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Abstract

By building upon the recent theory that estab-
lished the connection between implicit generative
modeling (IGM) and optimal transport, in this
study, we propose a novel parameter-free algo-
rithm for learning the underlying distributions of
complicated datasets and sampling from them.
The proposed algorithm is based on a functional
optimization problem, which aims at finding a
measure that is close to the data distribution as
much as possible and also expressive enough for
generative modeling purposes. We formulate the
problem as a gradient flow in the space of proba-
bility measures. The connections between gradi-
ent flows and stochastic differential equations let
us develop a computationally efficient algorithm
for solving the optimization problem. We provide
formal theoretical analysis where we prove finite-
time error guarantees for the proposed algorithm.
To the best of our knowledge, the proposed algo-
rithm is the first nonparametric IGM algorithm
with explicit theoretical guarantees. Our experi-
mental results support our theory and show that
our algorithm is able to successfully capture the
structure of different types of data distributions.

1. Introduction

Implicit generative modeling (IGM) (Diggle & Gratton,
1984; Mohamed & Lakshminarayanan, 2016) has become
very popular recently and has proven successful in various
fields; variational auto-encoders (VAE) (Kingma & Welling,
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2013) and generative adversarial networks (GAN) (Goodfel-
low et al., 2014) being its two well-known examples. The
goal in IGM can be briefly described as learning the un-
derlying probability measure of a given dataset, denoted as
v € P(Q), where P is the space of probability measures on
the measurable space (£2,.4), Q C R is a domain and A is
the associated Borel o-field.

Given a set of data points {y1,...,yp} that are assumed to
be independent and identically distributed (i.i.d.) samples
drawn from v, the implicit generative framework models
them as the output of a measurable map, i.e. y = T'(z), with
T : Q, — . Here, the inputs  are generated from a known
and easy to sample source measure £ on 2, (e.g. Gaussian
or uniform measures), and the outputs 7'(x) should match
the unknown target measure v on ).

Learning generative networks have witnessed several
groundbreaking contributions in recent years. Motivated
by this fact, there has been an interest in illuminating the
theoretical foundations of VAEs and GANs (Bousquet et al.,
2017; Liu et al., 2017). It has been shown that these implicit
models have close connections with the theory of Optimal
Transport (OT) (Villani, 2008). As it turns out, OT brings
new light on the generative modeling problem: there have
been several extensions of VAEs (Tolstikhin et al., 2017,
Kolouri et al., 2018) and GANs (Arjovsky et al., 2017; Gul-
rajani et al., 2017; Guo et al., 2017; Lei et al., 2017), which
exploit the links between OT and IGM.

OT studies whether it is possible to transform samples from
a source distribution p to a target distribution v. From this
perspective, an ideal generative model is simply a transport
map from p to v. This can be written by using some ‘push-
forward operators’: we seek a mapping 7' that ‘pushes p
onto v’, and is formally defined as v(A) = u(T—1(A)) for
all Borel sets A C A. If this relation holds, we denote the
push-forward operator T, such that Tx ;1 = v. Provided
mild conditions on these distributions hold (notably y is non-
atomic (Villani, 2008)), existence of such a transport map is
guaranteed; however, it remains a challenge to construct it
in practice.

One common point between VAE and GAN is to adopt
an approximate strategy and consider transport maps that
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belong to a parametric family Ty with ¢ € @. Then,
they aim at finding the best parameter ¢* that would give
Ts«upr ~ v. This is typically achieved by attempting
to minimize the following optimization problem: ¢* =
arg min g Wa(Ty4p, v), where W, denotes the Wasser-
stein distance that will be properly defined in Section 2. It
has been shown that (Genevay et al., 2017) OT-based GANs
(Arjovsky et al., 2017) and VAEs (Tolstikhin et al., 2017)
both use this formulation with different parameterizations
and different equivalent definitions of W,. However, their
resulting algorithms still lack theoretical understanding.

