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A. Proof of Theorem 1
Our proof will leverage the following version of the PAC-Bayesian theorem, due to McAllester (2003).

Lemma 3. Let D denote a fixed distribution on an instance space, Z . Let L : H×Z → [0, 1] denote a loss function. For a
distribution, Q, on the hypothesis space, H, and a dataset, S , (z1, . . . , zn) ∈ Zn, let R(Q) , Eh∼Q Ez∼D[L(h, z)] and
R̂(Q, S) , Eh∼Q

[
1
n

∑n
i=1 L(h, zi)

]
denote the risk and empirical risk, respectively. For any n ≥ 1, δ ∈ (0, 1), and fixed

prior, P, onH, with probability at least 1− δ over draws of S ∼ Dn, the following holds simultaneously for all posteriors,
Q, onH:

R(Q) ≤ R̂(Q, S) +

√
2R̂(Q, S)

(
DKL(Q‖P) + ln n

δ

)
n− 1

+
2
(
DKL(Q‖P) + ln n

δ

)
n− 1

.

To apply Lemma 3, we need to define an appropriate loss for CRM. It should be expressed as a function of a hypothesis
and a single example1, and bounded in [0, 1]. Accordingly, we define

Lτ (h, x, a, p, r) , 1− τ r 1{h(x) = a}
max{p, τ}

,

which satisfies these criteria. Using this loss function, we let

Rτ (Q) , E
h∼Q

E
(x,ρ)∼D

E
a∼π0(x)

[Lτ (h, x, a, π0(a |x), ρ(x, a))]

and

R̂τ (Q, S) , E
h∼Q

[
1

n

n∑
i=1

Lτ (h, xi, ai, pi, ri)

]
.

Importantly, R̂τ (Q, S) is an unbiased estimate of Rτ (Q),

E
S∼(D×π0)n

[R̂τ (Q, S)] = Rτ (Q),

and a draw of h ∼ Q does not depend on context, so Rτ (Q) and R̂τ (Q, S) can be expressed as expectations over h ∼ Q.2

Further, via linearity of expectation,

Rτ (Q) = 1− τ E
(x,ρ)∼D

E
a∼π0(x)

[
ρ(x, a)

Eh∼Q [1{h(x) = a}]
max{π0(a |x), τ}

]
= 1− τ E

(x,ρ)∼D
E

a∼π0(x)

[
ρ(x, a)

πQ(a |x)

max{π0(a |x), τ}

]
≥ 1− τ E

(x,ρ)∼D
E

a∼πQ(x)
[ρ(x, a)]

= 1− τ (1−R(πQ)) ,

1This criterion ensures that the (empirical) risk decomposes as a sum of i.i.d. random variables, which is our motivation for using the
truncated IPS estimator over the self-normalizing estimator (Swaminathan and Joachims, 2015); the latter does not decompose.

2This is why we truncate with max{pi, τ}−1 instead of min{π(ai |xi)/pi, τ−1}.
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and

R̂τ (Q, S) = 1− τ

n

n∑
i=1

ri
Eh∼Q [1{h(xi) = ai}]

max{pi, τ}

= 1− τ

n

n∑
i=1

ri
πQ(ai |xi)
max{pi, τ}

= 1− τ
(

1− R̂τ (πQ, S)
)
.

Thus,

Rτ (Q)− R̂τ (Q, S) ≥ τ
(
R(πQ)− R̂τ (πQ, S)

)
,

which means that Lemma 3 can be used to upper-bound R(πQ)− R̂τ (πQ, S).

B. Risk Bound for All Truncation Parameters
Since Theorem 1 assumes that the truncation parameter, τ , is fixed a priori, we now derive a risk bound that holds for all
τ simultaneously. An implication of this bound is that the truncation can be data-dependent.

