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Abstract

Alternating gradient descent (A-GD) is a simple
but popular algorithm in machine learning,
which updates two blocks of variables in an
alternating manner using gradient descent
steps. In this paper, we consider a smooth
unconstrained nonconvex optimization problem,
and propose a perturbed A-GD (PA-GD) which
is able to converge (with high probability) to
the second-order stationary points (SOSPs) with
a global sublinear rate. Existing analysis on
A-GD type algorithm either only guarantees
convergence to first-order solutions, or converges
to second-order solutions asymptotically
(without rates). To the best of our knowledge,
this is the first alternating type algorithm that
takes O(polylog(d)/€®) iterations to achieve
an (€, /€)-SOSP with high probability, where
polylog(d) denotes the polynomial of the
logarithm with respect to problem dimension d.

1. Introduction

In this paper, we consider a smooth and unconstrained
nonconvex optimization problem

min () (1)

OcRd
where f : R? — R is twice differentiable (possibly
nonconvex). Suppose 8 can be further divided into two
blocks: 6 = [x y]T, with d = dx + dy. The
block-structured equivalent form of (1) is then given by
min  f(x,y). 2

x€Rdx ,yeR%Y
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There are many ways of solving problem (1), such
as gradient descent (GD), accelerated gradient descent
(AGD), etc. When the problem has some naturally defined
block structures, as given in (2), it is common to adopt the
alternating gradient descent (A-GD) algorithm, or block
coordinate gradient decent (BC-GD). These algorithms
typically solve the (smaller dimensional) subproblems in
a sequential manner, and they enjoy the significant benefit
of fast empirical convergence compared with GD, because
they are able to use much larger stepsizes when updating
each block variables (Jain et al., 2013; Xu & Yin, 2013;
Zhao et al., 2015).

More specifically, many machine learning related
applications have the aforementioned “block structure”,
such as matrix factorization (Zhao et al., 2015; Lu et al.,
2017), tensor decomposition (Ge etal., 2015), matrix
completion/decomposition (Xu & Yin, 2013; Jain et al.,
2013). Under relatively mild conditions, the convergence
of block structured algorithms such as BC-GD and A-GD
to the first-order stationary points (FOSPs) have been
broadly investigated (Tseng, 2001). In particular, it is
known that under mild conditions, these algorithms also
achieve global sublinear rates (Razaviyayn et al., 2014).
However, despite the popularity of these block-structured
algorithms and significant recent progress in understanding
its behavior, it remains unclear whether, for generic
block-structured nonconvex problems, they can converge
to the set of second-order stationary points (SOSPs) with
a provable global rate, even for the simplest problem with
two blocks of variables.

1.1. Motivation

Algorithms that can escape from strict saddle points — those
stationary points that have negative eigenvalues — have
wide applications. Many recent works have analyzed the
saddle points in machine learning problems (Kawaguchi,
2016). In two-layer porcupine neural networks (PNNs),
it has been shown that most local optima of PNN
optimizations are also global optimizers (Feizi et al., 2018).
Previous work in (Ge etal., 2015) has shown that the
saddle points in tensor decomposition are indeed strict
saddle points. Also, it has been shown that any saddle
points are strict in dictionary learning and phase retrieval
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problems (Sun et al.,, 2015). More recently, (Ge et al.,
2017) proposed a unified analysis of saddle points for a
broad class of low rank matrix factorization problems, and
they proved that these saddle points are strict.

In nonconvex block structured problems (2), using A-GD is
advantageous compared with GD because it can potentially
use a much larger stepsize. Consider a simple quadratic
function f(0) = @' A@ where A = [1 a;a 1] € R?*?
and a > 0 is number. In this case, the block-wise gradient
Lipschitz constant is Ly,ax = 1 and the gradient Lipschitz
constant of the entire function is L = 1 + a (since the
largest eigenvalue of matrix A is 1 4+ a). When A is
semi-positive definite, problem ming f(8) is convex. The
difference between L and L., is limited since ¢ < 1.
When A is indefinite, the problem becomes nonconvex and
a could be very large, resulting a large difference between
L and L,,x. If A-GD is used to solve this problem,
the adopted stepsizes, which are inversely proportional to
the block-wise Lipschitz constants, could be much larger
than the one using GD. This simple example motivates
us to use A-GD instead of GD to solve block structured
problems. Simple numerical examples to demonstrate this
phenomenon will be shown in Fig. 1, while other more
complicated examples are given in Sec. 6.