In this study, we follow a completely different approach
for IGM, where we aim at developing an algorithm with
explicit theoretical guarantees for estimating a transport
map between source y and target v. The generated transport
map will be nonparametric (in the sense that it does not
belong to some family of functions, like a neural network),
and it will be iteratively augmented: always increasing the
quality of the fit along iterations. Formally, we take 7} as
the constructed transport map at time ¢ € [0, 0c), and define
e = Tiy#p as the corresponding output distribution. Our
objective is to build the maps so that p; will converge to
the solution of a functional optimization problem, defined
through a gradient flow in the Wasserstein space. Informally,
we will consider a gradient flow that has the following form:

8t/’[/t = _VWQ{COSt(Mt? V) + Reg(ﬂt)} y MO = M, (1)

where the functional Cost computes a discrepancy between
w1+ and v, Reg denotes a regularization functional, and Vyy,
denotes a notion of gradient with respect to a probability
measure in the YW, metric for probability measures'. If this
flow can be simulated, one would hope for p, = (T})xp
to converge to the minimum of the functional optimization
problem: min, (Cost(u,v) + Reg(n)) (Ambrosio et al.,
2008; Santambrogio, 2017).

We construct a gradient flow where we choose the Cost
functional as the sliced Wasserstein distance (SYV3) (Rabin
et al., 2012; Bonneel et al., 2015) and the Reg functional as
the negative entropy. The SW, distance is equivalent to the
W, distance (Bonnotte, 2013) and has important computa-
tional implications since it can be expressed as an average
of (one-dimensional) projected optimal transportation costs
whose analytical expressions are available.

We first show that, with the choice of SW, and the negative-
entropy functionals as the overall objective, we obtain a
valid gradient flow that has a solution path (u )¢, and the
probability density functions of this path solve a particular

"This gradient flow is similar to the usual Euclidean gradient
flows, i.e. Oyxy = —V(f(z¢) + r(x¢)), where f is typically the
data-dependent cost function and 7 is a regularization term. The
(explicit) Euler discretization of this flow results in the well-known
gradient descent algorithm for solving min (f(x) + r(z)).

partial differential equation, which has close connections
with stochastic differential equations. Even though gradient
flows in Wasserstein spaces cannot be solved in general,
by exploiting this connection, we are able to develop a
practical algorithm that provides approximate solutions to
the gradient flow and is algorithmically similar to stochastic
gradient Markov Chain Monte Carlo (MCMC) methods?
(Welling & Teh, 2011; Ma et al., 2015; Durmus et al., 2016;
Simsekli, 2017; Simsekli et al., 2018). We provide finite-
time error guarantees for the proposed algorithm and show
explicit dependence of the error to the algorithm parameters.

To the best of our knowledge, the proposed algorithm is the
first nonparametric IGM algorithm that has explicit theoreti-
cal guarantees. In addition to its nice theoretical properties,
the proposed algorithm has also significant practical impor-
tance: it has low computational requirements and can be
easily run on an everyday laptop CPU.Our experiments on
both synthetic and real datasets support our theory and illus-
trate the advantages of the algorithm in several scenarios.

2. Technical Background

2.1. Wasserstein distance, optimal transport maps and
Kantorovich potentials

For two probability measures p, v € Pa(2), P2(2) =
{neP@) : [, ||| (dz) < 400}, the 2-Wasserstein
distance is defined as follows:

2 M) v ~ II(l 1/) o Y y x? y ’

where C(u, v) is called the set of transportation plans and
defined as the set of probability measures «y on €2 x (2 satisfy-
ingforall A € A, v(AxQ) = u(A)and v(Qx A) = v(A),
i.e. the marginals of - coincide with x4 and v. From now on,
we will assume that © is a compact subset of R<.

In the case where () is finite, computing the Wasserstein
distance between two probability measures turns out to be a
linear program with linear constraints, and has therefore a
dual formulation. Since €2 is a Polish space (i.e. a complete
and separable metric space), this dual formulation can be
generalized as follows (Villani, 2008)[Theorem 5.10]:

. 1/2
Walr)= Sﬁ%{ /Q Y(@)u(dz) + /Q v (@)(da)
3)

where L!(y) denotes the class of functions that are abso-
lutely integrable under p and ¥¢ denotes the c-conjugate
of 1) and is defined as follows: ¥°(y) £ {inf,cq |z —

2We note that, despite the algorithmic similarities, the proposed
algorithm is not a Bayesian posterior sampling algorithm.
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y||* — 1 (z)}. The functions v that realize the supremum
in (3) are called the Kantorovich potentials between p and
v. Provided that g satisfies a mild condition, we have the
following uniqueness result.