Theorem 4. Let H ⊆ {h : X → A} denote a hypothesis space mapping contexts to actions. For any n ≥ 1, δ ∈ (0, 1)
and fixed prior, P, onH, with probability at least 1− δ over draws of S ∼ (D× π0)n, the following holds simultaneously
for all posteriors, Q, onH, and all τ ∈ (0, 1):

R(πQ) ≤ R̂τ (πQ, S) +

√
4
(
R̂τ (πQ, S)− 1 + 2

τ

) (
DKL(Q‖P) + ln 2n

δτ

)
τ (n− 1)

+
4
(
DKL(Q‖P) + ln 2n

δτ

)
τ (n− 1)

.

Proof. We construct an infinite sequence of τ values, (τi , 2−i)∞i=1, and δ values, (δi , δτi)
∞
i=1. For any τi, Equation 4

holds with probability at least 1 − δi. Thus, with probability at least 1 −
∑∞
i=0 δi = 1 − δ, Equation 4 holds for all τi

simultaneously.

For a given τ—which may depend on the data—we select i? ,
⌈
ln τ−1

ln 2

⌉
. (Since τ ∈ (0, 1), the ceiling function ensures that

i? ≥ 1.) Then, we have that τ/2 ≤ τi? ≤ τ ; and, since max{p, τi?} ≤ max{p, τ}, we have that R̂τi? (π, S) ≤ R̂τ (π, S).
Further, δi? ≥ δτ/2. Thus, with probability at least 1− δ,

R(π) ≤ R̂τi? (π, S) +

√
2
(
R̂τi? (π, S)− 1 + 1

τi?

)(
DKL(Q‖P) + ln n

δi?

)
τi? (n− 1)

+
2
(
DKL(Q‖P) + ln n

δi?

)
τi? (n− 1)

≤ R̂τ (π, S) +

√
4
(
R̂τ (π, S)− 1 + 2

τ

) (
DKL(Q‖P) + ln 2n

δτ

)
τ (n− 1)

+
4
(
DKL(Q‖P) + ln 2n

δτ

)
τ (n− 1)

,

which completes the proof.

C. Proof of Lemma 1
We can ignore the Gumbel distributions, since they are identical. Using the definition of the KL divergence for multivariate
Gaussians, and properties of diagonal matrices (since both covariances are diagonal), we have that

DKL(Q‖P) =
‖µ− µ0‖2

2σ2
0

+
d

2

(
ln
σ2
0

σ2
+
σ2

σ2
0

− 1

)
.

We conclude by noting that σ
2

σ2
0
− 1 ≤ 0 for σ2 ≤ σ2

0 .
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D. Proof of Lemma 2
We begin with the lower bound. First, let

Φ(w) ,
∑
a′∈A

exp(w · φ(x, a′))

denote a normalizing constant, sometimes referred to as the partition function. (Since x is given, our notation ignores the
fact that Φ is a function of x.) Using Φ in the definition of ς , and applying Jensen’s inequality, we have that

πQ(a |x) = E
w∼N (µ,σ2I)

[ςw(a |x)]

= E
w∼N (µ,σ2I)

[exp (w · φ(x, a)− ln Φ(w))]

≥ exp

(
E

w∼N (µ,σ2I)
[w · φ(x, a)− ln Φ(w)]

)
. (18)

We then express the random parameters, w ∼ N (µ, σ2I), as the sum of the mean parameters, µ, and a zero-mean Gaussian
vector, g ∼ N (0, σ2I), which yields

E
w∼N (µ,σ2I)

[w · φ(x, a)− ln Φ(w)] = E
g∼N (0,σ2I)

[(µ+ g) · φ(x, a)− ln Φ(µ+ g)]

= µ · φ(x, a) − E
g∼N (0,σ2I)

[ln Φ(µ+ g)]

= µ · φ(x, a)− ln Φ(µ)− E
g∼N (0,σ2I)

[
ln

(
Φ(µ+ g)

Φ(µ)

)]
. (19)

The second line follows from the fact that the expected dot product of any vector with a zero-mean Gaussian vector is zero.
Applying Jensen’s inequality again to the last term, we have

− E
g∼N (0,σ2I)

[
ln

(
Φ(µ+ g)

Φ(µ)

)]
≥ − ln E

g∼N (0,σ2I)

[
Φ(µ+ g)

Φ(µ)

]
. (20)

Observe that
Φ(µ+ g)

Φ(µ)
=
∑
a′∈A

exp(µ · φ(x, a′))

Φ(µ)
exp(g · φ(x, a′)) = E

a′∼ςµ(x)
[exp(g · φ(x, a′))] .

