definition 1. Minimizing movement scheme Let r > 0 and F : R+×P(B(0, r))×P(B(0, r))→ R be a functional. Let
µ0 ∈ P(B(0, r)) be a starting point. For h > 0 a piecewise constant trajectory µh : [0,∞)→ P(B(0, r)) for F starting at
µ0 is a function such that:

• µh(0) = µ0.

• µh is constant on each interval [nh, (n+ 1)h), so µh(t) = µh(nh) with n = bt/hc.

• µh((n+ 1)h) minimizes the functional ζ 7→ F(h, ζ, µh(nh)), for all n ∈ N.

We say µ̂ is a minimizing movement scheme for F starting at µ0, if there exists a family of piecewise constant trajectory
(µh)h>0 for F such that µ̂ is a pointwise limit of µh as h goes to 0, i.e. for all t ∈ R+, limh→0 µ

h(t) = µ(t) in P(B(0, r)).
We say that µ̃ is a generalized minimizing movement for F starting at µ0, if there exists a family of piecewise constant
trajectory (µh)h>0 for F and a sequence (hn)n, limn→∞ hn = 0, such that µhn converges pointwise to µ̃.

Theorem S2. Let ν be a probability measure on B(0, 1) with a strictly positive smooth density. Fix a regularization constant
λ > 0 and radius r >

√
d. Given an absolutely continuous measure µ0 ∈ P(B(0, r)) with density ρ0 ∈ L∞(B(0, r)), there

is a generalized minimizing movement scheme (µt)t in P(B(0, r)) starting from µ0 for the functional defined by

Fν(h, µ+, µ−) = Fνλ (µ+) +
1

2h
W2

2 (µ+, µ−). (S2)

Moreover for any time t > 0, the probability measure µt = µ(t) has density ρt with respect to the Lebesgue measure and:

||ρt||L∞ ≤ edt
√
d||ρ0||L∞ . (S3)

Proof. We start by noting, that by S1 for any h > 0 there exists a piecewise constant trajectory µh for S2 starting at µ0.
Furthermore for t ≥ 0 measure µht = µh(t) has density ρht , and:

||ρht ||L∞ ≤ ed
√
d(t+h)||ρ0||L∞ . (S4)

Let us choose T > 0. We denote ρh(t, x) = ρht (x). For h ≤ 1, the functions ρh lie in a ball in L∞([0, T ] × B(0, r)), so
from Banach-Alaoglu theorem there is a sequence hn converging to 0, such that ρhn converges in weak-star topology in
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L∞([0, T ]× B(0, r)) to a certain limit ρ. Since ρ has to be nonnegative except for a set of measure zero, we assume ρ is
nonnegative. We denote ρt(x) = ρ(t, x). We will prove that for almost all t, ρt is a probability density and µhnt converges
inW2 to a measure µt with density ρt.

First of all, for almost all t ∈ [0, T ], ρt is a probability density, since for any Borel set A ⊆ [0, T ] the indicator of set
A× B(0, r) is integrable, and hence by definition of the weak-star topology:∫

A

∫
B(0,r)

ρt(x)dxdt = lim
n→∞

∫
A

∫
B(0,r)

ρhnt (x)dxdt,

and so we have to have
∫
ρt(x)dx = 1 for almost all t ∈ [0, T ]. Nonnegativity of ρt follows from nonnegativity of ρ.

We will now prove, that for almost all t ∈ [0, T ] the measures µhnt converge to a measure with density ρt. Let t ∈ (0, T ),
take δ < min(T − t, t) and ζ ∈ C1(B(0, r)). We have:∣∣∣∣∣
∫
B(0,r)

ζdµhnt −
∫
B(0,r)

ζdµhmt

∣∣∣∣∣ ≤∣∣∣∣∣
∫
B(0,r)

ζdµhnt −
1

2δ

∫ t+δ

t−δ

∫
B(0,r)

ζdµhns ds

∣∣∣∣∣+

∣∣∣∣∣
∫
B(0,r)

ζdµhmt − 1

2δ

∫ t+δ

t−δ

∫
B(0,r)

ζdµhms ds

∣∣∣∣∣+∣∣∣∣∣ 1

2δ

∫ t+δ

t−δ

∫
B(0,r)

ζdµhms ds− 1

2δ

∫ t+δ

t−δ

∫
B(0,r)

ζdµhns ds

∣∣∣∣∣ . (S5)

Because µhnt have densities ρhnt and both ρhn , ρhm converge to ρ in weak-star topology, the last element of the sum on the
right hand side converges to zero, as n,m→∞. Next, we get a bound on the other two terms.

