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Abstract

The key idea behind the unsupervised learning
of disentangled representations is that real-world
data is generated by a few explanatory factors of
variation which can be recovered by unsupervised
learning algorithms. In this paper, we provide
a sober look at recent progress in the field and
challenge some common assumptions. We
first theoretically show that the unsupervised
learning of disentangled representations is
fundamentally impossible without inductive
biases on both the models and the data. Then,
we train more than 12 000 models covering most
prominent methods and evaluation metrics in a
reproducible large-scale experimental study on
seven different data sets. We observe that while
the different methods successfully enforce prop-
erties “encouraged” by the corresponding losses,
well-disentangled models seemingly cannot be
identified without supervision. Furthermore,
increased disentanglement does not seem to lead
to a decreased sample complexity of learning
for downstream tasks. Our results suggest that
future work on disentanglement learning should
be explicit about the role of inductive biases and
(implicit) supervision, investigate concrete ben-
efits of enforcing disentanglement of the learned
representations, and consider a reproducible
experimental setup covering several data sets.

1. Introduction

In representation learning it is often assumed that real-world
observations x (e.g., images or videos) are generated by
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a two-step generative process. First, a multivariate latent
random variable z is sampled from a distribution P(z). In-
tuitively, z corresponds to semantically meaningful factors
of variation of the observations (e.g., content + position of
objects in an image). Then, in a second step, the observation
x is sampled from the conditional distribution P(x|z). The
key idea behind this model is that the high-dimensional data
x can be explained by the substantially lower dimensional
and semantically meaningful latent variable z which is
mapped to the higher-dimensional space of observations
x. Informally, the goal of representation learning is to find
useful transformations r(x) of x that “make it easier to
extract useful information when building classifiers or other
predictors” (Bengio et al., 2013).

A recent line of work has argued that representations that
are disentangled are an important step towards a better
representation learning (Bengio et al., 2013; Peters et al.,
2017; LeCun et al., 2015; Bengio et al., 2007; Schmidhuber,
1992; Lake et al., 2017; Tschannen et al., 2018). They
should contain all the information present in x in a compact
and interpretable structure (Bengio et al., 2013; Kulkarni
et al., 2015; Chen et al., 2016) while being independent
from the task at hand (Goodfellow et al., 2009; Lenc &
Vedaldi, 2015). They should be useful for (semi-)supervised
learning of downstream tasks, transfer and few shot
learning (Bengio et al., 2013; Scholkopf et al., 2012; Peters
et al., 2017). They should enable to integrate out nuisance
factors (Kumar et al., 2017), to perform interventions, and
to answer counterfactual questions (Pearl, 2009; Spirtes
et al., 1993; Peters et al., 2017).

While there is no single formalized notion of disentangle-
ment (yet) which is widely accepted, the key intuition is that
a disentangled representation should separate the distinct,
informative factors of variations in the data (Bengio et al.,
2013). A change in a single underlying factor of variation
z; should lead to a change in a single factor in the learned
representation r(x). This assumption can be extended to
groups of factors as, for instance, in Bouchacourt et al.
(2018) or Suter et al. (2018). Based on this idea, a variety of
disentanglement evaluation protocols have been proposed
leveraging the statistical relations between the learned
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representation and the ground-truth factor of variations.
Disentanglement is then measured as a particular structural
property of these relations (Higgins et al., 2017a; Kim &
Mnih, 2018; Eastwood & Williams, 2018; Kumar et al.,
2017; Chen et al., 2018; Ridgeway & Mozer, 2018).

State-of-the-art approaches for unsupervised disentangle-
ment learning are largely based on Variational Autoencoders
(VAEs) (Kingma & Welling, 2014): One assumes a specific
prior P(z) on the latent space and then uses a deep neural
network to parameterize the conditional probability P(x|z).
Similarly, the distribution P(z|x) is approximated using a
variational distribution )(z|x), again parametrized using a
deep neural network. The model is then trained by minimiz-
ing a suitable approximation to the negative log-likelihood.
The representation for (x) is usually taken to be the mean
of the approximate posterior distribution (z|x). Several
variations of VAEs were proposed with the motivation that
they lead to better disentanglement (Higgins et al., 2017a;
Burgess et al., 2017; Kim & Mnih, 2018; Chen et al., 2018;
Kumar et al., 2017; Rubenstein et al., 2018). The common
theme behind all these approaches is that they try to enforce
a factorized aggregated posterior [ Q(z|x)P(x)dx, which
should encourage disentanglement.