Thus, via linearity of expectation,

E
g∼N (0,σ2I)

[
Φ(µ+ g)

Φ(µ)

]
= E
a′∼ςµ(x)

E
g∼N (0,σ2I)

[exp(g · φ(x, a′))] . (21)

The right-hand inner expectation is simply the moment-generating function of a multivariate Gaussian. Combining its
closed-form expression,

E
g∼N (0,σ2I)

[exp(g · φ(x, a′))] = exp

(
σ2

2
‖φ(x, a′)‖2

)
,

with Equation 21, we have

− ln E
g∼N (0,σ2I)

[
Φ(µ+ g)

Φ(µ)

]
= − ln E

a′∼ςµ(x)

[
exp

(
σ2

2
‖φ(x, a′)‖2

)]
≥ − ln E

a′∼ςµ(x)

[
exp

(
σ2B2

2

)]
= −σ

2B2

2
. (22)
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The inequality follows from the assumption that ‖φ(x, a′)‖ ≤ B. Finally, combining Equations 18 to 20 and 22, we have

πQ(a |x) ≥ exp

(
E

w∼N (µ,σ2I)
[w · φ(x, a)− ln Φ(w)]

)
= exp

(
µ · φ(x, a)− ln Φ(µ)− E

g∼N (0,σ2I)

[
ln

(
Φ(µ+ g)

Φ(µ)

)])
≥ exp

(
µ · φ(x, a)− ln Φ(µ)− ln E

g∼N (0,σ2I)

[
Φ(µ+ g)

Φ(µ)

])
≥ exp

(
µ · φ(x, a)− ln Φ(µ)− σ2B2

2

)
= ςµ(a |x) exp

(
−σ

2B2

2

)
.

To prove the upper bound, first observe that

ςw(a |x) = exp

(
µ · φ(x, a)− ln Φ(µ) + g · φ(x, a)− ln

(
Φ(µ+ g)

Φ(µ)

))
= ςµ(a |x) exp

(
g · φ(x, a)− ln

(
Φ(µ+ g)

Φ(µ)

))
= ςµ(a |x) exp

(
g · φ(x, a)− ln E

a′∼ςµ(x)
[exp(g · φ(x, a′))]

)
≤ ςµ(a |x) exp

(
g · φ(x, a)− E

a′∼ςµ(x)
[g · φ(x, a′)]

)
≤ ςµ(a |x) E

a′∼ςµ(x)
[exp (g · (φ(x, a)− φ(x, a′)))] .

The inequalities follow from Jensen’s inequality. We then have that

πQ(a |x) = E
w∼N (µ,σ2I)

[ςw(a |x)]

≤ ςµ(a |x) E
a′∼ςµ(x)

E
g∼N (0,σ2I)

[exp (g · (φ(x, a)− φ(x, a′)))] .

The right-hand inner expectation is the moment-generating function of a multivariate Gaussian:

E
g∼N (0,σ2I)

[exp (g · (φ(x, a)− φ(x, a′)))] = exp

(
σ2

2
‖φ(x, a)− φ(x, a′)‖2

)
≤ exp

(
σ2

2
(‖φ(x, a)‖ + ‖φ(x, a′)‖)2

)
≤ exp

(
σ2

2
(B +B)2

)
= exp(2σ2B2).

The first inequality follows from the triangle inequality. Therefore,

πQ(a |x) ≤ ςµ(a |x) E
a′∼ςµ(x)

[exp(2σ2B2)] = ςµ(a |x) exp(2σ2B2),

which completes the proof.