First, if we denote by γ the optimal transport plan between µhnt and µhns , we have:∣∣∣∣∣
∫
B(0,r)

ζdµhnt −
∫
B(0,r)

ζdµhns

∣∣∣∣∣
2

≤
∫
B(0,r)×B(0,r)

|ζ(x)− ζ(y)|2 dγ(x, y) ≤ ||∇ζ||2∞W2
2 (µhnt , µhns ). (S6)

In addition, for nt = bt/hnc and ns = bs/hnc we have µhnt = µhnnthn and µhns = µhnnshn . For all k ≥ 0 we have:

W2
2 (µhnkhn , µ

hn
(k+1)hn

) ≤ 2hn(Fνλ (µhnkhn)−Fνλ (µhn(k+1)hn
). (S7)

Using this result and (S6) and assuming without loss of generality nt ≤ ns, from the Cauchy-Schwartz inequality we get:

W2
2 (µhnt , µhns ) ≤

(
ns−1∑
k=nt

W2(µhnkhn , µ
hn
(k+1)hn

)

)2

≤ |nt − ns|
ns1∑
k=nt

W2
2 (µhnkhn , µ

hn
(k+1)hn

)

≤ 2hn|nt − ns|(Fνλ (µhnnthn)−Fνλ (µhnnshn)) ≤ 2C(|t− s|+ hn), (S8)

where we used for the last inequality, denoting C = Fνλ (µ0)−minP(B(0,r)) Fνλ , that (Fνλ (µhnkhn))n is non-increasing by
(S7) and minP(B(0,r)) Fνλ is finite since Fνλ is lower semi-continuous. Finally, using Jensen’s inequality, the above bound
and S6 we get:∣∣∣∣∣

∫
B(0,r)

ζdµhnt −
1

2δ

∫ t+δ

t−δ

∫
B(0,r)

ζdµhns ds

∣∣∣∣∣
2

≤ 1

2δ

∫ t+δ

t−δ

∣∣∣∣∣
∫
B(0,r)

ζdµhnt −
∫
B(0,r)

ζdµhns

∣∣∣∣∣
2

ds

≤ C||∇ζ||2∞
δ

∫ t+δ

t−δ
(|t− s|+ hn)ds

≤ 2C||∇ζ||2∞(hn + δ).
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Together with (S5), when taking δ = hn, this result means that
∫
B(0,r)

ζdµhnt is a Cauchy sequence for all t ∈ (0, T ). On the

other hand, since ρhn converges to ρ in weak-star topology on L∞, the limit of
∫
B(0,r)

ζdµhnt has to be
∫
B(0,r)

ζ(x)ρt(x)dx

for almost all t ∈ (0, T ). This means that for almost all t ∈ [0, T ] sequence µhnt converges to a measure µt with density ρt.

Let S ∈ [0, T ] be the set of times such that for t ∈ S sequence µhnt converges to µt. As we established almost all points
from [0, T ] belong to S. Let t ∈ [0, T ] \ S. Then, there exists a sequence of times tk ∈ S converging to t, such that µtk
converge to some limit µt. We have:

W2(µhnt , µt) ≤ W2(µhnt , µhntk ) +W2(µhntk , µtk) +W2(µtk , µt).

From which we have for all k ≥ 1:

lim sup
n→∞

W2(µhnt , µt) ≤ W2(µtk , µt) + lim sup
n→∞

W2(µhnt , µhntk ),

and using (S8), we get µhnt → µt. Furthermore, the measure µt has to have density, since ρhnt lie in a ball in L∞(B(0, r)),
so we can choose a subsequence of ρhnt converging in weak-star topology to a certain limit ρ̂t, which is the density of µt.

We use now the diagonal argument to get convergence for all t > 0. Let (Tk)∞k=1 be a sequence of times increasing to

infinity. Let h1n be a sequence converging to 0, such that µh
1
n
t converge to µt for all t ∈ [0, T1]. Using the same arguments as

above, we can choose a subsequence h2n of h1n, such that µh
2
n
t converges to a limit µt for all t ∈ [0, T2]. Inductively, we

construct subsequences hkn, and in the end take hn = hnn. For this subsequence we have that µhnt converges to µt for all
t > 0, and µt has a density satisfying the bound from the statement of the theorem.