Our contributions. In this paper, we challenge commonly
held assumptions in this field in both theory and practice.
Our key contributions can be summarized as follows:

e We theoretically prove that (perhaps unsurprisingly) the
unsupervised learning of disentangled representations is
fundamentally impossible without inductive biases both
on the considered learning approaches and the data sets.

e We investigate current approaches and their inductive
biases in a reproducible large-scale experimental study'
with a sound experimental protocol for unsupervised dis-
entanglement learning. We implement six recent unsu-
pervised disentanglement learning methods as well as six
disentanglement measures from scratch and train more
than 12 000 models on seven data sets.

e We release disentanglement_1ib?, a new library
to train and evaluate disentangled representations. As re-
producing our results requires substantial computational
effort, we also release more than 10 000 trained models
which can be used as baselines for future research.

e We analyze our experimental results and challenge com-
mon beliefs in unsupervised disentanglement learning: (i)
While all considered methods prove effective at ensuring
that the individual dimensions of the aggregated posterior
(which is sampled) are not correlated, we observe that the
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dimensions of the representation (which is taken to be the
mean) are correlated. (ii) We do not find any evidence
that the considered models can be used to reliably learn
disentangled representations in an unsupervised manner
as random seeds and hyperparameters seem to matter
more than the model choice. Furthermore, good trained
models seemingly cannot be identified without access
to ground-truth labels even if we are allowed to transfer
good hyperparameter values across data sets. (iii) For
the considered models and data sets, we cannot validate
the assumption that disentanglement is useful for down-
stream tasks, for example through a decreased sample
complexity of learning.

e Based on these empirical evidence, we suggest three crit-
ical areas of further research: (i) The role of inductive bi-
ases and implicit and explicit supervision should be made
explicit: unsupervised model selection persists as a key
question. (ii) The concrete practical benefits of enforcing
a specific notion of disentanglement of the learned rep-
resentations should be demonstrated. (iii) Experiments
should be conducted in a reproducible experimental setup
on data sets of varying degrees of difficulty.

2. Other related work

In a similar spirit to disentanglement, (non-)linear indepen-
dent component analysis (Comon, 1994; Bach & Jordan,
2002; Jutten & Karhunen, 2003; Hyvarinen & Morioka,
2016) studies the problem of recovering independent com-
ponents of a signal. The underlying assumption is that there
is a generative model for the signal composed of the com-
bination of statistically independent non-Gaussian compo-
nents. While the identifiability result for linear ICA (Comon,
1994) proved to be a milestone for the classical theory of
factor analysis, similar results are in general not obtainable
for the nonlinear case and the underlying sources gener-
ating the data cannot be identified (Hyvarinen & Pajunen,
1999). The lack of almost any identifiability result in non-
linear ICA has been a main bottleneck for the utility of the
approach (Hyvarinen et al., 2018) and partially motivated
alternative machine learning approaches (Desjardins et al.,
2012; Schmidhuber, 1992; Cohen & Welling, 2015). Given
that unsupervised algorithms did not initially perform well
on realistic settings most of the other works have consid-
ered some more or less explicit form of supervision (Reed
et al., 2014; Zhu et al., 2014; Yang et al., 2015; Kulka-
rni et al., 2015; Cheung et al., 2015; Mathieu et al., 2016;
Narayanaswamy et al., 2017; Suter et al., 2018). (Hinton
etal.,, 2011; Cohen & Welling, 2014) assume some knowl-
edge of the effect of the factors of variations even though
they are not observed. One can also exploit known relations
between factors in different samples (Karaletsos et al., 2015;
Goroshin et al., 2015; Whitney et al., 2016; Fraccaro et al.,
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2017; Denton & Birodkar, 2017; Hsu et al., 2017; Yingzhen
& Mandt, 2018) or explicit inductive biases (Locatello et al.,
2018). This is not a limiting assumption especially in se-
quential data, i.e., for videos. We focus our study on the
setting where factors of variations are not observable at all,
i.e. we only observe samples from P(x).

