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A. Preliminary
Notation. Bold upper case letters without subscripts (e.g., X,Y) denote matrices and bold lower case letters without
subscripts (e.g., x,y) represent vectors. We use∇xf(x,y) to denote the partial gradient with respect to variables of block
x.

We provide the proofs of some preliminary lemmas (Lemma 4–Lemma 6) used in the proof of Section B.

First, Lemma 4 and Lemma 5 give the property that quantify the size of the difference of the second-order derivatives of
the objective values between two points.
Lemma 4. If function f(·) is ρ-Hessian Lipschitz, we have∥∥∥∥∫ 1

0

∇2f(αθ)dα−∇2f(θ′)

∥∥∥∥ ≤ ρ (∥θ∥+ ∥θ′∥
)
, ∀θ,θ′. (20)

Proof. If function f(·) is ρ-Hessian Lipschitz continuous, then we have∥∥∥∥∫ 1

0

(∇2f(αθ)−∇2f(θ′))dα

∥∥∥∥ ≤ ∫ 1

0

∥∥∇2f(αθ)−∇2f(θ′)
∥∥ dα

(a)

≤ρ
∫ 1

0

∥∥αθ − θ′∥∥ dα (b)

≤ ρ
∫ 1

0

α∥θ∥dα+ ρ∥θ′∥ ≤ ρ
(
∥θ∥+ ∥θ′∥

)
where (a) is true because of Hessian Lipschitz (7), in (b) we use the triangle inequality.

Lemma 5. Under Assumption 1, we have block-wise Lipschitz continuity as follows:∥∥∥∥[ ∇2
x′x′f(θ

′) ∇2
x′y′f(θ

′)

0 ∇2
y′′y′′f(θ

′′)

]
−
[
∇2

xxf(θ) ∇2
xyf(θ)

0 ∇2
yyf(θ)

]∥∥∥∥ ≤ ρ (∥θ′ − θ∥+ ∥θ′′ − θ∥
)
, ∀θ,θ′,θ′′, (21)

and ∥∥∥∥[ 0 0
∇2

y′x′f(θ
′) 0

]
−
[

0 0
∇2

yxf(θ) 0

]∥∥∥∥ ≤ ρ∥θ′ − θ∥, ∀θ,θ′, (22)

where θ = [x y]T, θ′ = [x′ y′]T, θ = [x′′ y′′]T and each of them is partitioned as two blocks, x,x′,x′′ ∈ Rdx and
y,y′,y′′ ∈ Rdy .

Proof. There proof involves two parts:

Upper Triangular Matrix Case: Consider three different vectors θ, θ′ and θ′′, where each of them is partitioned as two
blocks in a same way, i.e., θ = [x y]T, θ′ = [x′ y′]T, θ = [x′′ y′′]T. We can have∥∥∥∥[ ∇2

x′x′f(θ
′) ∇2

x′y′f(θ
′)

0 ∇2
y′′y′′f(θ

′′)

]
−
[
∇2

xxf(θ) ∇2
xyf(θ)

0 ∇2
yyf(θ)

]∥∥∥∥
≤
∥∥∥∥I1([ ∇2

x′x′f(θ
′) ∇2

x′y′f(θ
′)

∇2
y′x′f(θ

′) ∇2
y′y′f(θ

′)

]
−
[
∇2

xxf(θ) ∇2
xyf(θ)

∇2
yxf(θ) ∇2

yyf(θ)

])∥∥∥∥
+

∥∥∥∥I2([ ∇2
x′′x′′f(θ

′′) ∇2
x′′y′′f(θ

′′)

∇2
y′′x′′f(θ

′′) ∇2
y′′y′′f(θ

′′)

]
−
[
∇2

xxf(θ) ∇2
xyf(θ)

∇2
yxf(θ) ∇2

yyf(θ)

])
I2

∥∥∥∥
(a)

≤
∥∥∥∥[ ∇2

x′x′f(θ
′) ∇2

x′y′f(θ
′)

∇2
y′x′f(θ

′) ∇2
y′y′f(θ

′)

]
−
[
∇2

xxf(θ) ∇2
xyf(θ)

∇2
yxf(θ) ∇2

yyf(θ)

]∥∥∥∥
+

∥∥∥∥[ ∇2
x′′x′′f(θ

′′) ∇2
x′′y′′f(θ

′′)

∇2
y′′x′′f(θ

′′) ∇2
y′′y′′f(θ

′′)

]
−
[
∇2

xxf(θ) ∇2
xyf(θ)

∇2
yxf(θ) ∇2

yyf(θ)

]∥∥∥∥
(7)
≤ρ
(
∥θ′ − θ∥+ ∥θ′′ − θ∥

)
where in (a) we use

I1 =

[
I 0
0 0

]
I2 =

[
0 0
0 I

]
(23)

and ∥I1∥ = ∥I2∥ = 1.
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Lower Triangular Matrix Case:∥∥∥∥[ 0 0
∇2

y′x′f(θ
′) 0

]
−
[

0 0
∇2

yxf(θ) 0

]∥∥∥∥
=

∥∥∥∥I2([ ∇2
x′x′f(θ

′) ∇2
x′y′f(θ

′)

∇2
y′x′f(θ

′) ∇2
y′y′f(θ

′)

]
−
[
∇2

xxf(θ) ∇2
xyf(θ)

∇2
yxf(θ) ∇2

yyf(θ)

])
I1

∥∥∥∥
(a)

≤ ρ∥θ′ − θ∥

where (a) is true because we know ∥I1∥ = ∥I2∥ = 1.

Then, we illustrate that the size of the partial gradient with one round update by the A-GD algorithm has the following
relation with the full size of the gradient.

Lemma 6. If function f(·) is L-smooth with Lipschitz constant, then we have

∥∇f(θ(t))∥2 ≤

(
1 + 2

(
L

Lmax

)2
)(
∥∇xf(x

(t),y(t))∥2 + ∥∇yf(x
(t+1),y(t))∥2

)
(24)

where sequence θ(t) is generated by the A-GD algorithm.

Proof. First, we have

∥∇yf(x
(t),y(t))∥2 ≤ 2∥∇yf(x

(t+1),y(t))−∇yf(x
(t),y(t))∥2 + 2∥∇yf(x

(t+1),y(t))∥2. (25)

Using the block Lipschitz continuity of the objective function, we have

∥∇yf(x
(t),y(t))∥2 ≤ 2L2∥x(t+1) − x(t)∥2 + 2∥∇yf(x

(t+1),y(t))∥2

(a)
= 2L2∥η∇xf(x

(t),y(t))∥2 + 2∥∇yf(x
(t+1),y(t))∥2

(b)

≤ 2

((
L

Lmax

)2

∥∇xf(x
(t),y(t))∥2 + ∥∇yf(x

(t+1),y(t))∥2
)

(26)

where (a) is because we use the update rule of A-GD, (b) is true due to η ≤ 1/Lmax.