Finally, note that (S2) follows from (S4).

Theorem S3. Let (µt)t≥0 be a generalized minimizing movement scheme given by Theorem S2 with initial distribution µ0

with density ρ0 ∈ L(B(0, r)). We denote by ρt the density of µt for all t ≥ 0. Then ρt satisfies the continuity equation:

∂ρt
∂t

+ div(vtρt) + λ∆ρt = 0 , vt(x) = −
∫
Sd−1

ψ′t,θ(〈x, θ〉)θdθ,

in a weak sense, that is for all ξ ∈ C∞c ([0,∞)× B(0, r)) we have:∫ ∞
0

∫
B(0,r)

[
∂ξ

∂t
(t, x)− vt∇ξ(t, x)− λ∆ξ(t, x)

]
ρt(x)dxdt = −

∫
B(0,r)

ξ(0, x)ρ0(x)dx.

Proof. Our proof is based on the proof of (Bonnotte, 2013)[Theorem 5.6.1]. We proceed in five steps.

(1) Let hn → 0 be a sequence given by Theorem S2, such that µhnt converges to µt pointwise. Furthermore we know that
µhn have densities ρhn that converge to ρ in Lr, for r ≥ 1, and in weak-star topology in L∞. Let ξ ∈ C∞c ([0,∞)×B(0, r)).
We denote ξnk (x) = ξ(khn, x). Using part 1 of the proof of (Bonnotte, 2013)[Theorem 5.6.1], we obtain:∫

B(0,r)

ξ(0, x)ρ0(x)dx+

∫ ∞
0

∫
B(0,r)

∂ξ

∂t
(t, x)ρt(x)dxdt

= lim
n→∞

−hn
∞∑
k=1

∫
B(0,r)

ξnk (x)
ρhnkhn(x)− ρhn(k−1)hn(x)

hn
dx. (S9)

(2) Again, this part is the same as part 2 of the proof of (Bonnotte, 2013)[Theorem 5.6.1]. For any θ ∈ Sd−1 we denote by
ψt,θ the unique Kantorovich potential from θ∗#µt to θ∗#ν, and by ψhnt,θ the unique Kantorovich potential from θ∗#µ

hn
t to θ∗#ν.

Then, by the same reasoning as part 2 of the proof of (Bonnotte, 2013)[Theorem 5.6.1], we get:

∫ ∞
0

∫
B(0,r)

∫
Sd−1

(ψt,θ)
′(〈θ, x〉)〈θ,∇ξ(x, t)〉dθdµt(x)dt

= lim
n→∞

hn

∞∑
k=1

∫
B(0,r)

∫
Sd−1

ψhnkhn,θ(θ
∗)〈θ,∇ξnk 〉dθdµ

hn
khn

. (S10)
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(3) Since ξ is compactly supported and smooth, ∆ξ is Lipschitz, and so for any t ≥ 0 if we take k = bt/hnc we get
|∆ξnk (x)−∆ξ(t, x)| ≤ Chn for some constant C. Let T > 0 be such that ξ(t, x) = 0 for t > T . We have:∣∣∣∣∣

∞∑
k=1

hn

∫
B(0,r)

∆ξnk (x)ρhnkhn(x)dx−
∫ +∞

0

∫
B(0,r)

∆ξ(t, x)ρhnt (x)dxdt

∣∣∣∣∣ ≤ CThn.
On the other hand, we know, that ρhn converges to ρ in weak star topology on L∞([0, T ]×B(0, r)), and ∆ξ is bounded, so:

lim
n→+∞

∣∣∣∣∣
∫ +∞

0

∫
B(0,r)

∆ξ(t, x)ρhnt (x)dxdt−
∫ +∞

0

∫
B(0,r)

∆ξ(t, x)ρt(x)dxdt

∣∣∣∣∣ = 0.