3. Impossibility result

The first question that we investigate is whether unsuper-
vised disentanglement learning is even possible for arbitrary
generative models. Theorem 1 essentially shows that with-
out inductive biases both on models and data sets the task
is fundamentally impossible. The proof is provided in Ap-
pendix A.

Theorem 1. Ford > 1, let z ~ P denote any distribution
which admits a density p(z) = Hf:l p(z;). Then, there
exists an infinite family of bijective functions f : supp(z) —
supp(z) such that %TEJ“) % 0 almost everywhere for all
i and j (i.e., z and f(z) are completely entangled) and
P(z < u) = P(f(z) < u) forall u € supp(z) (i.e., they
have the same marginal distribution).

Consider the commonly used “intuitive” notion of disentan-
glement which advocates that a change in a single ground-
truth factor should lead to a single change in the repre-
sentation. In that setting, Theorem 1 implies that unsu-
pervised disentanglement learning is impossible for arbi-
trary generative models with a factorized prior? in the fol-
lowing sense: Assume we have p(z) and some P(x|z)
defining a generative model. Consider any unsupervised
disentanglement method and assume that it finds a repre-
sentation r(x) that is perfectly disentangled with respect
to z in the generative model. Then, Theorem 1 implies
that there is an equivalent generative model with the la-
tent variable 2 = f(z) where z is completely entangled
with respect to z and thus also r(x): as all the entries
in the Jacobian of f are non-zero, a change in a single
dimension of z implies that all dimensions of z change.
Furthermore, since f is deterministic and p(z) = p(2) al-
most everywhere, both generative models have the same
marginal distribution of the observations x by construction,
ie., P(x) = [ p(x|z)p(z)dz = [ p(x|2)p(z)dz. Since the
(unsupervised) disentanglement method only has access to
observations x, it hence cannot distinguish between the two
equivalent generative models and thus has to be entangled
to at least one of them.

This may not be surprising to readers familiar with the
causality and ICA literature as it is consistent with the
following argument: After observing x, we can construct

>Theorem 1 only applies to factorized priors; however, we
expect that a similar result can be extended to non-factorizing
priors.

infinitely many generative models which have the same
marginal distribution of x. Any one of these models could
be the true causal generative model for the data, and the
right model cannot be identified given only the distribution
of x (Peters et al., 2017). Similar results have been obtained
in the context of non-linear ICA (Hyvarinen & Pajunen,
1999). The main novelty of Theorem 1 is that it allows the
explicit construction of latent spaces z and z that are com-
pletely entangled with each other in the sense of (Bengio
et al., 2013). We note that while this result is very intuitive
for multivariate Gaussians it also holds for distributions
which are not invariant to rotation, for example multivariate
uniform distributions.

While Theorem 1 shows that unsupervised disentanglement
learning is fundamentally impossible for arbitrary genera-
tive models, this does not necessarily mean it is an impossi-
ble endeavour in practice. After all, real world generative
models may have a certain structure that could be exploited
through suitably chosen inductive biases. However, Theo-
rem | clearly shows that inductive biases are required both
for the models (so that we find a specific set of solutions)
and for the data sets (such that these solutions match the true
generative model). We hence argue that the role of inductive
biases should be made explicit and investigated further as
done in the following experimental study.

4. Experimental design

Considered methods. All the considered methods augment
the VAE loss with a regularizer: The 5-VAE (Higgins et al.,
2017a), introduces a hyperparameter in front of the KL reg-
ularizer of vanilla VAEs to constrain the capacity of the
VAE bottleneck. The AnnealedVAE (Burgess et al., 2017)
progressively increase the bottleneck capacity so that the
encoder can focus on learning one factor of variation at the
time (the one that most contribute to a small reconstruc-
tion error). The FactorVAE (Kim & Mnih, 2018) and the
B-TCVAE (Chen et al., 2018) penalize the total correla-
tion (Watanabe, 1960) with adversarial training (Nguyen
et al., 2010; Sugiyama et al., 2012) or with a tractable but
biased Monte-Carlo estimator respectively. The DIP-VAE-I
and the DIP-VAE-II (Kumar et al., 2017) both penalize the
mismatch between the aggregated posterior and a factorized
prior. Implementation details and further discussion on the
methods can be found in Appendix B and G.