Theorem 1 ((Santambrogio, 2014)[Theorem 1.4]). Assume
that p € Pa(QY) is absolutely continuous with respect to
the Lebesgue measure. Then, there exists a unique optimal
transport plan v* that realizes the infimum in (2) and it
is of the form (Id x T') 4, for a measurable function T :
QO — Q. Furthermore, there exists at least a Kantorovich
potential 1) whose gradient V1) is uniquely determined -
almost everywhere. The function T' and the potential v are
linked by T'(z) = x — Vi (z).

The measurable function 7" : 2 — €2 is referred to as the
optimal transport map from p to v. This result implies that
there exists a solution for transporting samples from p to
samples from v and this solution is optimal in the sense that
it minimizes the /5 displacement. However, identifying this
solution is highly non-trivial. In the discrete case, effective
solutions have been proposed (Cuturi, 2013). However,
for continuous and high-dimensional probability measures,
constructing an actual transport plan remains a challenge.
Even if recent contributions (Genevay et al., 2016) have
made it possible to rapidly compute Ws, they do so without
constructing the optimal map 7', which is our objective here.

2.2. Wasserstein spaces and gradient flows

By (Ambrosio et al., 2008)[Proposition 7.1.5], W is a dis-
tance over P (). In addition, if @ C R? is compact, the
topology associated with Ws is equivalent to the weak con-
vergence of probability measures and (P(£2), W,)? is com-
pact. The metric space (P2(£2), W) is called the Wasser-
stein space.

In this study, we are interested in functional optimiza-
tion problems in (P (2), W), such as min,,ep, o) F (1),
where F is the functional that we would like to minimize.
Similar to Euclidean spaces, one way to formulate this opti-
mization problem is to construct a gradient flow of the form
O¢prr = =V, F (u+) (Benamou & Brenier, 2000; Lavenant
et al., 2018), where V), denotes a notion of gradient in
(P2(£2), Wa). If such a flow can be constructed, one can uti-
lize it both for practical algorithms and theoretical analysis.

Gradient flows Oy iy = Vi, F (1) with respect to a func-
tional F in (P2(€2), W>) have strong connections with par-
tial differential equations (PDE) that are of the form of a con-
tinuity equation (Santambrogio, 2017). Indeed, it is shown
than under appropriate conditions on JF (see e.g.(Ambrosio
et al., 2008)), (1t )¢ is a solution of the gradient flow if and
only if it admits a density p; with respect to the Lebesgue
measure for all ¢ > 0, and solves the continuity equation

*Note that in that case, P2(Q2) = P(Q)

given by: d;p; + div(vp;) = 0, where v denotes a vector
field and div denotes the divergence operator. Then, for a
given gradient flow in (P2(2), Ws), we are interested in the
evolution of the densities p;, i.e. the PDEs which they solve.
Such PDE:s are of our particular interest since they have a
key role for building practical algorithms.

2.3. Sliced-Wasserstein distance

In the one-dimensional case, i.e. p,v € Pa(R), Ws
has an analytical form, given as follows: Wh(p,v) =
fol |F 1 () — F ' (7)]? dr, where F), and F,, denote the
cumulative distribution functions (CDF) of y and v, respec-
tively, and F; L F; ! denote the inverse CDFs, also called
quantile functions (QF). In this case, the optimal transport
map from y to v has a closed-form formula as well, given
as follows: T'(z) = (F, ! o F,)(z) (Villani, 2008). The
optimal map 7" is also known as the increasing arrangement,
which maps each quantile of u to the same quantile of v,
e.g. minimum to minimum, median to median, maximum to
maximum (Villani, 2008). Due to Theorem 1, the derivative
of the corresponding Kantorovich potential is given as:

W (x) £ 0pp(z) =2 — (F, ' o F,)().