Summing ∥∇xf(x
(t),y(t))∥2 on both sides of the above equation, we have

∥∇f(θ(t))∥2 =∥∇xf(x
(t),y(t))∥2 + ∥∇yf(x

(t),y(t))∥2 (27)

≤

(
1 + 2

(
L

Lmax

)2
)(
∥∇xf(x

(t),y(t))∥2 + ∥∇yf(x
(t+1),y(t))∥2

)
(28)

≤2
(
1 +

L

Lmax︸ ︷︷ ︸
=p1

)2 (
∥∇xf(x

(t),y(t))∥2 + ∥∇yf(x
(t+1),y(t))∥2

)
. (29)

B. Proofs of PA-GD
As stated in the main body of the paper, we can use Lemma 2 and Lemma 3 to prove Theorem 1. Lemma 2 is basically
well-known. The main task focuses on proving Lemma 3, which consists of a sequence of lemmas (Lemma 7–Lemma 9)
that lead to Lemma 3.
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Before discussing the details of Lemma 3, we need to introduce some constants defined as follows,

F , γ3

ρ2ĉ5
log−3

(
dκ

δ

)
p−3
1 p−2

2 , (30a)

G ,γ
2

ρ
log−2

(
dκ

δ

)
p−2
1 p−1

2 , (30b)

S , γ

ρĉ2
log−1

(
dκ

δ

)
p−1
1 p−1

2 , (30c)

T ,
log
(
dκ
δ

)
p1

ηγ
. (30d)

These quantities refer to different units of the algorithm. Specifically, F accounts for the objective value, G for the size
of the gradient, S for the norm of the difference between iterates, and T for the number of iterations. Also, we define a
condition number in terms of γ as κ , Lmax

γ ≥ 1. In the process of the proofs, we also use conditions log(dκδ ) ≥ 1 when
δ ∈ (0, dκe ], p1 ≥ 2 repeatedly to simply the expressions of the parameters.

According to Lemma 3, we consider saddle point θ̃
(t)

that satisfies the following condition.

Condition 1. A strict saddle point θ̃
(t)

satisfies the following conditions:

∥∇x̃f(x̃
(t), ỹ(t))∥2 + ∥∇ỹf(x̃

(t+1), ỹ(t))∥2 ≤ g2th and λmin(∇2f(θ̃
(t)
)) ≤ −γ (31)

where gth , G, γ =
√
ρϵ, δ = dLmax√

ρϵ e
−χ and η ≤ 1

Lmax
in Algorithm 1.

Remark 3. Condition 1 implies that point θ̃
(t)

satisfies ∥∇f(θ̃
(t)
)∥ ≤ ϵ (see Lemma 6 and definition of G or (37) in

Section B.1) and λmin(∇2f(θ̃
(t)
)) ≤ −√ρϵ.

Sufficient Decrease after Perturbation Consider θ̃
(t)

satisfy Condition 1 and let H , ∇2f(θ̃
(t)
).

With these definitions of parameters, we will study how PA-GD can escape from strict saddle points. The main part of the
proof is to show that when two sequences are apart from each other with a certain distance along the e⃗ direction at the
starting points, where e⃗ denotes the eigenvector of M−1T whose eigenvalue is maximum (greater than 1). Then, after a
number of iterations at least one of them can give a sufficient decrease of the objective value. This property implies the
iterates can easily escape from the saddle points as long as there is a large enough perturbation between the initial points
of the two sequences along the e⃗ direction. We will introduce the following two lemmas formally which are the main
contributions of this work.

Lemma 7. Under Assumption 1, consider θ̃
(t)

that satisfies Condition 1 and a generic sequence u(t) generated by A-GD.
For any constant ĉ ≥ 1, δ ∈ (0, dκe ], when initial point u(1) satisfies

∥u(1) − θ̃
(t)
∥ ≤ 2r, (32)

then, with the definition of

r , S
ĉ3κ log(dκδ )p1

, and T , min

{
inf
t≥1
{t|f(u(t+2))− f(u(1)) ≤ −2F}, ĉT

}
, (33)

for any η ≤ 1/Lmax, the iterates generated by A-GD satisfy ∥u(t+1) − θ̃
(t)
∥ ≤ 3S, ∀t ≤ T .

Lemma 8. Under Assumption 1, consider θ̃
(t)

that satisfies Condition 1. for any ĉ ≥ min{136, 8(3p20 + 12p0 + 12)},
δ ∈ (0, dκe ] and η ≤ 1/Lmax, with the definition of p0 , max{6, 4(L/Lmax)

2 + 1} and

T , min

{
inf
t≥1
{t|f(w(t+2))− f(w(1)) ≤ −2F}, ĉT

}
(34)
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where two iterates {u(t)} and {w(t)} that are generated by A-GD with initial points {u(1),w(1)} satisfying

∥u(1) − θ̃
(t)
∥ ≤ r, w(1) = u(1) + υre⃗, υ ∈ [δ/(2

√
d), 1], (35)

where e⃗ denotes the eigenvector of M−1T whose eigenvalue is maximum, then, if ∥u(t+1) − θ̃
(t)
∥ ≤ 3S,∀t ≤ T , we will

have T < ĉT .

Lemma 7 says that if the u(t)-iterate generated by A-GD cannot provide a sufficient decrease of the objective value, then the
iterates are constrained within the area which is very close to the saddle point. With this property, Lemma 8 shows if there
exists another A-GD iterate w(t), which is initialized with a certain distance along the e⃗ direction from the u-iterate, then
w(t) will provide a sufficient decrease of the objective value. These two lemmas characterize the convergence behavior of
the A-GD iterates.

Escaping from Saddle Points Then, we need to quantify the probability that after adding the perturbation the algorithm
cannot escape from strict saddle points. In previous work about escaping from saddle points with GD, a characterization of
the geometry around saddle points has been given (Jin et al., 2017, Lemma 15). Once we know that PA-GD also decreases
the objective value sufficiently in Lemma 7 and Lemma 8, the following lemma can be claimed straightforwardly. To be
more specific, we can obtain the probability that iterates will be stuck at the strict points after T iterations as follows.

P(w(1) ∈ Xstuck) =

∫
B
θ̃(t) (r)

P(w(1) ∈ Xstuck|u(1) ∈ Xstuck)P(u(1) ∈ Xstuck)du
(1)

≤
∫
B
θ̃(t) (r)

P(w(1) ∈ Xstuck|u(1) ∈ Xstuck)P(u(1))du(1)

(a)

≤ δ
∫
B
θ̃(t) (r)

P(u(1))du(1) = δ

where Xstuck denotes the set where the algorithm starts such that the sequence cannot escape from the strict saddle point
after T iterations, (a) is true because probability P(w(1) ∈ Xstuck|u(1) ∈ Xstuck) can be upper bounded by δ, which is
proven in the following lemma.

Lemma 9. Under Assumption 1, there exists a ĉ ≥ min{136, 8(3p20+12p0+12)} where p0 , max{6, 4(L/Lmax)
2+1},

for any η ≤ 1/Lmax and δ ∈ (0, dκ/e]: consider a saddle point θ̃
(t)

which satisfies Condition 1, let θ(1) = θ̃
(t)

+ ξ where
ξ is generated randomly which follows the uniform distribution over a ball with radius r, and let θ(t) be the iterates of
PA-GD starting from θ(1). Then, with at least probability 1− δ, we have the following for any T ≥ ĉT + 3

f(θ(T ))− f(θ̃
(t)
) ≤ −F . (36)

Then, applying η ≤ 1
Lmax

,γ =
√
ρϵ, and δ = dLmax√

ρϵ e
−χ into Lemma 9, we can get Lemma 3 immediately.