Combining those two results give:

lim
n→∞

hn

∞∑
k=1

∫
B(0,r)

∆ξnk (x)ρhnkhn(x)dx =

∫ +∞

0

∫
B(0,r)

∆ξ(t, x)ρt(x)dxdt. (S11)

(4) Let φhnk denote the unique Kantorovich potential from µhnkhn to µhn(k−1)hn . Using (Bonnotte, 2013)[Propositions 1.5.7

and 5.1.7], as well as (Jordan et al., 1998)[Equation (38)] with Ψ = 0, and optimality of µhnkhn , we get:

1

hn

∫
B(0,r)

〈∇φhnk (x),∇ξnk (x)〉dµhnkhn(x)−
∫
B(0,r)

∫
Sd−1

(ψhnkhn)′(θ∗)〈θ,∇ξnk (x)〉dθdµhnkhn(x)

− λ
∫
B(0,r)

∆ξnk (x)dµhnkhn(x), (S12)

which is the derivative of Fνλ (·) + 1
2hn
W2

2 (·, µ(k−1)hn) in the direction given by vector field∇ξnk is zero.

Let γ be the optimal transport between µhnkhn and µhn(k−1)hn . Then:

∫
B(0,r)

ξnk (x)
ρhnkhn(x)− ρhn(k−1)hn(x)

hn
dx =

1

hn

∫
B(0,r)

(ξnk (y)− ξnk (x))dγ(x, y). (S13)

1

hn

∫
B(0,r)

〈∇φhnk (x),∇ξnk (x)〉dµhnkhn(x) =
1

hn

∫
B(0,r)

〈∇ξnk (x), y − x〉dγ(x, y). (S14)

Since ξ is C∞c , it has Lipschitz gradient. Let C be twice the Lipschitz constant of ∇ξ. Then we have |ξ(y) − ξ(x) −
〈∇ξ(x), y − x〉| ≤ C|x− y|2, and hence:∫

B(0,r)

|ξnk (y)− ξnk (x)− 〈∇ξnk (x), y − x〉|dγ(x, y) ≤ CW2
2 (µhn(k−1)hn , µ

hn
khn

). (S15)

Combining (S13), (S14) and (S15), we get:∣∣∣∣∣
∞∑
k=1

hn

∫
B(0,r)

ξnk (x)
ρhnkhn − ρ

hn
(k−1)hn

hn
dx+

∞∑
k=1

hn

∫
B(0,r)

〈∇φhnk ,∇ξnk 〉dµ
hn
khn

∣∣∣∣∣
≤ C

∞∑
k=1

W2
2 (µhn(k−1)hn , µ

hn
khn

). (S16)

As some Fνλ have a finite minimum on P(B(0, r)), we have:

∞∑
k=1

W2
2 (µhn(k−1)hn , µ

hn
khn

) ≤ 2hn

∞∑
k=1

Fνλ (µhn(k−1)hn)−Fνλ (µhnkhn)

≤ 2hn

(
Fνλ (µ0)− min

P(B(0,r))
Fνλ

)
.

(S17)
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and so the sum on the right hand side of the equation goes to zero as n goes to infinity.

From (S16), (S17) and (S12) we conclude:

lim
n→∞

−hn
∞∑
k=1

ξnk (x)
ρhnkhn − ρ

hn
(k−1)hn

hn
dx =

lim
n→∞

(
hn

∞∑
k=1

∫
B(0,r)

∫
Sd−1

ψhnkhn,θ(θ
∗)〈θ,∇ξnk 〉dθdµ

hn
khn

+ hn

∞∑
k=1

∫
B(0,r)

∆ξnk (x)ρhnkhn(x)dx

)
, (S18)

where both limits exist, since the difference of left hand side and right hand side of the equation goes to zero, while the left
hand side converges to a finite value by (S9).

(5) Combining (S9), (S10), (S11) and (S18) we get the result.

2. Proof of Theorem 3
Before proceeding to the proof, let us first define the following Euler-Maruyama scheme which will be useful for our
analysis:

X̂k+1 = X̂k + hv̂(X̂k, µkh) +
√

2λhZn+1, (S19)

where µt denotes the probability distribution of Xt with (Xt)t being the solution of the original SDE (8). Now, consider the
probability distribution of X̂k as µ̂kh. Starting from the discrete-time process (X̂k)k∈N+

, we first define a continuous-time
process (Yt)t≥0 that linearly interpolates (X̂k)k∈N+

, given as follows:

dYt = ṽt(Y )dt+
√

2λdWt, (S20)

where ṽt(Y ) , −
∑∞
k=0 v̂kh(Ykh)1[kh,(k+1)h)(t) and 1 denotes the indicator function. Similarly, we define a continuous-

time process (Ut)t≥0 that linearly interpolates (X̄k)k∈N+ , defined by (13), given as follows:

dUt = v̄t(U)dt+
√

2λdWt, (S21)

where v̄t(U) , −
∑∞
k=0 v̂(Ukh, µ̄kh)1[kh,(k+1)h)(t) and µ̄kh denotes the probability distribution of X̄k. Let us denote the

distributions of (Xt)t∈[0,T ], (Yt)t∈[0,T ] and (Ut)t∈[0,T ] as πTX , πTY and πTU respectively with T = Kh.