In the multidimensional case d > 1, building a transport
map is much more difficult. The nice properties of the
one-dimensional Wasserstein distance motivate the usage
of sliced-Wasserstein distance (SVW,) for practical appli-
cations. Before formally defining SW, let us first define
the orthogonal projection 6*(z) £ (#, x) for any direction
0 € S 1 and z € R%, where (-, -) denotes the Euclidean
inner-product and S?~! ¢ R? denotes the d-dimensional
unit sphere. Then, the SWs distance is formally defined as
follows:

SWa(p,v) £ / Wa (O, Oyv) df, (4
§d—1

where df represents the uniform probability measure on
S?-1. As shown in (Bonnotte, 2013), SW, is indeed a
distance metric and induces the same topology as W, for
compact domains.

The SW, distance has important practical implications:
provided that the projected distributions 6%y and 6%, v
can be computed, then for any 6 < S?-1 the distance
Wo(0 1,05 v), as well as its optimal transport map and
the corresponding Kantorovich potential can be analyt-
ically computed (since the projected measures are one-
dimensional). Therefore, one can easily approximate (4)
by using a simple Monte Carlo scheme that draws uniform
random samples from S?~! and replaces the integral in (4)
with a finite-sample average. Thanks to its computational
benefits, SW, was very recently considered for OT-based
VAEs and GANs (Deshpande et al., 2018; Wu et al., 2018;
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Kolouri et al., 2018), appearing as a stable alternative to the
adversarial methods.

3. Regularized Sliced-Wasserstein Flows for
Generative Modeling

3.1. Construction of the gradient flow

In this paper, we propose the following functional minimiza-
tion problem on P2 (2) for implicit generative modeling:
Al

min{}—;\’(,u) 2 ZSWE () + )\H(,u)}, )
“w

where A\ > 0 is a regularization parameter and H denotes the
negative entropy defined by H(u) £ [, p(z) log p(z)dx if
1 has density p with respect to the Lebesgue measure and
H(p) = +oo otherwise. Note that the case A = 0 has
been already proposed and studied in (Bonnotte, 2013) in
a more general OT context. Here, in order to introduce the
necessary noise inherent to generative model, we suggest
to penalize the slice-Wasserstein distance using H. In other
words, the main idea is to find a measure p* that is close
to v as much as possible and also has a certain amount of
entropy to make sure that it is sufficiently expressive for gen-
erative modeling purposes. The importance of the entropy
regularization becomes prominent in practical applications
where we have finitely many data samples that are assumed
to be drawn from v. In such a circumstance, the regular-
ization would prevent p* to collapse on the data points and
therefore avoid ‘over-fitting’ to the data distribution. Note
that this regularization is fundamentally different from the
one used in Sinkhorn distances (Genevay et al., 2018).

In our first result, we show that there exists a flow (f14);>0 in
(P(B(0,7)), Wa) which decreases along F¥, where B(0, a)
denotes the closed unit ball centered at 0 and radius a. This
flow will be referred to as a generalized minimizing move-
ment scheme (see Definition 1 in the supplementary docu-
ment). In addition, the flow (14 )¢>0 admits a density p; with
respect to the Lebesgue measure for all t > 0 and (p;):>0
is solution of a non-linear PDE (in the weak sense).

Theorem 2. Let v be a probability measure on B(0, 1) with
a strictly positive smooth density. Choose a regularization
constant A > 0 and radius v > /d, where d is the data
dimension. Assume that jig € P(B(0,7)) is absolutely con-
tinuous with respect to the Lebesgue measure with density
po € L*®°(B(0,7)). There exists a generalized minimizing
movement scheme (j1;)>0 associated to (5) and if p, stands
Sfor the density of u for all t > 0, then (p;); satisfies the
following continuity equation:

Ope
ot

wlo) & ) = = [ wol@oppan 1)

= — diV(Utpt) + )\Apt, (6)

in a weak sense. Here, A denotes the Laplacian opera-
tor, div the divergence operator, and 1), ¢ denotes the Kan-
torovich potential between 6% ji; and 0%, v.