1.2. Related Work

Many recent works have been focused on the performance
analysis and/or design of algorithms with convergence
guarantees to local minimum points/SOSPs for nonconvex
optimization problems. These include the trust region
method (Conn et al., 2000), cubic regularized methods
(Nesterov & Polyak, 2006; Carmon & Duchi, 2016;
Agarwal et al., 2017), a mixed approach of the first-order
and second-order methods (Reddi et al., 2018), negative
curvature methods (Goldfarbetal,, 2017), adaptive
negative curvature descent (AdaNCD) (Liu et al., 2018),
an accelerated gradient method (Carmon etal., 2018),
etc. Also, the advantages of exploiting the negative
curvature compared with only using gradient descent
have been shown by extensive numerical evidence in
(Curtis & Robinson, 2018). However, these algorithms
typically require second-order information, therefore
they incur high computational complexity when problem
dimension becomes large.

There has been a line of work on stochastic gradient
descent algorithms, where properly scaled Gaussian noise
is added to the iterates of the gradient at each time
(also known as stochastic gradient Langevin dynamics
(SGLD)). Some theoretical works have pointed out that
SGLD not only converges to the local minimum points
asymptotically but also may escape from local minima
(Zhang et al., 2017). However, these algorithms require
a large number of iterations with O(d*/e?) steps to

achieve the optimal point. On the other hand, there
is also a line of work analyzing the deterministic GD
type method. With random initializations, it has been
shown that GD asymptotically converges to SOSPs for
unconstrained smooth problems (Lee et al., 2016). More
recently, accelerated gradient descent (O’Neill & Wright,
2017), block coordinate descent, alternating minimization
(Li et al., 2019), block mirror descent and proximal block
coordinate descent (Lee etal., 2019; Songetal., 2017)
have been proven to almost always converge to SOSPs
with random initializations, but there is no convergence rate
reported. Unfortunately, a follow-up study indicated that
GD requires exponential time to escape from saddle points
for certain pathological problems (Du et al., 2017).

Adding some noise occasionally to the iterates of the
algorithm is another way of finding the negative curvature.
A perturbed version of GD has been proposed with
convergence guarantees to SOSPs (Jin et al., 2017), which
shows a faster provable convergence rate than the ordinary
gradient descent algorithm with random initializations.
There are fruitful follow-up results that show some
carefully designed stochastic algorithms can escape
from strict saddle points efficiently, such as perturbed
stochastic gradient descent (PSGD) (Jinetal., 2018a),
negative-curvature-originated-from noise (NEON),
NEONT(Xu et al., 2018), and NEON2 (Allen-Zhu & Li,
2018). Furthermore, the accelerated version of PGD is
proposed in (Jin et al., 2018b), which shows the fastest
convergence rate among all Hessian free algorithms.

1.3. Scope of This Paper

In this work, we consider a smooth unconstrained
optimization problem, and develop a perturbed A-GD
algorithm (PA-GD) which converges (with high
probability) to the set of SOSPs with a global sublinear
rate. Our work is inspired by the existing works (Jin et al.,
2017; Ge et al., 2015), which developed novel perturbed
GD methods that can escape from strict saddle points
efficiently. Similarly as in (Jin et al., 2017), we also divide
the entire iterates of GD into three types of points: those
whose gradients are large, those that are local minimum,
and those that are strict saddle points. At a given point,
when the size of the gradient is large enough, we just
implement the ordinary A-GD. When the gradient norm is
small, which may be either strict saddle or local minimum,
a perturbation will be added on the iterates to help to
escape from the saddle points.

From the above discussion, we know that many works
have been developed to make use of negative curvature
information around the saddle points. Unfortunately, these
techniques cannot be directly applied to A-GD type of
algorithms. The key challenge here is that at each iteration
only part of the variables are updated, therefore we have
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Table 1. Convergence rates of algorithms to SOSPs with the first-order information of the objective function, where p > 4, poly(-)

denotes a polynomial function and O hides a polylogarithmic factor.

ALGORITHM TYPE ITERATIONS (e,7v)-SOSP
SGD (GE ET AL., 2015) STOCHASTIC O(d /") (e, %)
SGLD (ZHANG ET AL., 2017) STOCHASTIC O(dP /e (e, e%)
NEON+NATASHA (XU ET AL., 2018) STOCHASTIC O(1/e?) (e, %)
PSGD (JINET AL., 20184) STOCHASTIC O(pPoLy(d,1/€)) (e, e%)
NEON2+SGD (ALLEN-ZHU & L1, 2018)  STOCHASTIC O(1/eY) (e, e%)
NEON™ (XU ET AL., 2018) DETERMINISTIC (5(1/&) (e, e%)
ACCELERATED PGD (JIN ET AL., 2018B)  DETERMINISTIC 5(1/&) (e, e%)
PGD (JIN ET AL., 2017) DETERMINISTIC ~ O(1/€?) (e, e%)
PA-GD (THIS WORK) DETERMINISTIC ~ O(1/€?) (e, e%)

access only to partial second-order information at the
points of interest. For example, consider a quadratic
objective function shown in Figure 1 (Section 4.1). While
fixing one block, the problem is strongly convex with
respect to the other block, but the entire problem is
nonconvex. Even if the iterates converge for each block
to the minimum points within the block, the stationary
point could still be a saddle point for the overall objective
function. Therefore, the analysis of how A-GD type of
algorithms exploit the negative curvature is one of the main
tasks in this paper.