With these lemmas, we can give the proof of Theorem 1 as the following.

B.1. Proof of Theorem 1

Next, we prove the main theorem.

Proof. Submitting γ =
√
ρϵ, and δ = dLmax√

ρϵ e
−χ into the definitions of F ,G, T , we will have the following definitions.

fth ,F =

√
ϵ3

ρ

ĉ5(χp1)3p22
,

gth ,G =
ϵ

(χp1)2p2
,

tth ,ĉT + 3 =
ĉLmaxχp1√

ρϵ
+ 3.
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After applying Lemma 6, we know that

∥∇f(θ̃
(t)
)∥ ≤ ϵ

χ2p2
≤ ϵ (37)

where χ, p2 ≥ 1.

With a set of necessary lemmas and leveraging the proof of PGD (Jin et al., 2017, Theorem 3), we have the following
convergence analysis of PA-GD. Specifically, at any iteration, we need to consider two cases (we use the first iteration as
an example):

1. In this case the gradient is large such that ∥∇xf(x
(1),y(1))∥2 + ∥∇yf(x

(2),y(1))∥2 > g2th: According to Lemma 2,
we have

f(θ(2))− f(θ(1)) ≤ −η
2

(
∥∇xf(x

(1),y(1))∥2 + ∥∇yf(x
(2),y(1))∥2

)
≤ −η

2
g2th

(a)

≤ − 1

2(χp1)4p22

ϵ2

Lmax
(38)

where in (a) use the definition of g2th and η ≤ 1/Lmax.

2. The gradient is small in all block directions, namely ∥∇xf(x
(1),y(1))∥2 + ∥∇yf(x

(2),y(1))∥2 ≤ g2th: in this case,
we will add the perturbation to the iterates, and implement A-GD for the next tth steps and then check the termination
condition. If the termination condition is not satisfied, we must have

f(θ(tth))− f(θ(1)) ≤ −fth = −

√
ϵ3

ρ

ĉ5(χp1)3p22
, (39)

which implies that the objective value in each step on average is decreased by

f(θ(tth))− f(θ(1))

tth
≤ − 1

2ĉ6(χp1)4p22

ϵ2

Lmax
(40)

where we use tth < 2 ĉLmaxχp1√
ρϵ since p1 ≥ 1, χ > 1, ĉ ≥ 136.

With the results of these two cases, we can know that if there is a large size of the gradient, we can know the decrease
of the objective function value by the result of case 1, and if not, we use the result of case 2. In summary, PA-GD
can have a sufficient decrease of the objective function value by 1

2ĉ6(χp1)4p2
2

ϵ2

Lmax
per iteration on average. This means

that Algorithm 1 must stop within a finite number of iterations, which is

f(θ(1))− f⋆
1

2ĉ6(χp1)4p2
2

ϵ2

Lmax

= 2ĉ6(χp1)
4p22

Lmax∆f

ϵ2
= O

(
ĉ6∆f (χp1)

4p22Lmax

ϵ2

)
(41)

where ∆f , f(θ(1))− f⋆.

According to Lemma 3, we know that with probability 1− dLmax√
ρϵ e

−χ the algorithm can give a sufficient descent with

the perturbation when ∥∇xf(x
(1),y(1))∥2 + ∥∇yf(x

(2),y(1))∥2 ≤ g2th. Since the total number of perturbation we
can add is at most

n =
1

tth
2ĉ6(χp1)

4p22
Lmax∆f

ϵ2
≤ 1

ĉT
2ĉ6(χp1)

4p22
Lmax∆f

ϵ2
= 2(p1χ)

3p22ĉ
5

√
ρϵ∆f

ϵ2
(42)

where we use tth ≥ ĉT .

Using the union bound, the probability of Lemma 3 being satisfied for all perturbations is

1− ndLmax√
ρϵ

e−χ = 1− dLmax√
ρϵ

e−χ2ĉ5(p1χ)
3p22

√
ρϵ∆f

ϵ2
= 1− 2ĉ5dLmaxp

3
1p

2
2

∆f

ϵ2︸ ︷︷ ︸
,C

χ3e−χ. (43)

With chosen χ = 3max{ln(C/δ), 4}, we have χ3e−χ ≤ e−χ/3, which implies χ3e−χC ≤ e−χ/3C ≤ δ.

The proof is complete.
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B.2. Proof of Lemma 1

Proof. Recall the definitions:

Hu ,
[
∇2

xxf(θ̃
(t)
) ∇2

xyf(θ̃
(t)
)

0 ∇2
yyf(θ̃

(t)
)

]
Hl ,

[
0 0

∇2
yxf(θ̃

(t)
) 0

]
, (44)

where θ̃
(t)

is an ϵ-SOSP, and
M , I+ ηHl, T , I− ηHu. (45)

Our goal of this lemma is to show that the maximum eigenvalue of M−1T is strictly greater than 1 so that we can project
iterates v(t) onto the two subspaces, where the first subspace is spanned by the eigenvector of M−1T whose eigenvalue is
the largest (greater than 1) and the other one is spanned by the remaining eigenvectors.

Note that M is a lower triangular matrix and det(M) = 1, which implies that det(M−1T− λI) = det(T− λM), where
λ denotes the eigenvalue. We can analyze the determinant of T− λM, i.e.,

det[T− λM] = det[I− ηHu − λ(I+ ηHl)]

=det


(1− λ)I− η∇2

xxf(θ̃
(t)
) −η∇2

xyf(θ̃
(t)
)

−λη∇2
yxf(θ̃

(t)
) (1− λ)I− η∇2

yyf(θ̃
(t)
)︸ ︷︷ ︸

,Q(λ)

 .

Then, we use the following two steps to show λmax(M
−1T) > 1: 1) we can show that all eigenvalues of Q(1+ δ) are real

where δ > 0; 2) there exists a λ > 1 such that det(Q(λ)) = 0.

All the eigenvalues of Q(1 + δ) are real:

Consider a δ > 0. We have

Q(1 + δ) = −

ηH+ δ(I+ ηHl)︸ ︷︷ ︸
,F(δ)

 (46)

where

F(δ) =δI+ η

[
∇2

xxf(θ̃
(t)
) ∇2

xyf(θ̃
(t)
)

(1 + δ)∇2
yxf(θ̃

(t)
) ∇2

yyf(θ̃
(t)
)

]

=

[
I √

1 + δ

] [
δI+ η∇2

xxf(θ̃
(t)
) η

√
1 + δ∇2

xyf(θ̃
(t)
)

η
√
1 + δ∇2

yxf(θ̃
(t)
) δI+ η∇2

yyf(θ̃
(t)
)

]
︸ ︷︷ ︸

G(δ)

[
I

1√
1+δ

]
,

meaning that F(δ) is similar to G(δ). Hence, F(δ) has the same eigenvalues of G(δ). Since G(δ) is a symmetric matrix,
all the eigenvalues of G(δ) are real. From (46), we can conclude that all the the eigenvalues of Q(1 + δ) are real.