The precise statement of this Theorem, related results and
its proof are postponed to the supplementary document.
For its proof, we use the technique introduced in (Jordan
et al., 1998): we first prove the existence of a generalized
minimizing movement scheme by showing that the solution
curve () is a limit of the solution of a time-discretized
problem. Then we prove that the curve (p;); solves the PDE
given in (6).

3.2. Connection with stochastic differential equations

As a consequence of the entropy regularization, we obtain
the Laplacian operator A in the PDE given in (6). We there-
fore observe that the overall PDE is a Fokker-Planck-type
equation (Bogachev et al., 2015) that has a well-known prob-
abilistic counterpart, which can be expressed as a stochastic
differential equation (SDE). More precisely, let us consider
a stochastic process (X );, that is the solution of the follow-
ing SDE starting at Xy ~ p0:

dXt = U(Xt, ,U,t)dt + Vv 2Ath, (8)

where (W;); denotes a standard Brownian motion. Then,
the probability distribution of X; at time ¢ solves the PDE
given in (6) (Bogachev et al., 2015). This informally means
that, if we could simulate (8), then the distribution of X,
would converge to the solution of (5), therefore, we could
use the sample paths (X;); as samples drawn from (g );.
However, in practice this is not possible due to two reasons:
(1) the drift v; cannot be computed analytically since it
depends on the probability distribution of X, (ii) the SDE
(8) is a continuous-time process, it needs to be discretized.

We now focus on the first issue. We observe that the SDE
(8) is similar to McKean-Vlasov SDEs (Veretennikov, 2006;
Mishura & Veretennikov, 2016), a family of SDEs whose
drift depends on the distribution of X;. By using this connec-
tion, we can borrow tools from the relevant SDE literature
(Malrieu, 2003; Cattiaux et al., 2008) for developing an
approximate simulation method for (8).

Our approach is based on defining a particle system that
serves as an approximation to the original SDE (8). The
particle system can be written as a collection of SDEs, given
as follows (Bossy & Talay, 1997):
dX} = (X}, uN)dt + V2NdWi, i=1,...,N, (9)
where ¢ denotes the particle index, N € N, denotes the
total number of particles, and ;Y = (1/N) Z;‘V:1 Oy de-

notes the empirical distribution of the particles {th é‘V:r

This particle system is particularly interesting, since (i) one
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typically has limy s & = p1; with a rate of convergence
of order O(1/ VN ) for all ¢ (Malrieu, 2003; Cattiaux et al.,
2008), and (ii) each of the particle systems in (9) can be sim-
ulated by using an Euler-Maruyama discretization scheme.
We note that the existing theoretical results in (Veretennikov,
2006; Mishura & Veretennikov, 2016) do not directly ap-
ply to our case due to the non-standard form of our drift.
However, we conjecture that a similar result holds for our
problem as well. Such a result would be proven by using
the techniques given in (Zhang et al., 2018); however, it is
out of the scope of this study.

3.3. Approximate Euler-Maruyama discretization

In order to be able to simulate the particle SDEs (9) in
practice, we propose an approximate Euler-Maruyama dis-
cretization for each particle SDE. The algorithm iteratively
applies the following update equation: (Vi € {1,...,N})

Xé““'?ﬂov Xig1 = Xi +hon(X]) + mzli+1a (10)

where k£ € N denotes the iteration number, Z,i is a stan-
dard Gaussian random vector in R?, h denotes the step-
size, and ¥y, is a short-hand notation for a computation-
ally tractable estimator of the original drift v(-, fiy, ), with

iy, = (1 /N) Z .6 x; being the empirical distribution of

{X N_,. A question of fundamental practical importance
is how to compute this function 7.

We propose to approximate the integral in (7) via a simple
Monte Carlo estimate. This is done by first drawing Ny uni-
form i.i.d. samples from the sphere S~ 1, {Qn}gil. Then,
at each iteration k, we compute:

~ N Ne ’

(@) £ ~(1/No) Y~ Who, (0, 0))0n, (D)
where for any 6, 1] k.0 18 the derivative of the Kantorovich
potential (cf. Section 2) that is applied to the OT problem
from H#Mkh to 0 v: ie.