E. Proof of Theorem 2
Using Lemma 2, it is easy to show that R̂τ (πQ, S) ≤ R̂τ (µ, σ2, S). The rest of the proof follows from using Lemma 1 to
upper-bound the KL divergence in Theorem 1.
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F. Proofs of Propositions 1 and 2
We start by proving Proposition 1. To simplify Equation 9, we let

α , R̂τ (µ, σ2, S)− 1 +
1

τ
and β ,

Γ(µ0, σ
2
0 , µ, σ

2) + 2 ln n
δ

τ (n− 1)
.

Noting that R̂τ (µ, σ2, S) ≤ α (since τ−1 − 1 ≥ 0), we can upper-bound Equation 9 as

R(πQ) ≤ α+
√
αβ + β. (23)

The middle term is the geometric mean of α and β, which is at most the arithmetic mean:

α+
√
αβ + β ≤ α+

α+ β

2
+ β =

3(α+ β)

2
. (24)

We therefore obtain an upper bound on Equation 9 that omits the middle term, which can be tricky to optimize due to the
interaction between α and β. If we optimize this upper bound,

arg min
µ∈Rd

σ2∈(0,σ2
0 ]

3(α+ β)

2
= arg min

µ∈Rd
σ2∈(0,σ2

0 ]

α+ β

= arg min
µ∈Rd

σ2∈(0,σ2
0 ]

R̂τ (µ, σ2, S)− 1 +
1

τ
+

Γ(µ0, σ
2
0 , µ, σ

2) + 2 ln n
δ

τ (n− 1)

= arg min
µ∈Rd

σ2∈(0,σ2
0 ]

R̂τ (µ, σ2, S) +
Γ(µ0, σ

2
0 , µ, σ

2)

τ (n− 1)

= arg min
µ∈Rd

σ2∈(0,σ2
0 ]

R̂τ (µ, σ2, S) +

1
σ2
0
‖µ− µ0‖2 + d ln

σ2
0

σ2

τ (n− 1)

= arg min
µ∈Rd

σ2∈(0,σ2
0 ]

R̂τ (µ, σ2, S) +

1
σ2
0
‖µ− µ0‖2 − d lnσ2

τ (n− 1)
,

we obtain Equation 11.

To prove Proposition 2, we upper-bound R̂τ (µ, σ2, S) by using the fact that u ln v ≤ uv for u, v ≥ 0. Setting

ui ,
ri

max{pi, τ}
and vi ,

ςµ(ai |xi)
exp(σ

2B2

2 )
,

we have that

R̂τ (µ, σ2, S)− 1 = − 1

n

n∑
i=1

ri
max{pi, τ}

ςµ(ai |xi)
exp(σ

2B2

2 )

= − 1

n

n∑
i=1

uivi

≤ − 1

n

n∑
i=1

ui ln vi.

Let

γ ,
1

τ
− 1

n

n∑
i=1

ui ln vi,
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and observe that α ≤ γ. Thus, by Equations 23 and 24,

R(πQ) ≤ 3(α+ β)

2
≤ 3(γ + β)

2
.

Optimizing this upper bound yields the following equivalence:

arg min
µ∈Rd

σ2∈(0,σ2
0 ]

3(γ + β)

2
= arg min

µ∈Rd
σ2∈(0,σ2

0 ]

γ + β

= arg min
µ∈Rd

σ2∈(0,σ2
0 ]

1

τ
+

1

n

n∑
i=1

−ui ln vi +
Γ(µ0, σ

2
0 , µ, σ

2) + 2 ln n
δ

τ (n− 1)

= arg min
µ∈Rd

σ2∈(0,σ2
0 ]

1

n

n∑
i=1

−ui ln vi +
‖µ− µ0‖2

σ2
0 τ (n− 1)

− d lnσ2

τ (n− 1)

= arg min
µ∈Rd

σ2∈(0,σ2
0 ]

1

n

n∑
i=1

−ri ln ςµ(ai |xi)
max{pi, τ}

+
riσ

2B2

2 max{pi, τ}
+
‖µ− µ0‖2

σ2
0τ(n− 1)

− d lnσ2

τ(n− 1)
.