Quantify ∥ηH−G(δ)∥:

Since we know that H and G(δ) are diagonalizable (normal matrices), then we have the following result (Weyl, 1912) (or
(Holbrook, 1992)) of quantifying the difference of the eigenvalues of the two normal matrices

max
1≤i≤d

|λi(ηH)− λi(G(δ))| ≤ ∥ηH−G(δ)∥ (47)

where λi(H) and λi(G(δ)) denote the ith eigenvalue of H and G(δ), which are listed in a decreasing order.
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With the help of (47), we can check

∥ηH−G(δ)∥

=

∥∥∥∥∥δI+
[

0 (
√
1 + δ − 1)η∇2

xyf(θ̃
(t)
)

(
√
1 + δ − 1)η∇2

yxf(θ̃
(t)
) 0

]∥∥∥∥∥
≤δ +

(√
1 + δ − 1

)
η∥H∥+

(√
1 + δ − 1

)
η

∥∥∥∥∥ ∇2
xxf(θ̃

(t)
) 0

0 ∇2
yyf(θ̃

(t)
)

∥∥∥∥∥
(a)

≤ δ +
(√

1 + δ − 1
)( L

Lmax
+ 1

)
(48)

where (a) is true since we used η ≤ 1/Lmax and the fact that ∥H∥ ≤ L and ∥Hd∥ ≤ Lmax. Also, it can be observed that
when δ = 0, matrix G(δ) is reduced to ηH. Note that if η = 1/L is used, then we have ∥ηH−G(δ)∥ ≤ δ+2(

√
1 + δ−1).

Quantify δ:

From Condition 1, we know that the minimum eigenvalue of ηH is less than −ηγ and the maximum difference of the
eigenvalues between ηH and G(δ) is upper bounded by (48). Then, we can choose a sufficient small δ such that G(δ) also
has a negative eigenvalue, meaning that we need to find a δ such that

δ +
(√

1 + δ − 1
)( L

Lmax
+ 1

)
< ηγ. (49)

In other words, if we choose
δ∗ =

ηγ

1 + L
Lmax

then we can conclude that G(δ∗) has a negative eigenvalue which is less than −ηγ + δ∗ = − ηγ

1+Lmax
L

.

In the following, we will check that δ∗ is a valid choice, meaning that equation (49) holds when δ∗ = ηγ
1+ L

Lmax

.

First step: since L/Lmax ≥ 1, we have ηγ/(1 + L/Lmax) ≤ ηγ/2.

Second step: we only need to check (√
1 + δ − 1

)( L

Lmax
+ 1

)
<
ηγ

2
,

meaning that it is sufficient to check(
L

Lmax
+ 1

)2

(1 + δ) <

(
L

Lmax
+ 1 +

ηγ

2

)2

. (50)

It can be easily check that the left-hand side (LHS) of (50) with chosen δ∗ is

(
L

Lmax
+ 1

)2
(
1 +

ηγ
L

Lmax
+ 1

)
≤
(

L

Lmax
+ 1

)2

+

(
L

Lmax
+ 1

)2

ηγ

<

(
L

Lmax
+ 1

)2

+

(
L

Lmax
+ 1

)2

ηγ +
η2γ2

4
,

which is RHS of (50). Therefore, we can conclude that G(δ∗) has a negative eigenvalue.

There exists a λ > 1 such that det(Q(λ)) = 0:

When δ is large, it is easy to check G(δ) has a positive eigenvalue, since term δ2I dominates the spectrum of matrix G(δ)

in (46). Since the eigenvalue is continuous with respect to δ, we can conclude there exists a largest δ, i.e., δ̂, such that G(δ̂)

has a zero eigenvalue, i.e., det(Q(δ̂)) = 0 where δ̂ is at least ηγ
1+ L

Lmax

. From (46), we know that there exits a λ = 1 + δ̂
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such that det(G(1 + δ̂)) = 0 since det(G(δ̂)) = det(Q(1 + δ̂)) = 0. Equivalently, there exits a eigenvalue of M−1T,
which is

1 + δ̂ > 1 + δ∗ = 1 +
ηγ

1 + L
Lmax

. (51)

Therefore, we can conclude that the largest real eigenvalue of M−1T is at least 1 + δ∗ > 1.

B.3. Proof of Lemma 2

Proof. Under Assumption 1, we have (descent lemma)

f(θ(t+1)) ≤f(θ(t)) +∇xf(x
(t),y(t))T(x(t+1) − x(t)) +

Lx

2
∥x(t+1) − x(t)∥2

+∇yf(x
(t+1),y(t))T(y(t+1) − y(t)) +

Ly

2
∥y(t+1) − y(t)∥2

(a)

≤f(θ(t))− η
(
∥∇xf(x

(t),y(t))∥2 + ∥∇yf(x
(t+1),y(t))∥2

)
+
η2Lx

2
∥∇xf(x

(t),y(t))∥2 + η2Ly

2
∥∇yf(x

(t+1),y(t))∥2

(b)

≤f(θ(t))− η

2

(
∥∇xf(x

(t),y(t))∥2 + ∥∇yf(x
(t+1),y(t))∥2

)
(52)

where (a) is true because of the update rule of gradient descent in each block and Assumption 1, in (b) we used η ≤
1/Lmax.

B.4. Proof of Lemma 7

Proof. Consider a generic sequence u(t) and partition it into two blocks, i.e., u(t) = [x(t) y(t)]T. Without loss of generality,
let u(1) be the origin, i.e., u(1) = 0. According to the A-GD update rules, we have

u(t+1) =u(t) − η
[
∇xf(x

(t),y(t))
∇yf(x

(t+1),y(t))

]
. (53)

From (52), we also know that

f(u(t+1)) ≤f(u(t))− η

2

(
∥∇xf(x

(t),y(t))∥2 + ∥∇yf(x
(t+1),y(t))∥2

)
, ∀t ≤ T.

(53)
= f(u(t))− 1

2η
∥u(t+1) − u(t)∥2 (54)

By applying telescoping sum of (54), we have

f(u(t+1)) ≤ f(u(1))− 1

2η

t∑
τ=1

(
∥u(τ+1) − u(τ)∥2

)
, ∀t ≤ T. (55)

According to the definition of T , we know that

f(u(1))− f(u(t+1)) < 2F ∀t ≤ T. (56)

Combining (56) and (55), we know that
t∑

τ=1

∥u(τ+1) − u(τ)∥2 < 4ηF . (57)

Next, we will get the upper bound of ∥u(t+1) − u(1)∥, ∀t ≤ T as the following, first, by the triangle inequality, we know

∥u(t+1) − u(1)∥ ≤
t∑

τ=1

∥u(τ+1) − u(τ)∥, (58)
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so we have

∥u(t+1) − u(1)∥2 ≤t
t∑

τ=1

∥u(τ+1) − u(τ)∥2 (59)

≤T
t∑

τ=1

∥u(τ+1) − u(τ)∥2 (60)

(57)
≤ T4ηF

(33)
≤ ĉT 4ηF

(a)

≤ 4S2, (61)

where in (a) we use the relation ĉηT F = S2 by applying (30a)(30c)(30d).