Uho(2) = [z = (Fy), 0 Foo an )(2)]- (12)

For any particular § € S¢~!, the QF, F, _;:V for the projection
of the target distribution v on 6 can be easily computed from
the data. This is done by first computing the projections
(0, y;) for all data points y;, and then computing the empir-
ical quantile function for this set of P scalars. Similarly,
Fe; Al s the CDF of the particles at iteration k, is easy to
compute: we first project all particles X! to get (0, X} ),
and then compute the empirical CDF of this set of IV scalar
values.

In both cases, the true CDF and quantile functions are ap-
proximated as a linear interpolation between a set of the

Algorithm 1: Sliced-Wasserstein Flow (SWF)

input :D = {yl}1 1> tos N, No, h, A

output : { X}V,
// Initialize the particles

Xi% o, i=1,...,N
// Generate random directions
0,, ~ Uniform(S?—1), n=1,...,Ng
// Quantiles of projected target
for 6 € {6, 91 do
LFH;Z:U - QF{<97 yl>}f;1
// Iterations
fork=0,... K —1do
for 6 € {6,,}°, do
// CDF of projected particles
Fe;ﬁth = CDF{(0, X}) zN:I
// Update the particles
Xli+1 = X,i — hﬁk(X}c) + Vv 2)\hZ,i+1
i=1,...,N

computed () € N empirical quantiles. Another source of
approximation here comes from the fact that the target v
will in practice be a collection of Dirac measures on the
observations y;. Since it is currently common to have a very
large dataset, we believe this approximation to be accurate
in practice for the target. Finally, yet another source of ap-
proximation comes from the error induced by using a finite
number of 6, instead of a sum over S%~! in (12).

Even though the error induced by these approximation
schemes can be incorporated into our current analysis frame-
work, we choose to neglect it for now, because (i) all of these
one-dimensional computations can be done very accurately
and (ii) the quantization of the empirical CDF and QF can
be modeled as additive Gaussian noise that enters our dis-
cretization scheme (10) (Van der Vaart, 1998). Therefore,
we will assume that 0y, is an unbiased estimator of v, i.e.
E[o(z, u)] = v(z, p), for any = and p, where the expecta-
tion is taken over 6,,.

The overall algorithm is illustrated in Algorithm 1. It is re-
markable that the updates of the particles only involves the
learning data {y; } through the CDFs of its projections on the
many 6,, € S¥~1. This has a fundamental consequence of
high practical interest: these CDF may be computed before-
hand in a massively distributed manner that is independent
of the sliced Wasserstein flow. This aspect is reminiscent
of the compressive learning methodology (Gribonval et al.,
2017), except we exploit quantiles of random projections
here, instead of random generalized moments as done there.

Besides, we can obtain further reductions in the computing
time if the CDF, Fg;y for the target is computed on random
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mini-batches of the data, instead of the whole dataset of size
P. This simplified procedure might also have some interest-
ing consequences in privacy-preserving settings: since we
can vary the number of projection directions Ny for each
data point y;, we may guarantee that y; cannot be recovered
via these projections, by picking fewer than necessary for
reconstruction using, e.g. compressed sensing (Donoho &
Tanner, 2009).

3.4. Finite-time analysis for the infinite particle regime

In this section we will analyze the behavior of the proposed
algorithm in the asymptotic regime where the number of
particles N — co. Within this regime, we will assume that
the original SDE (8) can be directly simulated by using an
approximate Euler-Maruyama scheme, defined starting at

Xo % 11 as follows:
Xit1 = Xi + ho(X}, fikn) + V2AZg 1, (13)

where fiz,;, denotes the law of X}, with step size h and {Z}, }.
denotes a collection of standard Gaussian random variables.
Apart from its theoretical significance, this scheme is also
practically relevant, since one would expect that it captures
the behavior of the particle method (10) with large number
of particles.

In practice, we would like to approximate the measure se-
quence (p); as accurate as possible, where 1, denotes the
law of X;. Therefore, we are interested in analyzing the
distance ||ixn — pr||Tv, where K denotes the total number
of iterations, T = K h is called the horizon, and ||x — v||Tv
denotes the total variation distance between two probability
measures 1 and v: | — vty = sup scp(q) [(A) —v(A)].