We consider the following assumptions:

HS1. For all λ > 0, the SDE (8) has a unique strong solution denoted by (Xt)t≥0 for any starting point x ∈ Rd.

HS2. There exits L <∞ such that

‖vt(x)− vt′(x′)‖ ≤ L(‖x− x′‖+ |t− t′|), (S22)

where vt(x) = v(x, µt) and

‖v̂(x, µ)− v̂(x′, µ′)‖ ≤ L(‖x− x′‖+ ‖µ− µ′‖TV). (S23)

HS3. For all t ≥ 0, vt is dissipative, i.e. for all x ∈ Rd,

〈x, vt(x)〉 ≥ m‖x‖2 − b, (S24)

for some m, b > 0.
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HS4. The estimator of the drift satisfies the following conditions: E[v̂t] = vt for all t ≥ 0, and for all t ≥ 0, x ∈ Rd,

E[‖v̂(x, µt)− v(x, µt)‖2] ≤ 2δ(L2‖x‖2 +B2), (S25)

for some δ ∈ (0, 1).

HS5. For all t ≥ 0: |Ψt(0)| ≤ A and ‖vt(0)‖ ≤ B, for A,B ≥ 0, where Ψt =
∫
Sd−1 ψt(〈θ, ·〉)dθ.

We start by upper-bounding ‖µ̂Kh − µT ‖TV.

Lemma S1. Assume that the conditions HS2 to S5 hold. Then, the following bound holds:

‖µ̂Kh − µT ‖2TV ≤ ‖πTY − πTX‖2TV ≤
L2K

4λ

(C1h
3

3
+ 3λdh2

)
+
C2δKh

8λ
, (S26)

where C1 , 12(L2C0 +B2) + 1, C2 , 2(L2C0 +B2), C0 , Ce + 2(1∨ 1
m )(b+ 2B2 + dλ), and Ce denotes the entropy

of µ0.

Proof. We use the proof technique presented in (Dalalyan, 2017; Raginsky et al., 2017). It is easy to verify that for all
k ∈ N+, we have Ykh = X̂k.

By Girsanov’s theorem to express the Kullback-Leibler (KL) divergence between these two distributions, given as follows:

KL(πTX ||πTY ) =
1

4λ

∫ Kh

0

E[‖vt(Yt) + ṽt(Y )‖2] dt (S27)

=
1

4λ

K−1∑
k=0

∫ (k+1)h

kh

E[‖vt(Yt) + ṽt(Y )‖2] dt (S28)

=
1

4λ

K−1∑
k=0

∫ (k+1)h

kh

E[‖vt(Yt)− v̂kh(Ykh)‖2] dt. (S29)

By using vt(Yt)− v̂kh(Ykh) = (vt(Yt)− vkh(Ykh)) + (vkh(Ykh)− v̂kh(Ykh)), we obtain

KL(πTX ||πTY ) ≤ 1

2λ

K−1∑
k=0

∫ (k+1)h

kh

E[‖vt(Yt)− vkh(Ykh)‖2] dt

+
1

2λ

K−1∑
k=0

∫ (k+1)h

kh

E[‖vkh(Ykh)− v̂kh(Ykh)‖2] dt (S30)

≤L
2

λ

K−1∑
k=0

∫ (k+1)h

kh

(
E[‖Yt − Ykh‖2] + (t− kh)2

)
dt

+
1

2λ

K−1∑
k=0

∫ (k+1)h

kh

E[‖vkh(Ykh)− v̂kh(Ykh)‖2] dt. (S31)

The last inequality is due to the Lipschitz condition HS2.