Due to the following fact

∥u(t+1) − θ̃
(t)
∥ = ∥u(t+1) − u(1) + u(1) − θ̃

(t)
∥ ≤ ∥u(t+1) − u(1)∥︸ ︷︷ ︸

≤2S

+ ∥u(1) − θ̃
(t)
∥︸ ︷︷ ︸

≤ S
ĉ log( dκ

δ
)

≤ 3S (62)

where the last inequality is true when ĉ ≥ 1. Therefore, we know that ∥u(t+1) − θ̃
(t)
∥ ≤ 3S, ∀t ≤ T where η ≤ 1/Lmax,

which completes the proof.

B.5. Proof of Lemma 8

Proof. Let u(1) = 0 and define v(t) , w(t) − u(t) where v(t), w(t) and u(t) are partitioned as u(t) = [x
(t)
u y

(t)
u ]T,

v = [x
(t)
v y

(t)
v ]T and w = [x

(t)
w y

(t)
w ]T. According to the assumption of Lemma 8, we know that

v(1) = υ
S

ĉ3κ log(dκδ )p1
e⃗ (63)

where υ ∈ [δ/(2
√
d), 1]. First, defining an auxiliary function

h(α) ,
[

∇xf(x
(t)
u + αx

(t)
v ,y

(t)
u + αy

(t)
v )

∇yf(x
(t+1)
u + αx

(t+1)
v ,y

(t)
u + αy

(t)
v )

]
,

we can have

h(0) =

[
∇xf(x

(t)
u ,y

(t)
u )

∇yf(x
(t+1)
u ,y

(t)
u )

]
, h(1) =

[
∇xf(x

(t)
u + y

(t)
v ,x

(t)
u + y

(t)
v )

∇yf(x
(t+1)
u + y

(t+1)
v ,x

(t)
u + y

(t)
v )

]
,

g(α) =
dh(α)

dα
=

 ∇2
xxf(x

(t)
u + αy

(t)
v ,x

(t)
u + αy

(t)
v ) ∇2

xyf(x
(t)
u + αx

(t)
v ,y

(t)
u + αy

(t)
v )

0 ∇2
yyf(x

(t+1)
u + αx

(t+1)
u ,y

(t)
u + αy

(t)
v )


︸ ︷︷ ︸

,H̃(t)

u (α)

v(t)

+

 0 0

∇2
yxf(x

(t+1)
u + αx

(t+1)
v ,y

(t)
u + αy

(t)
v ) 0


︸ ︷︷ ︸

,H̃(t)

l (α)

v(t+1),

which also give [
∇xf(x

(t)
w ,y

(t)
w )

∇yf(x
(t+1)
w ,y

(t)
w )

]
=

∫ 1

0

g(α)dα+

[
∇xf(x

(t)
u ,y

(t)
u )

∇yf(x
(t+1)
u ,y

(t)
u )

]
. (64)
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Second, we consider sequence w(t), i.e.,

u(t+1) + v(t+1)

=w(t+1) = w(t) − η

[
∇xf(x

(t)
w ,y

(t)
w )

∇yf(x
(t+1)
w ,y

(t)
w )

]
(65)

(64)
= u(t) + v(t) − η

[
∇xf(x

(t)
u ,y

(t)
u )

∇yf(x
(t+1)
u ,y

(t)
u )

]
− η

∫ 1

0

g(α)dα (66)

(a)
=u(t) + v(t) − η

[
∇xf(x

(t)
u ,y

(t)
u )

∇yf(x
(t+1)
u ,y

(t)
u )

]
− η∆̃(t)

u v(t) − ηHuv
(t) − η∆̃(t)

l v(t+1) − ηHlv
(t+1) (67)

where in (a) we use the following definitions:

∆̃(t)
u ,

∫ 1

0

H̃
(t)

u (α)dα−Hu, (68)

∆̃
(t)
l ,

∫ 1

0

H̃
(t)

l (α)dα−Hl, (69)

and

Hu ,
[
∇2

xxf(θ̃
(t)
) ∇2

xyf(θ̃
(t)
)

0 ∇2
yyf(θ̃

(t)
)

]
, Hl ,

[
0 0

∇2
yxf(θ̃

(t)
) 0

]
. (70)

Obviously, H = Hl +Hu.

Third, since the first two terms at RHS of (67) combined with u(t) at LHS of (67) are exactly the same as (53). It can be
observed that equation (67) gives the dynamic of v(t), i.e.,

v(t+1) = v(t) − η∆̃(t)
u v(t) − ηHuv

(t) − η∆̃(t)
l v(t+1) − ηHlv

(t+1). (71)

Then, we can rewrite (71) in a matrix form as the following.

(I+ ηHl)︸ ︷︷ ︸
,M

v(t+1) + η∆̃
(t)
l v(t+1) (67)

= (I− ηHu)︸ ︷︷ ︸
,T

v(t) − η∆̃(t)
u v(t). (72)

It is worth noting that matrix M is a lower triangular matrix where the diagonal entries are all 1s, so it is invertible.

Taking the inverse of M on both sides of (72), we can obtain

v(t+1) +M−1η∆̃
(t)
l v(t+1) = M−1Tv(t) −M−1η∆̃(t)

u v(t). (73)

Projecting v(t) to the Direction with the Negative Curvature:
Let P denote the projection operator that projects the vector onto the space spanned by the eigenvector of M−1T whose
eigenvalue is maximum. Taking the projection on both sides of (73), we have

Pv(t+1) +PM−1η∆̃
(t)
l v(t+1) = P(M−1T)v(t) −PM−1η∆̃(t)

u v(t). (74)

From Lemma 1, we know that the maximum eigenvalue of M−1T is greater than 1. Next, we will leverage this property
to show how A-GD can escape from the saddle point.

Relationship of the Norm of v(t) Projected in the Two Subspaces:
Let ϕ(t) denote the norm of v(t) projected onto the space spanned by the eigenvector of M−1T whose maximum eigenvalue
is 1 + δ̂ where δ̂ ≥ ηγ/(1 + L

Lmax
) due to Lemma 1, and ψ(t) denote the norm of v(t) projected onto the remaining space.

From (74), we can have

ϕ(t+1) ≥ (1 + δ̂)ϕ(t) − η∥M−1∥∥∆̃(t)
l ∥∥v

(t+1)∥ − η∥M−1∥∥∆̃(t)
u ∥∥v(t)∥, (75)

ψ(t+1) ≤ (1 + δ̂)ψ(t) + η∥M−1∥∥∆̃(t)
l ∥∥v

(t+1)∥+ η∥M−1∥∥∆̃(t)
u ∥∥v(t)∥ (76)
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where we apply the triangle inequality. Also, M is a 2× 2 block matrix, so we have M−1 = I− ηHl and the size of M−1

can be bounded as follows.