Observe that µ and σ2 never interact multiplicatively in the objective function. We can therefore solve each sub-
optimization separately.

Starting with µ, we simply isolate the relevant terms and obtain Equation 12. For σ2, we must solve

arg min
σ2∈(0,σ2

0 ]

1

n

n∑
i=1

riB
2σ2

2 max{pi, τ}
− d lnσ2

τ (n− 1)
.

Note that this objective is convex in σ2. If we ignore the constraint that σ2 ∈ (0, σ2
0 ] and let σ2 be any real number, then

the problem has an analytic solution:

arg min
σ2∈R

1

n

n∑
i=1

riB
2σ2

2 max{pi, τ}
− d lnσ2

τ(n− 1)
=

2d

B2τ(n− 1)

(
1

n

n∑
i=1

ri
max{pi, τ}

)−1
.

This can be verified by setting the derivative equal to 0 and solving for σ2. Suppose the solution to the unconstrained
problem lies outside of the feasible region for the constrained problem, (0, σ2

0 ]. It is easily verified that the unconstrained
solution is strictly positive; thus, it must be greater than σ2

0 . Since the objective function is convex, we must then have
that the solution to the constrained problem lies at the upper boundary, σ2

0 , which is the closest point to the unconstrained
solution. Thus, the minimizer of the constrained problem is either the unconstrained solution or σ2

0 ; whichever one is
smaller.

G. Connection to Policy Gradient Methods
Those familiar with reinforcement learning may see connections between Equation 12 and policy gradient methods. By
the policy gradient theorem (Sutton et al., 2000), the gradient of the expected reward3 is precisely the expected, reward-
weighted gradient of the log-likelihood,

∇ E
a∼π(x)

[ρ(x, a)] = E
a∼π(x)

[ρ(x, a)∇ lnπ(a |x)].

In online, on-policy training, the expectation is typically approximated by sampling actions from the policy. In offline,
off-policy training, the expectation can be approximated by samples from the logging policy, with importance weight
π(a |x)/π0(a |x) to counteract bias. We then obtain a gradient that looks like the gradient of Equation 12, albeit weighted
by π(a |x) and without the regularization term.

3In reinforcement learning, the expectation would be over trajectories, which we omit for simplicity.
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H. Proof of Theorem 3
To prove Theorem 3, we start by borrowing a result from Liu et al. (2017), which we simplify and specialize for our use
case.

Lemma 4 ((Liu et al., 2017, Lemma 1)). LetDH(S, S′) denote the Hamming distance between two datasets, S, S′. Suppose
there exists a constant, α > 0, such that

sup
S,S′:DH(S,S′)=1

‖µ̂0(S)− µ̂0(S′)‖ ≤ α. (25)

(In other words, perturbing any single training example can change the learned parameters by at most α.) Then, for any
δ ∈ (0, 1),

Pr
S∼(D×π0)n

{
‖µ̂0(S)− µ̄0‖ ≥ α

√
2n ln

2

δ

}
≤ δ.

To apply Lemma 4, we must identify a value of α that satisfies Equation 25.

Lemma 5. If the loss function, L, is convex and β-Lipschitz with respect to its first argument, then the minimizer, µ̂0(S),
satisfies Equation 25 for α = β

λn .

Proof. Without loss of generality, assume that the index of the example at which S and S′ differ is i. It easily verified
that the regularizer, λ ‖w‖2, is (2λ)-strongly convex; and since L is assumed to be convex, the regularized objective, F
(Equation 13), is also (2λ)-strongly convex. Therefore, using the definition of strongly convex functions, and the symmetry
of distances, we have that

‖µ̂0(S)− µ̂0(S′)‖2 =
1

2
‖µ̂0(S)− µ̂0(S′)‖2 +

1

2
‖µ̂0(S′)− µ̂0(S)‖2

≤ 1

2λ
(F (µ̂0(S), S′)− F (µ̂0(S′), S′)) +

1

2λ
(F (µ̂0(S′), S)− F (µ̂0(S), S))