Now, let us focus on the term E[‖Yt − Ykh‖2]. By using (S20), we obtain:

Yt − Ykh = −(t− kh)v̂kh(Ykh) +
√

2λ(t− kh)Z, (S32)

where Z denotes a standard normal random variable. By adding and subtracting the term −(t− kh)vkh(Ykh), we have:

Yt − Ykh = −(t− kh)vkh(Ykh) + (t− kh)(vkh(Ykh)− v̂kh(Ykh)) +
√

2λ(t− kh)Z. (S33)

Taking the square and then the expectation of both sides yields:

E[‖Yt − Ykh‖2] ≤3(t− kh)2E[‖vkh(Ykh)‖2] + 3(t− kh)2E[‖vkh(Ykh)− v̂kh(Ykh)‖2]

+ 6λ(t− kh)d. (S34)
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As a consequence of HS2 and HS5, we have ‖vt(x)‖ ≤ L‖x‖+B for all t ≥ 0, x ∈ Rd. Combining this inequality with H
S4, we obtain:

E[‖Yt − Ykh‖2] ≤6(t− kh)2(L2E[‖Ykh‖2] +B2) + 6(t− kh)2(L2E[‖Ykh‖2] +B2)

+ 6λ(t− kh)d (S35)

=12(t− kh)2(L2E[‖Ykh‖2] +B2) + 6λ(t− kh)d. (S36)

By Lemma 3.2 of (Raginsky et al., 2017)1, we have E[‖Ykh‖2] ≤ C0 , Ce + 2(1 ∨ 1
m )(b+ 2B2 + dλ), where Ce denotes

the entropy of µ0. Using this result in the above equation yields:

E[‖Yt − Ykh‖2] ≤12(t− kh)2(L2C0 +B2) + 6λ(t− kh)d. (S37)

We now focus on the term E[‖vkh(Ykh)− v̂kh(Ykh)‖2] in (S31). Similarly to the previous term, we can upper-bound this
term as follows:

E[‖vkh(Ykh)− v̂kh(Ykh)‖2] ≤2δ(L2E[‖Ykh‖2] +B2) (S38)

≤2δ(L2C0 +B2). (S39)

By using (S37) and (S39) in (S31), we obtain:

KL(πTX ||πTY ) ≤L
2

λ

K−1∑
k=0

∫ (k+1)h

kh

(
12(t− kh)2(L2C0 +B2) + 6λ(t− kh)d+ (t− kh)2

)
dt

+
1

2λ

K−1∑
k=0

∫ (k+1)h

kh

2δ(L2C0 +B2) dt (S40)

=
L2K

λ

(C1h
3

3
+

6λdh2

2

)
+
C2δKh

2λ
, (S41)

where C1 = 12(L2C0 +B2) + 1 and C2 = 2(L2C0 +B2).

Finally, by using the data processing and Pinsker inequalities, we obtain:

‖µ̂Kh − µT ‖2TV ≤ ‖πTX − πTY ‖2TV ≤
1

4
KL(πTX ||πTY ) (S42)

=
L2K

4λ

(C1h
3

3
+ 3λdh2

)
+
C2δKh

8λ
. (S43)

This concludes the proof.

Now, we bound the term ‖µ̄Kh − µ̂Kh‖TV.

Lemma S2. Assume that HS2 holds. Then the following bound holds:

‖πTU − πTY ‖2TV ≤
L2Kh

16λ
‖πTX − πTU‖2TV. (S44)

Proof. We use that same approach than in Lemma S1. By Girsanov’s theorem once again, we have

KL(πTY ||πTU ) =
1

4λ

K−1∑
k=0

∫ (k+1)h

kh

E[‖v̂(Ukh, µkh)− v̂(Ukh, µ̄kh)‖2] dt, (S45)

1Note that Lemma 3.2 of (Raginsky et al., 2017) considers the case where the drift is not time- or measure-dependent. However, with
HS3 it is easy to show that the same result holds for our case as well.
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where πTU denotes the distributions of (Ut)t∈[0,T ] with T = Kh. By using HS2, we have:

KL(πTY ||πTU ) ≤ L2h

4λ

K−1∑
k=0

‖µkh − µ̄kh‖2TV (S46)

≤ L2Kh

4λ
‖πTX − πTU‖2TV. (S47)

By applying the data processing and Pinsker inequalities, we obtain the desired result.

2.1. Proof of Theorem 3

Here, we precise the statement of Theorem 3.

Theorem S4. Assume that the assumptions in Lemma S1 and Lemma S2 hold. Then for λ > KL2h
8 , the following bound

holds:

‖µ̄Kh − µT ‖2TV ≤ δλ

{
L2K

2λ

(C1h
3

3
+ 3λdh2

)
+
C2δKh

4λ

}
, (S48)

where δλ = (1− KL2h
8λ )−1.