∥M−1∥ ≤1 + η∥Hl∥
(a)
=1 + ∥ηH⊙D− ηHd∥
≤1 + η∥H⊙D∥+ η∥Hd∥
(b)

≤1 + η

(
1 +

1

π
+

log(d)

π

)
∥H∥+ η∥Hd∥

(c)

≤1 + η log(4d)∥H∥+ η∥Hd∥
(d)

≤1 + ηL log(4d) + ηLmax

≤1 + L

Lmax
log(4d) + 1 < 2

1 +
L log(4d)

2Lmax︸ ︷︷ ︸
p2

 (77)

where in (a) operator ⊙ denotes the Hadamard product and

Hd ,
[
∇2

xxf(θ̃
(t)
) 0

0 ∇2
yyf(θ̃

(t)
)

]
D =


1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 · · · 1 1

 ∈ Rd×d

and inequality (b) comes from the result on the spectral norm of the triangular truncation operator (please see [Theorem
1](Angelos et al., 1992)). In particular, by defining

ζ(D) , max

{
∥H⊙D∥
∥H∥

,H ̸= 0

}
,

we have ∣∣∣∣ ζ(D)

log(d)
− 1

π

∣∣∣∣ ≤ (1 + 1

π

)
1

log(d)
, (78)

(c) is true because 1 + 1
π + log(d)

π ≤ log(4d) for d ≥ 1, in (d) we use the fact that ∥H∥ ≤ L and ∥Hd∥ ≤ Lmax.

Since ∥w(1) − θ̃
(t)
∥ ≤ ∥u(1) − θ̃

(t)
∥︸ ︷︷ ︸

≤r

+ ∥v(1)∥︸ ︷︷ ︸
≤r

≤ 2r, we can apply Lemma 7. Then, we know ∥w(t+1) − θ̃
(t)
∥ ≤

3S, ∀t ≤ T . According to the assumptions of Lemma 8, we have ∥u(t+1) − θ̃
(t)
∥ ≤ 3S, ∀t ≤ T , and

∥v(t+1)∥ = ∥w(t+1) − u(t+1)∥ ≤ ∥u(t+1) − θ̃
(t)
∥+ ∥w(t+1) − θ̃

(t)
∥ ≤ 6S. (79)

According to Lipsichiz continuity, we have the relation betweenn ∥v(t)∥ and ∥v(t+1)∥, and following upper bounds of
∥∆̃(t)

u ∥ and ∥∆̃(t)
l ∥.

1. Relation between ∥v(t)∥ and ∥v(t+1)∥:
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According to the definition of v(t), we know that

∥x(t+1)
v ∥2 + ∥y(t+1)

v ∥2 =∥v(t+1)∥2 = ∥w(t+1) − u(t+1)∥2

=

∥∥∥∥∥w(t) − η

[
∇xf(x

(t)
w ,y

(t)
w )

∇yf(x
(t+1)
w ,y

(t)
w )

]
−

(
u(t) − η

[
∇xf(x

(t)
u ,y

(t)
u )

∇yf(x
(t+1)
u ,y

(t)
u )

])∥∥∥∥∥
2

≤2∥v(t)∥2 + 4η2

∥∥∥∥∥
[
∇xf(x

(t)
w ,y

(t)
w )

∇yf(x
(t+1)
w ,y

(t)
w )

]
−

[
∇xf(x

(t)
u ,y

(t)
w )

∇yf(x
(t+1)
u ,y

(t)
w )

]∥∥∥∥∥
2

+ 4η2

∥∥∥∥∥
[
∇xf(x

(t)
u ,y

(t)
w )

∇yf(x
(t+1)
u ,y

(t)
w )

]
−

[
∇xf(x

(t)
u ,y

(t)
u )

∇yf(x
(t+1)
u ,y

(t)
u )

]∥∥∥∥∥
2

(a)

≤2∥v(t)∥2 + 4η2(L2∥x(t+1)
v ∥2 + L2

max∥x(t)
v ∥2) + 4η2(L2 + L2

max)∥y(t)
v ∥2 (80)

(b)

≤6∥v(t)∥2 + 4

(
L

Lmax

)2 (
∥x(t+1)

v ∥2 + ∥y(t)
v ∥2

)
(81)

where (a) is true due to gradient Lipschitz continuity, and in (b) we use η ≤ 1/Lmax.

Also, we need the relation between ∥x(t+1)
v ∥ and ∥x(t+1)

v ∥, which is

∥x(t+1)
v ∥2 =∥x(t+1)

w − x(t+1)
u ∥2 ≤ 2∥x(t)

w − x(t)
u ∥2 + 2∥∇xf(x

(t)
w ,y(t)

w )−∇xf(x
(t)
u ,y(t)

u )∥2

≤2∥x(t)
v ∥2 + 4

(
∥∇xf(x

(t)
w ,y(t)

w )−∇xf(x
(t)
w ,y(t)

u )∥2 + ∥∇xf(x
(t)
w ,y(t)

u )−∇xf(x
(t)
u ,y(t)

u )∥2
)

≤6∥x(t)
v ∥2 + 4

(
L

Lmax

)2

∥y(t)
v ∥2. (82)

Combing (81) and (82), we have

∥v(t+1)∥2 ≤ 6∥v(t)∥2 + 4

(
L

Lmax

)2
(
6∥x(t)

v ∥2 +

(
4

(
L

Lmax

)2

+ 1

)
∥y(t)

v ∥2
)

≤ 6∥v(t)∥2 + 4

(
L

Lmax

)2

p0∥v(t)∥2 ≤ p20∥v(t)∥2 (83)

where p0 , max

{
6, 4

(
L

Lmax

)2
+ 1

}
.

2. Upper bounds of ∥∆̃(t)
u ∥ and ∥∆̃(t)

l ∥:

According to ρ-Hessian Lipschitz continuity and Lemma 5, we have the size of ∆̃(t)
u as the following.

∥(∆̃(t)
u )∥ ≤

∫ 1

0

∥H̃
(t)

u (α)−Hu∥dα

(21)
≤
∫ 1

0

ρ

(
∥u(t) + αv(t) − θ̃

(t)
∥+

∥∥∥∥∥
[

x
(t+1)
u + αx

(t+1)
v

y
(t)
u + αy

(t)
v

]
− θ̃

(t)

∥∥∥∥∥
)
dα (84)

(a)

≤
∫ 1

0

ρ

(
2∥u(t) + αv(t) − θ̃

(t)
∥+ ∥u(t+1) + αv(t+1) − θ̃

(t)
∥
)
dα

≤ρ(∥u(t+1) − θ̃
(t)
∥+ 2∥u(t) − θ̃

(t)
∥) + ρ

∫ 1

0

α(∥v(t+1)∥+ ∥v(t)∥)dα

≤ρ
(
∥u(t+1) − u(t)∥+ ∥u(t) − θ̃

(t)
∥+ 2∥u(t) − θ̃

(t)
∥) + 0.5∥v(t+1)∥+ 0.5∥v(t)∥

)
(83)
≤ ρ

(
3S + 6S + 0.5(p0 + 1)∥v(t)∥

)
≤(3p0 + 12)ρS (85)
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where (a) is true because∥∥∥∥∥
[

x
(t+1)
u + αx

(t+1)
v

y
(t)
u + αy

(t)
v

]
− θ̃

(t)

∥∥∥∥∥ ≤
∥∥∥∥I1(u(t+1) + αv(t+1) − θ̃

(t)
)∥∥∥∥+ ∥∥∥∥I2(u(t) + αv(t) − θ̃

(t)
)∥∥∥∥

(23)
≤ ∥u(t+1) + αv(t+1) − θ̃

(t)
∥+ ∥u(t) + αv(t) − θ̃

(t)
∥. (86)