Considered metrics. The BetaVAE metric (Higgins et al.,
2017a) measures disentanglement as the accuracy of a linear
classifier that predicts the index of a fixed factor of variation.
Kim & Mnih (2018) address several issues with this metric
in their FactorVAE metric by using a majority vote classifier
on a different feature vector which accounts for a corner
case in the BetaVAE metric. The Mutual Information Gap
(MIG) (Chen et al., 2018) measures for each factor of vari-
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ation the normalized gap in mutual information between the
highest and second highest coordinate in r(x). Instead, the
Modularity (Ridgeway & Mozer, 2018) measures if each
dimension of r(x) depends on at most a factor of variation
using their mutual information. The Disentanglement metric
of Eastwood & Williams (2018) (which we call DCI Disen-
tanglement for clarity) computes the entropy of the distribu-
tion obtained by normalizing the importance of each dimen-
sion of the learned representation for predicting the value of
a factor of variation. The SAP score (Kumar et al., 2017) is
the average difference of the prediction error of the two most
predictive latent dimensions for each factor. Implementation
details and further descriptions can be found in Appendix C.

Data sets. We consider four data sets in which x is ob-
tained as a deterministic function of z: dSprites (Higgins
et al., 2017a), Cars3D (Reed et al., 2015), SmalINORB (Le-
Cun et al., 2004), Shapes3D (Kim & Mnih, 2018). We
also introduce three data sets where the observations x are
stochastic given the factor of variations z: Color-dSprites,
Noisy-dSprites and Scream-dSprites. In Color-dSprites, the
shapes are colored with a random color. In Noisy-dSprites,
we consider white-colored shapes on a noisy background.
Finally, in Scream-dSprites the background is replaced with
a random patch in a random color shade extracted from the
famous The Scream painting (Munch, 1893). The dSprites
shape is embedded into the image by inverting the color of
its pixels. Further details on the preprocessing of the data
can be found in Appendix H.

Inductive biases. To fairly evaluate the different ap-
proaches, we separate the effect of regularization (in the
form of model choice and regularization strength) from the
other inductive biases (e.g., the choice of the neural architec-
ture). Each method uses the same convolutional architecture,
optimizer, hyperparameters of the optimizer and batch size.
All methods use a Gaussian encoder where the mean and the
log variance of each latent factor is parametrized by the deep
neural network, a Bernoulli decoder and latent dimension
fixed to 10. We note that these are all standard choices in
prior work (Higgins et al., 2017a; Kim & Mnih, 2018).

We choose six different regularization strengths, i.e., hy-
perparameter values, for each of the considered methods.
The key idea was to take a wide enough set to ensure that
there are useful hyperparameters for different settings for
each method and not to focus on specific values known to
work for specific data sets. However, the values are par-
tially based on the ranges that are prescribed in the literature
(including the hyperparameters suggested by the authors).

We fix our experimental setup in advance and we run all the
considered methods on each data set for 50 different random
seeds and evaluate them on the considered metrics. The
full details on the experimental setup are provided in the
Appendix G. Our experimental setup, the limitations of this

study, and the differences with previous implementations
are extensively discussed in Appendices D-F.

5. Key experimental results

In this section, we highlight our key findings with plots
specifically picked to be representative of our main results.
In Appendix I, we provide the full experimental results with
a complete set of plots for different methods, data sets and
disentanglement metrics.

5.1. Can current methods enforce a uncorrelated
aggregated posterior and representation?

While many of the considered methods aim to enforce a
factorizing and thus uncorrelated aggregated posterior (e.g.,
regularizing the total correlation of the sampled representa-
tion), they use the mean vector of the Gaussian encoder as
the representation and not a sample from the Gaussian en-
coder. This may seem like a minor, irrelevant modification;
however, it is not clear whether a factorizing aggregated
posterior also ensures that the dimensions of the mean rep-
resentation are uncorrelated. To test the impact of this, we
compute the total correlation of both the mean and the sam-
pled representation based on fitting Gaussian distributions
for each data set, model and hyperparameter value (see
Appendix C and 1.2 for details).