Proof. We have the following decomposition: (with T = Kh)

‖πTX − πTU‖2TV ≤ 2‖πTX − πTY ‖2TV + 2‖πTY − πTU‖2TV (S49)

≤ L2K

2λ

(C1h
3

3
+ 3λdh2

)
+
C2δKh

4λ
+
L2Kh

8λ
‖πTX − πTU‖2TV (S50)

≤
(

1− KL2h

8λ

)−1{L2K

2λ

(C1h
3

3
+ 3λdh2

)
+
C2δKh

4λ

}
. (S51)

The second line follows from Lemma S1 and Lemma S2. Last line follows from the assumption that λ is large enough. This
completes the proof.

3. Proof of Corollary 1
Proof. Considering the bound given in Theorem 3, the choice h implies that

δλL
2K

2λ

(C1h
3

3
+ 3λdh2

)
≤ ε2. (S52)

This finalizes the proof.

4. Additional Experimental Results
4.1. The Sliced Wasserstein Flow

The whole code for the Sliced Wasserstein Flow was implemented in Python, for use with Pytorch2. The code was written
so as to run efficiently on GPU, and is available on the publicly available repository related to this paper3.

In practice, the SWF involves relatively simple operations, the most important being:

• For each random θ ∈ {θn}n=1...Nθ , compute its inner product with all items from a dataset and obtain the empirical
quantiles for these projections.

2http://www.pytorch.org.
3https://github.com/aliutkus/swf.

http://www.pytorch.org
https://github.com/aliutkus/swf
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• At each step k of the SWF, for each projection z =
〈
θ, X̄i

k

〉
, apply two piece-wise linear functions, corresponding to

the scalar optimal transport ψ′k,θ(z).

Even if such steps are conceptually simple, the quantile and required linear interpolation functions were not available on
GPU for any framework we could figure out at the time of writing this paper. Hence, we implemented them ourselves for
use with Pytorch, and the interested reader will find the details in the Github repository dedicated to this paper.

Given these operations, putting a SWF implementation together is straightforward. The code provided allows not only to
apply it on any dataset, but also provides routines to have the computation of these sketches running in the background in a
parallel manner.

4.2. The need for dimension reduction through autoencoders

In this study, we used an autoencoder trained on the dataset as a dimension reduction technique, so that the SWF is applied
to transport particles in a latent space of dimension d ≈ 50, instead of the original d > 1000 of image data.

The curious reader may wonder why SWF is not applied directly to this original space, and what performances should be
expected there. We have done this experiment, and we found out that SWF has much trouble rapidly converging to satisfying
samples. In figure S1, we show the progressive evolution of particles undergoing SWF when the target is directly taken as
the uncompressed dataset.

In this experiment, the strategy was to change the projections θ at each iteration, so that we ended up with a set of projections
being {θn,k}k=1...K

n=1...Nθ
instead of the fixed set of Nθ we now consider in the main document (for this, we picked Nθ = 200).

This strategy is motivated by the complete failure we observed whenever we picked such fixed projections throughout
iterations, even for a relatively large number as Nθ = 16000.

As may be seen on Figure S1, the particles definitely converge to samples from the desired datasets, and this is encouraging.
However, we feel that the extreme number of iterations required to achieve such convergence comes from the fact that theory
needs an integral over the d−dimensional sphere at each step of the SWF, which is clearly an issue whenever d gets too
large. Although our solution of picking new samples from the sphere at each iteration alleviated this issue to some extent,
the curse of dimensionality prevents us from doing much better with just thousands of random projections at a time.

This being said, we are confident that good performance would be obtained if millions of random projections could
be considered for transporting such high dimensional data because i/ theory suggests it and ii/ we observed excellent
performance on reduced dimensions.

However, we, unfortunately, did not have the computing power it takes for such large scale experiments and this is what
motivated us in the first place to introduce some dimension-reduction technique through AE.

4.3. Structure of our autoencoders for reducing data dimension

As mentioned in the text, we used autoencoders to reduce the dimensionality of the transport problem. The structure of these
networks is the following:

• Encoder Four 2d convolution layers with (num chan out, kernel size, stride, padding) being (3, 3, 1, 1), (32, 2, 2, 0),
(32, 3, 1, 1), (32, 3, 1, 1), each one followed by a ReLU activation. At the output, a linear layer gets the desired
bottleneck size.