Applying Lemma 5, we can also get the upper bound of ∥∆̃(t)
l ∥, i.e.,

∥∆̃(t)
l ∥ ≤

∫ 1

0

∥H̃
(t)

l (α)−Hl∥dα

(22)
≤
∫ 1

0

ρ

∥∥∥∥∥
[

x
(t+1)
u + αx

(t+1)
v

y
(t)
u + αy

(t)
v

]
− θ̃

(t)

∥∥∥∥∥ dα (87)

≤
∫ 1

0

ρ(∥u(t) + αv(t) − θ̃
(t)
∥+ ∥u(t+1) + αv(t+1) − θ̃

(t)
)∥dα

≤ρ(∥u(t+1) − θ̃
(t)
∥+ ∥u(t) − θ̃

(t)
∥) + ρ

∫ 1

0

α(∥v(t+1)∥+ ∥v(t)∥)dα

(79)
≤ ρ

(
3S + 3S + 0.5(p0 + 1)∥v(t)∥

)
≤(3p0 + 9)ρS. (88)

With the upper bounds of ∥∆̃(t)
u ∥, ∥∆̃(t)

l ∥ and relation between ∥v(t+1)∥ and ∥v(t)∥ as shown in (83), we can further simply
(75) and (76) as follows,

ϕ(t+1)
(75)
≥ (1 + δ̂)ϕ(t) − η(p0∥∆̃(t)

l ∥+ ∥∆̃
(t)
u ∥)∥M−1∥∥v(t)∥,

ψ(t+1)
(76)
≤ (1 + δ̂)ψ(t) + η(p0∥∆̃(t)

l ∥+ ∥∆̃
(t)
u ∥)∥M−1∥∥v(t)∥,

and further we have

ϕ(t+1) ≥ (1 + δ̂)ϕ(t) − η(p0∥∆̃(t)
l ∥+ ∥∆̃

(t)
u ∥)∥M−1∥

√
(ϕ(t))2 + (θ(t))2,

ψ(t+1) ≤ (1 + δ̂)ψ(t) + η(p0∥∆̃(t)
l ∥+ ∥∆̃

(t)
u ∥)∥M−1∥

√
(ϕ(t))2 + (θ(t))2,

since ∥v(t)∥ =
√
(ϕ(t))2 + (ψ(t))2.

Consequently, we can arrive at

ϕ(t+1) ≥ (1 + δ̂)ϕ(t) − µ
√
(ϕ(t))2 + (ψ(t))2, (89)

ψ(t+1) ≤ (1 + δ̂)ψ(t) + µ
√
(ϕ(t))2 + (ψ(t))2, (90)

where µ is the upper bound of η(p0∥∆̃(t)
l ∥+ ∥∆̃

(t)
u ∥)∥M−1∥ and can be obtained as

µ , 2(3p20 + 12p0 + 12)ηρp2S (91)

by applying (77)(85)(88).

Quantifying the Norm of v(t) Projected at Different Subspaces:
Then, we will use mathematical induction to prove

ψ(t) ≤ 4µtϕ(t). (92)
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It is true when t = 1 since ∥ψ(1)∥ (35)
= 0.

Assuming that equation (92) is true at the tth iteration, we need to prove

ψ(t+1) ≤ 4µ(t+ 1)ϕ(t+1). (93)

We use (89) and (90) separately into RHS and LHS of (93) to get the lower and upper bound of 4µ(t+1)ϕ(t+1) and ψ(t+1).
Applying (89) into RHS of (93), we have the lower bound of 4µ(t+ 1)ϕ(t+1) as the following:

4µ(t+ 1)ϕ(t+1) ≥ 4µ(t+ 1)

(
(1 + δ̂)ϕ(t) − µ

√
(ϕ(t))2 + (ψ(t))2

)
(94)

and substituting (90) into LHS of (93), we have the upper bound of ψ(t+1), i.e.,

ψ(t+1) ≤ (1 + δ̂)(4µtϕ(t)) + µ
√
(ϕ(t))2 + (ψ(t))2. (95)

If RHS of (94) is greater than RHS of (95), it is equivalent to prove (93). After some manipulations, it is sufficient to show

(1 + 4µ(t+ 1))

(√
(ϕ(t))2 + (ψ(t))2

)
≤ 4ϕ(t). (96)

In the following, we will show that the above relation (96) is true, i.e., RHS of (94) is greater than RHS of (95).

First step: We know that

4µ(t+ 1) ≤ 4µT
(91)
≤ 8(3p20 + 12p0 + 12)ηρSp2ĉT

(a)

≤ 8(3p20 + 12p0 + 12)

ĉ

(b)

≤ 1 (97)

where in (a) we use the relation ηρSp2ĉT = 1
ĉ by applying (30c)(30d); (b) is true when ĉ ≥ 8(3p20 + 12p0 + 12).

Second step: Also, we know that

4ϕ(t) ≥ 2
√
2(ϕ(t))2

(92),(97)
≥ (1 + 4µ(t+ 1))

√
(ϕ(t))2 + (ψ(t))2, (98)

which gives (96). Therefore, we can conclude that ψ(t+1) ≤ 4µ(t+ 1)ϕ(t+1) is true, which completes the induction.

Recursion of ϕ(t):

Using (92), we have ψ(t)
(92)
≤ 4µtϕ(t)

(97)
≤ ϕ(t), which implies

ϕ(t+1)
(89)
≥ (1 + δ̂)ϕ(t) − µ

√
(ϕ(t))2 + (ψ(t))2

(a)

≥ (1 +
γη

1 + L/Lmax
)ϕ(t) − µ

√
(ϕ(t))2 + (ψ(t))2

(b)

≥(1 +
1

1 + L/Lmax

γη

2
)ϕ(t) (99)

where in (a) we used Lemma 1, and (b) is true because ψ(t) ≤ ϕ(t) and

µ =ηρSp28(3p20 + 12p0 + 12)

(30c)
=

γη

1 + L/Lmax

8(3p20 + 12p0 + 12)

ĉ2 log(dκδ )

(a)

≤ 1

1 + L/Lmax

γη

2
√
2

where (a) is true when ĉ ≥ 4
√√

2(3p20 + 12p0 + 12).
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Quantifying Escaping Time:
From (79), we have

6S ≥∥v(t)∥ ≥ ϕ(t)

(99)
≥ (1 +

γη

2(1 + L/Lmax)
)tϕ(1)

(a)

≥ (1 +
γη

2(1 + L/Lmax)
)t

δ

2
√
d

S
ĉ3κ

log−1(
dκ

δ
)p−1

1 ∀t ≤ T (100)

where in (a) we use condition υ ∈ [δ/(2
√
d), 1].

Since (100) is true for all t ≤ T , we can have

T ≤
log(12ĉ3(κ

√
d

δ ) log(dκδ )p1)

log(1 + ηγ
2(1+L/Lmax)

)

(a)
<

4(1 + L/Lmax) log(12ĉ
3(

√
dκ
δ ) log(dκδ )p1)

ηγ

(b)
<
4(1 + L/Lmax) log(12ĉ

3(dκδ )2p1)

ηγ

(c)
<
4(log(12ĉ4(dκδ )2))p1

ηγ
(d),(30d)
≤ 4(2 + log(12ĉ4))T (101)

where (a) comes from inequality log(1 + x) > x/2 when x < 1, in (b) we used relation log(x) < x, x > 0, (c) is
true because ĉ > p0 > p1, and (d) is true because δ ∈ (0, dκe ] and log(dκ/δ) > 1 so that log(12ĉ4) + 2 log(dκδ ) ≤
(log(12ĉ4) + 2) log(dκδ ).