In order to analyze this distance, we exploit the algorith-
mic similarities between (13) and the stochastic gradient
Langevin dynamics (SGLD) algorithm (Welling & Teh,
2011), which is a Bayesian posterior sampling method hav-
ing a completely different goal, and is obtained as a dis-
cretization of an SDE whose drift has a much simpler form.
We then bound the distance by extending the recent results
on SGLD (Raginsky et al., 2017) to time- and measure-
dependent drifts, that are of our interest in the paper.

We now present our second main theoretical result. We
present all our assumptions and the explicit forms of the
constants in the supplementary document.

Theorem 3. Assume that the conditions given in the supple-

mentary document hold. Then, the following bound holds
forT = Kh:

L2K /Cih3
— _ 2 < 1 2
ik HT||TV_5>\{2>\ ( 3 +3)\dh)
Cy0Kh
+ 5\ }, (14)

Sor some Cy,Co, L > 0,0 € (0,1), and §) > 1.

Here, the constants C, C5, L are related to the regularity
and smoothness of the functions v and ©; § is directly propor-
tional to the variance of 0, and J), is inversely proportional
to A. The theorem shows that if we choose i small enough,
we can have a non-asymptotic error guarantee, which is
formally shown in the following corollary.

Corollary 1. Assume that the conditions of Theorem 3 hold.
Then for all e > 0, K € N, setting

2e2)\ 1/2
h=(3/Cy) A (W(1+3>\d)1> : (15)
we have
laxn — prltv < e+ (022/;\671) v (16)
forT = Kh.

This corollary shows that for a large horizon 7', the approxi-
mate drift © should have a small variance in order to obtain
accurate estimations. This result is similar to (Raginsky
et al., 2017) and (Nguyen et al., 2019): for small ¢ the vari-
ance of the approximate drift should be small as well. On
the other hand, we observe that the error decreases as \
increases. This behavior is expected since for large )\, the
Brownian term in (8) dominates the drift, which makes the
simulation easier.

We note that these results establish the explicit dependency
of the error with respect to the algorithm parameters (e.g.
step-size, gradient noise) for a fixed number of iterations,
rather than explaining the asymptotic behavior of the algo-
rithm when K goes to infinity.

4. Experiments

In this section, we evaluate the SWF algorithm on a syn-
thetic and a real data setting. Our primary goal is to validate
our theory and illustrate the behavior of our non-standard
approach, rather than to obtain the state-of-the-art results in
IGM. In all our experiments, the initial distribution g is se-
lected as the standard Gaussian distribution on R?, we take
@ = 100 quantiles and N = 5000 particles, which proved
sufficient to approximate the quantile functions accurately.

4.1. Gaussian Mixture Model

We perform the first set of experiments on synthetic data
where we consider a standard Gaussian mixture model
(GMM) with 10 components and random parameters. Cen-
troids are taken as sufficiently distant from each other to
make the problem more challenging. We generate P =
50000 data samples in each experiment.
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Figure 1. SWF on toy 2D data. Left: Target distribution (shaded contour plot) and distribution of particles (lines) during SWE. (bottom)
SW cost over iterations during training (left) and test (right) stages. Right: Influence of the regularization parameter .
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Figure 2. First, we learn an autoencoder (AE). Then, we use SWF
to transport random vectors to the distribution of the bottleneck
features of the training set. The trained decoder is used for visual-
ization.

SWF
fromptov

In our first experiment, we set d = 2 for visualization pur-
poses and illustrate the general behavior of the algorithm.
Figure 1 shows the evolution of the particles through the
iterations. Here, we set Ny = 30, h = 1 and A\ = 10~%.
We first observe that the SW cost between the empirical
distributions of training data and particles is steadily de-
creasing along the SW flow. Furthermore, we see that the
QFs, F 9:*% 111 x that are computed with the initial set of par-

ticles (the training stage) can be perfectly re-used for new
unseen particles in a subsequent fest stage, yielding similar
— yet slightly higher — SW cost.