• Decoder A linear layer gets from the bottleneck features to a vector of dimension 8192, which is reshaped as
(32, 16, 16). Then, three convolution layers are applied, all with 32 output channels and (kernel size, stride, panning)
being respectively (3, 1, 1), (3, 1, 1), (2, 2, 0). A 2d convolution layer is then applied with an output number of channels
being that of the data (1 for black and white, 3 for color), and a (kernel size, stride, panning) as (3, 1, 1). In any case,
all layers are followed by a ReLU activation, and a sigmoid activation is applied a the very output.

Once these networks defined, these autoencoders are trained in a very simple manner by minimizing the binary cross entropy
between input and output over the training set of the considered dataset (here MNIST, CelebA or FashionMNIST). This
training was achieved with the Adam algorithm (Kingma & Ba, 2014) with learning rate 1e− 3.
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Figure S1. The evolution of SWF through 15000 iterations, when the original high-dimensional data is kept instead of working on reduced
bottleneck features as done in the main document. Showing results on the MNIST and FashionMNIST datasets. For a visual comparison
for FashionMNIST, we refer the reader to (Samangouei et al., 2018).
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Figure S2. Approximately computed SW2 between the output µ̄N
k and data distribution ν in the MNIST experiment for different

dimensions d for the bottleneck features (and the corresponding pre-trained AE).

No additional training trick was involved as in Variational Autoencoder (Kingma & Welling, 2013) to make sure the
distribution of the bottleneck features matches some prior. The core advantage of the proposed method in this respect is
indeed to turn any previously learned AE as a generative model, by automatically and non-parametrically transporting
particles drawn from an arbitrary prior distribution µ to the observed empirical distribution ν of the bottleneck features over
the training set.

4.4. Convergence plots of SWF

In the same experimental setting as in the main document, we also illustrate the behavior of the algorithm for varying
dimensionality d for the bottleneck-features. To monitor the convergence of SWF as predicted by theory, we display the
approximately computed SW2 distance between the distribution of the particles and the data distribution. Even though
minimizing this distance is not the real objective of our method, arguably, it is still a good proxy for understanding the
convergence behavior.

Figure S2 illustrates the results. We observe that, for all choices of d, we see a steady and smooth decrease in the cost for all
runs, which is in line with our theory. The absolute value of the cost for varying dimensions remains hard to interpret at this
stage of our investigations.

5. Additional samples
5.1. Evolution throughout iterations

In Figures S3 and S4 below, we provide the evolution of the SWF algorithm on the Fashion MNIST and the MNIST datasets
in higher resolution, for an AE with d = 48 bottleneck features.

5.2. Training samples, interpolation and extrapolation

In Figures S5 and S6 below, we provide other examples of outcome from SWF, both for the MNIST and the FashionMNIST
datasets, still with d = 48 bottleneck features.

The most noticeable fact we may see on these figures is that while the actual particles which went through SWF, as well
as linear combinations of them, all yield very satisfying results, this is however not the case for particles that are drawn
randomly and then brought through a pre-learned SWF.

Once again, we interpret this fact through the curse of dimensionality: while we saw in our toy GMM example that using a
pre-trained SWF was totally working for small dimensions, it is already not so for d = 48 and only 3000 training samples.
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Figure S3. The evolution of SWF through 200 iterations on the MNIST dataset. Plots are for 1, 11, 21, 31, 41, 51, 101 and 201 iterations
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Figure S4. The evolution of SWF through 200 iterations on the FashionMNIST dataset. Plots are for 1, 11, 21, 31 (upper row) and 41, 51,
101, 201 (lower row) iterations
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(a) particles undergoing SWF (b) After SWF is done: applying learned
map on linear combinations of train parti-
cles

(c) After SWF is done: applying learned
map on random inputs.

Figure S5. SWF on MNIST: training samples, interpolation in learned mapping, extrapolation.

This noticed, we highlight that this generalization weakness of SWF for high dimensions is not really an issue, since it is
always possible to i/ run SWF with more training samples if generalization is required ii/ re-run the algorithm for a set of
new particles. Remember indeed that this does not require passing through the data again, since the distribution of the data
projections needs to be done only once.
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(a) particles undergoing SWF (b) After SWF is done: applying learned
map on linear combinations of train parti-
cles

(c) After SWF is done: applying learned
map on random inputs.

Figure S6. SWF on FashionMNIST: training samples, interpolation in learned mapping, extrapolation.