From (101), we know that when

4(2 + log(12ĉ4)) < ĉ, (102)

we will have T < ĉT .

It can be observed that LHS of (102) is a logarithmic with respect to ĉ and RHS of (102) is a linear function in terms of ĉ,
implying that when ĉ is large enough inequality (102) holds. It is can be numerically checked that when ĉ ≥ 136 inequality
(102) holds. The proof is complete.

B.6. Proof of Lemma 9

Proof. The proof of Lemma 9 is similar as the one of proving convergence of PGD shown in (Jin et al., 2017, Lemma
14,15). Considering the completeness of the whole proof in this paper, here we give the following proof of this lemma in
details.

Step 1: Let u(1) be a vector that follows uniform distribution within the ball B(d)

θ̃
(t)(r), where B(d)

θ̃
(t) denotes the

d-dimensional ball centered at θ̃
(t)

= [x̃(t) ỹ(t)]T with radius r. Let ξ , [ξx ξy]
T represent the difference between

the random generated vector u(1) and saddle point θ̃
(t)

. We can show that the objective function value in the worst case is
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increased at most by

f(u(1))− f(θ̃
(t)
)

=f(u(1))− f(x̃(t+1),y(t)) + f(x̃(t+1),y(t))− f(θ̃
(t)
) (103)

≤∇xf(x̃
(t), ỹ(t))Tξx +

Lx

2
∥ξx∥2 +∇yf(x̃

(t+1), ỹ(t))Tξy +
Ly

2
∥ξy∥2 (104)

≤∥∇xf(x̃
(t), ỹ(t))∥∥ξx∥+ ∥∇yf(x̃

(t+1), ỹ(t))∥∥ξy∥+
Lmax

2
∥ξ∥2

(a)

≤∥ξ∥
√
∥∇xf(x̃(t), ỹ(t))∥2 + ∥∇yf(x̃(t+1), ỹ(t))∥2 + Lmax

2
∥ξ∥2

(b)

≤ G S
ĉ3κ log(dκδ )p1︸ ︷︷ ︸

≤ 1
2F

+
Lmax

2

(
S

ĉ3κ log(dκδ )p1

)2

︸ ︷︷ ︸
≤ 1

2F

(c)

≤ F (105)

where (a) is true because max{∥ξx∥, ∥ξy∥} ≤ ∥ξ∥, and in (b) we used κ > 1, log(dκ/δ) > 1 and Condition 1, and in (c)
we just use the definitions of S,G,F , i.e., GS/(ĉ3p1) < 1

2F and LmaxS2/(ĉκ log(dκ/δ)p1) ≤ F .

Step 2: we will quantify the decrease of the objective value after T number of iterations. Under Assumption 1, let θ̃
(t)

satisfy conditions Condition 1, and two PA-GD iterates {u(t)} {w(t)} satisfy the conditions as in Lemma 8.

First, let us discuss the following two cases.

1. If f(u(2)) − f(u(1)) ≤ −2F : the objective value is decreased by at least 2F , meaning that we can have a sufficient
decrease of the objective value. Then, we can proceed to step 3.

2. If f(u(2)) − f(u(1)) > −2F : there is no sufficient decrease, implying that we need to more number of iterations so
that the objective can be decreased by at least 2F . Applying Lemma 7 and Lemma 8, we have the following analysis.

Second, let T ∗ , ĉT and T ′ , inft≥1

{
t|f(u(t+2))− f(u(1)) ≤ −2F

}
. Then, we have the following two cases to

analyze the decrease of the objective value.

1. Case T ′ ≤ T ∗: Applying Lemma 7, we know that

f(u(T ′+2))− f(u(1)) ≤ −2F . (106)

Based on Lemma 2, we know that A-GD is always decreasing the objective function. For any T > ĉT +2 = T ∗+2 ≥
T ′ + 2, we have

f(u(T ))− f(u(1)) ≤ f(u(T∗+2))− f(u(1)) ≤ f(u(T ′+2))− f(u(1)) ≤ −2F (107)

when ĉ ≥ 1.

2. Case T ′ > T ∗: Applying Lemma 7, we know that ∥u(t+1) − u(1)∥ ≤ 3S for t ≤ T ∗. Define T ′′ =
inft≥1

{
t|f(w(t+2))− f(w(1)) ≤ −2F

}
. Then, after applying Lemma 8, we know T ′′ < T ∗. Using the same

argument as the above case, for T ≥ ĉT + 2 ≥ T ∗ + 2 ≥ T ′′ + 2, we also have

f(w(T ))− f(w(1)) ≤ f(w(T∗+2))− f(w(1)) ≤ f(w(T ′′+2))− f(w(1)) ≤ −2F . (108)

Step 3: combining (107) and (108), we have

min
{
f(u(T ))− f(u(1)), f(w(T ))− f(w(1))

}
≤ −2F , ∀T ≥ ĉT + 3, (109)

meaning that at least one of the sequences can give a sufficient decrease of the objective function if the initial points of the
two sequences are separated apart with each other far enough along direction e⃗.
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Therefore, we can conclude that if u(1) ∈ Xstuck, then (u(1) ± υre⃗) /∈ Xstuck where υ ∈ [ δ
2
√
d
, 1].

Step 4: finally, we give the upper bound of the volume of Xstuck,

Vol(Xstuck) =

∫
B(d)

θ̃(t)

duIXstuck(u) =

∫
B(d−1)

θ̃(t)

du−1

∫ θ̃
(t)

1 +

√
r2−∥θ̃(t)

−1−u−1∥2

θ̃
(t)

1 −
√

r2−∥θ̃(t)

−1−u−1∥2

du1IXstuck(u)

≤
∫
B(d−1)

θ̃(t)

du−1

(
2

δ

2
√
dr

)
= Vol

(
B(d−1)

θ̃
(t) (r)

) rδ√
d

where IXstuck(u) is an indicator function showing that u belongs to set Xstuck, and u1 represents the component of vector u
along e⃗ direction, and u−1 is the remaining d− 1 dimensional vector.

Then, the ratio of Vol(Xstuck) over the whole volume of the perturbation ball can be upper bounded by

Vol(Xstuck)

Vol(B(d)

θ̃
(t)(r))

≤
rδ√
d
Vol(B(d−1)

θ̃
(t) (r))

Vol(B(d)

θ̃
(t)(r))

=
δ√
dπ

Γ(d2 + 1)

Γ(d2 + 1)
≤ δ√

dπ

√
d

2
+

1

2
≤ δ

where Γ(·) denotes the Gamma function, and inequality is true due to the fact that Γ(x + 1)/Γ(x + 1/2) <
√
x+ 1/2

when x ≥ 0.

Step 5: combining (105) and (109), we can show that

f(θ(T ))− f(θ̃
(t)
) = f(θ(T ))− f(u(1))︸ ︷︷ ︸

≤−2F

+ f(u(1))− f(θ̃
(t)
)︸ ︷︷ ︸

≤F

≤ −F (110)

with at least probability 1− δ.