Figure 1 (left) shows the total correlation based on a fitted
Gaussian of the sampled representation plotted against the
regularization strength for each method except Annealed-
VAE on Color-dSprites. We observe that the total correlation
of the sampled representation generally decreases with the
regularization strength. One the other hand, Figure 1 (right)
shows the total correlation of the mean representation plot-
ted against the regularization strength. It is evident that the
total correlation of the mean representation generally in-
creases with the regularization strength. The only exception
is DIP-VAE-I for which we observe that the total correlation
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Figure 1. Total correlation based on a fitted Gaussian of the sam-
pled (left) and the mean representation (right) plotted against reg-
ularization strength for Color-dSprites and approaches (except
AnnealedVAE). The total correlation of the sampled representation
decreases while the total correlation of the mean representation
increases as the regularization strength is increased.
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of the mean representation is consistently low. This is not
surprising as the DIP-VAE-I objective directly optimizes the
covariance matrix of the mean representation to be diagonal
which implies that the corresponding total correlation (as
we measure it) is low. These findings are confirmed by our
detailed experimental results in Appendix 1.2 (in particular
Figures 8-9) which considers all different data sets. Further-
more, we observe largely the same pattern if we consider the
average mutual information between different dimension
of the representation instead of the total correlation (see
Figures 27-28 in Appendix J).

Implications. Overall, these results lead us to conclude
with minor exceptions that the considered methods are effec-
tive at enforcing an aggregated posterior whose individual
dimensions are not correlated but that this does not seem
to imply that the dimensions of the mean representation

(usually used for representation) are uncorrelated.
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Figure 2. Rank correlation of different metrics on Noisy-dSprites.
Overall, we observe that all metrics except Modularity seem mildly
correlated with the pairs BetaVAE and FactorVAE, and MIG and
DCI Disentanglement strongly correlated with each other.

5.2. How much do the disentanglement metrics agree?

As there exists no single, common definition of disentangle-
ment, an interesting question is to see how much different
proposed metrics agree. Figure 2 shows the Spearman rank
correlation between different disentanglement metrics on
Noisy-dSprites whereas Figure 12 in Appendix 1.3 shows the
correlation for all the different data sets. We observe that all
metrics except Modularity seem to be correlated strongly on
the data sets dSprites, Color-dSprites and Scream-dSprites
and mildly on the other data sets. There appear to be two
pairs among these metrics that capture particularly similar
notions: the BetaVAE and the FactorVAE score as well as
the MIG and DCI Disentanglement.

Implication. All disentanglement metrics except Modular-
ity appear to be correlated. However, the level of correlation
changes between different data sets.

5.3. How important are different models and
hyperparameters for disentanglement?

The primary motivation behind the considered methods is
that they should lead to improved disentanglement. This
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Figure 3. (left) FactorVAE score for each method on Cars3D.
Models are abbreviated (0=3-VAE, 1=FactorVAE, 2=3-TCVAE,
3=DIP-VAE-I, 4=DIP-VAE-II, 5=AnnealedVAE). The variance is
due to different hyperparameters and random seeds. The scores are
heavily overlapping. (right) Distribution of FactorVAE scores for
Factor VAE model for different regularization strengths on Cars3D.
In this case, the variance is only due to the different random seeds.
We observe that randomness (in the form of different random
seeds) has a substantial impact on the attained result and that a
good run with a bad hyperparameter can beat a bad run with a
good hyperparameter.

raises the question how disentanglement is affected by the
model choice, the hyperparameter selection and randomness
(in the form of different random seeds). To investigate this,
we compute all the considered disentanglement metrics for
each of our trained models.

In Figure 3 (left), we show the range of attainable Factor-
VAE scores for each method on Cars3D. We observe that
these ranges are heavily overlapping for different models
leading us to (qualitatively) conclude that the choice of hy-
perparameters and the random seed seems to be substantially
more important than the choice of objective function. These
results are confirmed by the full experimental results on all
the data sets presented in Figure 13 of Appendix 1.4: While
certain models seem to attain better maximum scores on
specific data sets and disentanglement metrics, we do not
observe any consistent pattern that one model is consistently
better than the other. At this point, we note that in our study
we have fixed the range of hyperparameters a priori to six
different values for each model and did not explore addi-
tional hyperparameters based on the results (as that would
bias our study). However, this also means that specific mod-
els may have performed better than in Figure 13 (left) if we
had chosen a different set of hyperparameters.