=
1

2λ
(F (µ̂0(S′), S)− F (µ̂0(S′), S′)) +

1

2λ
(F (µ̂0(S), S′)− F (µ̂0(S), S))

=
1

2λn
(L(µ̂0(S′), xi, ai)− L(µ̂0(S′), x′i, a

′
i)) +

1

2λn
(L(µ̂0(S), x′i, a

′
i)− L(µ̂0(S), xi, ai))

=
1

2λn
(L(µ̂0(S′), xi, ai)− L(µ̂0(S), xi, ai)) +

1

2λn
(L(µ̂0(S), x′i, a

′
i)− L(µ̂0(S′), x′i, a

′
i))

≤ β

2λn
(‖µ̂0(S′)− µ̂0(S)‖ + ‖µ̂0(S)− µ̂0(S′)‖)

=
β

λn
‖µ̂0(S)− µ̂0(S′)‖ .

Dividing each side by ‖µ̂0(S)− µ̂0(S′)‖ completes the proof.

Now, we can apply Lemma 4 to show that µ̂0(S) concentrates around µ̄0.

Lemma 6. If the loss function, L, is convex and β-Lipschitz with respect to its first argument, then for any δ ∈ (0, 1),

Pr
S∼(D×π0)n

‖µ̂0(S)− µ̄0‖ ≥
β

λ

√
2 ln 2

δ

n

 ≤ δ.
Proof. Follows immediately from Lemmas 4 and 5, with α = β

λn .

We are now ready to prove Theorem 3. We start by applying Theorem 2, with µ0 replaced by µ̄0, and δ replaced by δ/2.
With probability at least 1− δ/2,

R(πQ) ≤ R̂τ (µ, σ2, S) +

√(
R̂τ (µ, σ2, S)− 1 + 1

τ

)(
Γ(µ̄0, σ2

0 , µ, σ
2) + 2 ln 2n

δ

)
τ (n− 1)

+

(
Γ(µ̄0, σ

2
0 , µ, σ

2) + 2 ln 2n
δ

)
τ (n− 1)

.
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Then, using the triangle inequality and Lemma 6, we have that

‖µ− µ̄0‖ ≤ ‖µ− µ̂0(S)‖ + ‖µ̂0(S)− µ̄0‖

≤ ‖µ− µ̂0(S)‖ +
β

λ

√
2 ln 4

δ

n
,

with probability at least 1− δ/2. Substituting this into Equation 10 yields

Γ(µ̄0, σ
2
0 , µ, σ

2) =
‖µ− µ̄0‖2

σ2
0

+ d ln
σ2
0

σ2

≤

(
‖µ− µ̂0(S)‖ + β

λ

√
2 ln 4

δ

n

)2

σ2
0

+ d ln
σ2
0

σ2

= Γ̂(µ̂0(S), σ2
0 , µ, σ

2),

with probability at least 1− δ/2. Thus, Equation 15 holds with probability at least 1− δ.

References
T. Liu, G. Lugosi, G. Neu, and D. Tao. Algorithmic stability and hypothesis complexity. In International Conference on

Machine Learning, 2017.

D. McAllester. Simplified PAC-Bayesian margin bounds. In COLT, pages 203–215, 2003.

R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement learning with function
approximation. In Neural Information Processing Systems, 2000.

A. Swaminathan and T. Joachims. The self-normalized estimator for counterfactual learning. In Neural Information
Processing Systems, 2015.


	Proof of th:pacbayesbound
	Risk Bound for All Truncation Parameters
	Proof of lem:kldivbound
	Proof of lem:mixedlogitmeanbounds
	Proof of th:mixedlogitriskbound
	Proofs of prop:mixedlogitbcrmobjective,prop:mixedlogitbcrmconvexobjective
	Connection to Policy Gradient Methods
	Proof of th:datadepregriskbound