In our second experiment on Figure 1, we investigate the
effect of the level of the regularization . The distribution of
the particles becomes more spread with increasing A. This
is due to the increment of the entropy, as expected.

4.2. Experiments on real data

In the second set of experiments, we test the SWF algorithm
on two real datasets. (i) The traditional MNIST dataset
that contains 70K binary images corresponding to different
digits. (ii) The popular CelebA dataset (Liu et al., 2015), that
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Figure 3. Samples generated after 200 iterations of SWF to match

the distribution of bottleneck features for the training dataset. Vi-
sualization is done with the pre-trained decoder.

contains 202K color-scale images. This dataset is advocated
as more challenging than MNIST. Images were interpolated
as 32 x 32 for MNIST, and 64 x 64 for CelebA.

In experiments reported in the supplementary document,
we found out that directly applying SWF to such high-
dimensional data yielded noisy results, possibly due to the
insufficient sampling of SY~!. To reduce the dimensional-
ity, we trained a standard convolutional autoencoder (AE)
on the training set of both datasets (see Figure 2 and the
supplementary document), and the target distribution v con-
sidered becomes the distribution of the resulting bottleneck
features, with dimension d. Particles can be visualized with
the pre-trained decoder. Our goal is to show that SWF per-
mits to directly sample from the distribution of bottleneck
features, as an alternative to enforcing this distribution to
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Figure 4. Initial random particles (left), particles through iterations
(middle, from 1 to 200 iterations) and closest sample from the
training dataset (right), for both MNIST and CelebA.

match some prior, as in VAE. In the following, we set A = 0,
Ny = 40000, d = 32 for MNIST and d = 64 for CelebA.

Assessing the validity of IGM algorithms is generally done
by visualizing the generated samples. Figure 3 shows some
particles after 500 iterations of SWFE. We can observe they
are considerably accurate. Interestingly, the generated sam-
ples gradually take the form of either digits or faces along
the iterations, as seen on Figure 4. In this figure, we also dis-
play the closest sample from the original database to check
we are not just reproducing training data.

For a visual comparison, we provide the results presented in
(Deshpande et al., 2018) in Figure 5. These results are ob-
tained by running different IGM approaches on the MNIST
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Figure 5. Performance of GAN (left), W-GAN (middle), SWG
(right) on MNIST. (The figure is directly taken from (Deshpande
et al.,, 2018).)
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Figure 6. Applymg a pre- tralned SWF on new samples located
in-between the ones used for training. Visualization is done with
the pre-trained decoder.

dataset, namely GAN (Goodfellow et al., 2014), Wasser-
stein GAN (W-GAN) (Arjovsky et al., 2017) and the Sliced-
Wasserstein Generator (SWG) (Deshpande et al., 2018).
The visual comparison suggests that the samples generated
by SWF are of slightly better quality than those, although
research must still be undertaken to scale up to high dimen-
sions without an AE.

We also provide the outcome of the pre-trained SWF with
samples that are regularly spaced in between those used
for training. The result is shown in Figure 4.2. This plot
suggests that SWF is a way to interpolate non-parametrically
in between latent spaces of regular AE.

5. Conclusion and Future Directions

In this study, we proposed SWE, an efficient, nonparamet-
ric IGM algorithm. SWF is based on formulating IGM as
a functional optimization problem in Wasserstein spaces,
where the aim is to find a probability measure that is close
to the data distribution as much as possible while maintain-
ing the expressiveness at a certain level. SWF lies in the
intersection of OT, gradient flows, and SDEs, which allowed
us to convert the IGM problem to an SDE simulation prob-
lem. We provided finite-time bounds for the infinite-particle
regime and established explicit links between the algorithm
parameters and the overall error. We conducted several ex-
periments, where we showed that the results support our
theory: SWF is able to generate samples from non-trivial
distributions with low computational requirements.

The SWF algorithm opens up interesting future directions:
(i) extension to differentially private settings (Dwork &
Roth, 2014) by exploiting the fact that it only requires ran-
dom projections of the data, (ii) showing the convergence
scheme of the particle system (9) to the original SDE (8),
(iii) providing bounds directly for the particle scheme (10).
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