In Figure 3 (right), we further show the impact of random-
ness in the form of random seeds on the disentanglement
scores. Each violin plot shows the distribution of the Fac-
torVAE metric across all 50 trained FactorVAE models for
each hyperparameter setting on Cars3D. We clearly see that
randomness (in the form of different random seeds) has a
substantial impact on the attained result and that a good
run with a bad hyperparameter can beat a bad run with a
good hyperparameter in many cases. Again, these findings
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Figure 4. (left) FactorVAE score vs hyperparameters for each score on Cars3d. There seems to be no model dominating all the others
and for each model there does not seem to be a consistent strategy in choosing the regularization strength. (center) Unsupervised scores
vs disentanglement metrics on Shapes3D. Metrics are abbreviated ((A)=BetaVAE Score, (B)=FactorVAE Score, (C)=MIG , (D)=DCI
Disentanglement, (E)=Modularity, (F)=SAP). The unsupervised scores we consider do not seem to be useful for model selection. (right)
Rank-correlation of DCI disentanglement metric across different data sets. Good hyperparameters only seem to transfer between dSprites

and Color-dSprites but not in between the other data sets.

are consistent with the complete set of plots provided in
Figure 14 of Appendix 1.4.

Finally, we perform a variance analysis by trying to predict
the different disentanglement scores using ordinary least
squares for each data set: If we allow the score to depend
only on the objective function (treated as a categorical vari-
able), we are only able to explain 37% of the variance of the
scores on average (see Table 5 in Appendix 1.4 for further
details). Similarly, if the score depends on the Cartesian
product of objective function and regularization strength
(again categorical), we are able to explain 59% of the vari-
ance while the rest is due to the random seed.

Implication. The disentanglement scores of unsupervised
models are heavily influenced by randomness (in the form
of the random seed) and the choice of the hyperparameter
(in the form of the regularization strength). The objective
function appears to have less impact.

5.4. Are there reliable recipes for model selection?

In this section, we investigate how good hyperparameters
can be chosen and how we can distinguish between good
and bad training runs. In this paper, we advocate that that
model selection should not depend on the considered dis-
entanglement score for the following reasons: The point of
unsupervised learning of disentangled representation is that
there is no access to the labels as otherwise we could incor-
porate them and would have to compare to semi-supervised
and fully supervised methods. All the disentanglement met-
rics considered in this paper require a substantial amount
of ground-truth labels or the full generative model (for ex-
ample for the BetaVAE and the FactorVAE metric). Hence,
one may substantially bias the results of a study by tun-
ing hyperparameters based on (supervised) disentanglement
metrics. Furthermore, we argue that it is not sufficient to fix
a set of hyperparameters a priori and then show that one of
those hyperparameters and a specific random seed achieves
a good disentanglement score as it amounts to showing the

existence of a good model, but does not guide the practi-
tioner in finding it. Finally, in many practical settings, we
might not even have access to adequate labels as it may
be hard to identify the true underlying factor of variations,
in particular, if we consider data modalities that are less
suitable to human interpretation than images.

In the remainder of this section, we hence investigate and
assess different ways how hyperparameters and good model
runs could be chosen. In this study, we focus on choosing
the learning model and the regularization strength corre-
sponding to that loss function. However, we note that in
practice this problem is likely even harder as a practitioner
might also want to tune other modeling choices such archi-
tecture or optimizer.

General recipes for hyperparameter selection. We first
investigate whether we may find generally applicable “rules
of thumb” for choosing the hyperparameters. For this, we
plot in Figure 4 (left) the Factor VAE score against different
regularization strengths for each model on the Cars3D data
set whereas Figure 16 in Appendix 1.5 shows the same plot
for all data sets and disentanglement metrics. The values
correspond to the median obtained values across 50 random
seeds for each model, hyperparameter and data set. Overall,
there seems to be no model consistently dominating all
the others and for each model there does not seem to be a
consistent strategy in choosing the regularization strength to
maximize disentanglement scores. Furthermore, even if we
could identify a good objective function and corresponding
hyperparameter value, we still could not distinguish between
a good and a bad training run.

Model selection based on unsupervised scores. Another
approach could be to select hyperparameters based on un-
supervised scores such as the reconstruction error, the KL
divergence between the prior and the approximate posterior,
the Evidence Lower BOund or the estimated total corre-
lation of the sampled representation (mean representation
gives similar results). This would have the advantage that
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Table 1. Probability of outperforming random model selection on a
different random seed. A random disentanglement metric and data
set is sampled and used for model selection. That model is then
compared to a randomly selected model: (i) on the same metric
and data set, (ii) on the same metric and a random different data
set, (iii) on a random different metric and the same data set, and
(iv) on a random different metric and a random different data set.
The results are averaged across 10 000 random draws.

Same data set

62.6%
80.7%

Random data set

54.9%
59.3%

Random metric
Same metric

we could select specific trained models and not just good
hyperparameter settings whose median trained model would
perform well. To test whether such an approach is fruitful,
we compute the rank correlation between these unsuper-
vised metrics and the disentanglement metrics and present
it in Figure 4 (center) for Shapes3D and in Figure 16 of
Appendix L.5 for all the different data sets. While we do
observe some correlations, no clear pattern emerges which
leads us to conclude that this approach is unlikely to be
successful in practice.

Hyperparameter selection based on transfer. The final
strategy for hyperparameter selection that we consider is
based on transferring good settings across data sets. The
key idea is that good hyperparameter settings may be in-
ferred on data sets where we have labels available (such as
dSprites) and then applied to novel data sets. Figure 4 (right)
shows the rank correlations obtained between different data
sets for the DCI disentanglement (whereas Figure 17 in Ap-
pendix .5 shows it for all data sets). We find a strong and
consistent correlation between dSprites and Color-dSprites.
While these results suggest that some transfer of hyper-
parameters is possible, it does not allow us to distinguish
between good and bad random seeds on the target data set.

To illustrate this, we compare such a transfer based approach
to hyperparameter selection to random model selection as
follows: First, we sample one of our 50 random seeds, a
random disentanglement metric and a data set and use them
to select the hyperparameter setting with the highest attained
score. Then, we compare that selected hyperparameter set-
ting to a randomly selected model on either the same or
a random different data set, based on either the same or a
random different metric and for a randomly sampled seed.
Finally, we report the percentage of trials in which this
transfer strategy outperforms or performs equally well as
random model selection across 10 000 trials in Table 1. If
we choose the same metric and the same data set (but a dif-
ferent random seed), we obtain a score of 80.7%. If we aim
to transfer for the same metric across data sets, we achieve
around 59.3%. Finally, if we transfer both across metrics
and data sets, our performance drops to 54.9%.
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Figure 5. Rank correlations between disentanglement metrics and
downstream performance (accuracy and efficiency) on dSprites.

Implications. Unsupervised model selection remains an un-
solved problem. Transfer of good hyperparameters between
metrics and data sets does not seem to work as there appears
to be no unsupervised way to distinguish between good and
bad random seeds on the target task.

5.5. Are these disentangled representations useful for
downstream tasks in terms of the sample
complexity of learning?

One of the key motivations behind disentangled rep-
resentations is that they are assumed to be useful for
later downstream tasks. In particular, it is argued that
disentanglement should lead to a better sample complexity
of learning (Bengio et al., 2013; Scholkopf et al., 2012;
Peters et al., 2017). In this section, we consider the simplest
downstream classification task where the goal is to recover
the true factors of variations from the learned representation
using either multi-class logistic regression (LR) or gradient
boosted trees (GBT).

Figure 5 shows the rank correlations between the disen-
tanglement metrics and the downstream performance on
dSprites. We observe that all metrics except Modularity
seem to be correlated with increased downstream perfor-
mance on the different variations of dSprites and to some
degree on Shapes3D but not on the other data sets. However,
it is not clear whether this is due to the fact that disentangled
representations perform better or whether some of these
scores actually also (partially) capture the informativeness
of the evaluated representation. Furthermore, the full results
in Figure 19 of Appendix 1.6 indicate that the correlation is
weaker or inexistent on other data sets (e.g. Cars3D).

To assess the sample complexity argument we compute
for each trained model a statistical efficiency score which
we define as the average accuracy based on 100 samples
divided by the average accuracy based on 10 000 samples.
Figure 6 show the sample efficiency of learning (based on
GBT) versus the FactorVAE Score on dSprites. We do not
observe that higher disentanglement scores reliably lead to
a higher sample efficiency. This finding which appears to be
consistent with the results in Figures 20-23 of Appendix 1.6.
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Figure 6. Statistical efficiency of the FactorVAE Score for learning
a GBT downstream task on dSprites.

Implications. While the empirical results in this section
are negative, they should also be interpreted with care.
After all, we have seen in previous sections that the
models considered in this study fail to reliably produce
disentangled representations. Hence, the results in this
section might change if one were to consider a different set
of models, for example semi-supervised or fully supervised
one. Furthermore, there are many more potential notions
of usefulness such as interpretability and fairness that
we have not considered in our experimental evaluation.
Nevertheless, we argue that the lack of concrete examples of
useful disentangled representations necessitates that future
work on disentanglement methods should make this point
more explicit. While prior work (Steenbrugge et al., 2018;
Laversanne-Finot et al., 2018; Nair et al., 2018; Higgins
et al., 2017b; 2018) successfully applied disentanglement
methods such as 8-VAE on a variety of downstream tasks,
it is not clear to us that these approaches and trained models
performed well because of disentanglement.

6. Conclusions

In this work we first theoretically show that the unsupervised
learning of disentangled representations is fundamentally
impossible without inductive biases. We then performed
a large-scale empirical study with six state-of-the-art
disentanglement methods, six disentanglement metrics on
seven data sets and conclude the following: (i) A factorizing
aggregated posterior (which is sampled) does not seem to
necessarily imply that the dimensions in the representation
(which is taken to be the mean) are uncorrelated. (ii)
Random seeds and hyperparameters seem to matter more
than the model but tuning seem to require supervision. (iii)
We did not observe that increased disentanglement implies
a decreased sample complexity of learning downstream
tasks. Based on these findings, we suggest three main
directions for future research:

Inductive biases and implicit and explicit supervision.
Our theoretical impossibility result in Section 3 highlights
the need of inductive biases while our experimental
results indicate that the role of supervision is crucial. As
currently there does not seem to exist a reliable strategy
to choose hyperparameters in the unsupervised learning
of disentangled representations, we argue that future work
should make the role of inductive biases and implicit and
explicit supervision more explicit. We would encourage
and motivate future work on disentangled representation
learning that deviates from the static, purely unsupervised
setting considered in this work. Promising settings (that
have been explored to some degree) seem to be for example
(i) disentanglement learning with interactions (Thomas
et al., 2017), (ii) when weak forms of supervision e.g.
through grouping information are available (Bouchacourt
et al., 2018), or (iii) when temporal structure is available
for the learning problem. The last setting seems to be
particularly interesting given recent identifiability results
in non-linear ICA (Hyvarinen & Morioka, 2016).

Concrete practical benefits of disentangled representa-
tions. In our experiments we investigated whether higher
disentanglement scores lead to increased sample efficiency
for downstream tasks and did not find evidence that this
is the case. While these results only apply to the setting
and downstream task used in our study, we are also not
aware of other prior work that compellingly shows the
usefulness of disentangled representations. Hence, we
argue that future work should aim to show concrete benefits
of disentangled representations. Interpretability and fairness
as well as interactive settings seem to be particularly
promising candidates to evaluate usefulness. One potential
approach to include inductive biases, offer interpretability,
and generalization is the concept of independent causal
mechanisms and the framework of causal inference (Pearl,
2009; Peters et al., 2017).

Experimental setup and diversity of data sets. Our
study also highlights the need for a sound, robust, and
reproducible experimental setup on a diverse set of data sets
in order to draw valid conclusions. We have observed that
it is easy to draw spurious conclusions from experimental
results if one only considers a subset of methods, metrics
and data sets. Hence, we argue that it is crucial for future
work to perform experiments on a wide variety of data
sets to see whether conclusions and insights are generally
applicable. This is particularly important in the setting
of disentanglement learning as experiments are largely
performed on toy-like data sets. For this reason, we released
disentanglement_1ib, the library we created to train
and evaluate the different disentanglement methods on
multiple data sets. We also released more than 10000
trained models to provide a solid baseline for future
methods and metrics.
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