Table 1 gives a summary of the iteration complexity of the
algorithms which only use the first-order information for
escaping from strict saddle points as a literature review. To
the best of our knowledge, there has been no work on using
A-GD algorithms to escape from strict saddle points with
provable convergence rate. The main contributions of this
work are as follows.

1.4. Contributions of This Work

In this paper, we design and analyze a perturbed
A-GD algorithm for solving a class of block structured
unconstrained nonconvex problems. By adding the
perturbation to A-GD, the algorithm is guaranteed to
converge to a set of SOSPs of a nonconvex problem with
high probability. By utilizing the matrix perturbation
theory, convergence rate of the proposed algorithm is
also established, which shows that the algorithm takes
O(polylog(d)/€?) iterations to achieve an (e, 1/€)-SOSP
with high probability.

The main contributions of the paper are highlighted below:
1) To the best of our knowledge, it is the first theoretical
results that shows A-GD type method can converge to
SOSPs for nonconvex optimization problems.

2) We show that our proposed PA-GD algorithm converges
to SOSPs with a rate of O(1/€?); Further, the algorithm can

use a larger stepsize which is inversely proportional to the
maximum Lipschitz constant over the two blocks, rather
than being inversely proportional to the Lipschitz constants
of the entire function. This is one of the major differences
between GD and A-GD.

3) By further exploiting the landscape of the block
structured objective functions, we show that when PA-GD
is applied in certain machine learning problems the
convergence rate of PA-GD to SOSPs still holds for finding
the global optimal solution of these problems.

2. Motivating Examples of This Work

From a geometric view of the loss functions in machine
learning problems, there are two types of undesired critical
points: (1) local minima that are not global minima; (2)
saddle points. If all critical points of a function f(6) are
either global minima or strict saddle points, we say that
£(@) has benign landscape (Chi et al., 2018), which is the
main property interested in this paper.

Matrix factorization: We consider a general low-rank
matrix factorization problem as follows,

minimize

1
—luvT —z*|3, 3
UEeRXr VERmMXr 2 H ||F ( )

where Z* € R"™*™ denotes the data matrix, U and
V represent the feature matrices in the latent space,
and superscript ' stands for the standard matrix/vector
transpose. It is not hard to see that there is a scaling
ambiguity between U and V. Recent works (Zhu et al.,
2018) have shown that after adding a proper regularizer, the
reformulated problem will not change the global optimal
solution of the original one. In order to make the notation
of the function concise, let W = [U V]|T. Then, the
reformulated problem is given by

minimize

1 *
Ue]Ran VeRmxri”UvT*Z “%‘+p(U7V)) (4)
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where p(U,V) £ 2|[UTU — V'V|%, v > 0. This
regularizer is able to enforce the size difference between
U and V to be as small as possible.

The matrix factorization problem has a wide application
in areas of machine learning and signal processing; see a
recent survey paper (Chen & Chi, 2018) and the references
therein. For example, the objective functions of the
following two interesting examples also have this benign
landscape.

Matrix sensing: One popular formulation of the matrix
sensing problem is given by:

minimize

1
~lAUVT —Z9)|? U, V), 5
UGRW,VERW2”“4( W=+ p(U, V), (5

where the mapping A(-) satisfies the restricted isometry
property (Recht et al., 2010).

Two-layer linear neural networks: given a set of data
points {Z;,y,}7, of size m, we wish to fit a two-layer
linear network using the quadratic loss as follows,

k
minimize > [|[g,~UV'#|3 = |[Y -UV'X|?,
UeRTLXT‘,VERT?LX T Z:1

—~ (6)
where X 2 [Z1,..., 2] € R™*¥ denotes the data matrix

and Y £ [§,,...,5,] € R"** represents the label matrix.

3. Definition and Assumption
The objective function has the following properties.
Definition 1. A differentiable function f(-) is L-smooth

with gradient Lipschitz constant L (uniformly Lipschitz
continuous), if

IVf(6) = V@) <Ll6—6 V0.6

The function is block-wise smooth with gradient Lipschitz
constant Ly, that is:

IVxf(x,5) = Vi f (X y)Il < Lx[x = X[|, V%, %,y

or with gradient Lipschitz constant Ly, that is:

IVyf(x,y) = Vyf(xy) < Lylly = ¥'ll, vy, ¥ x.

Further, let Ly, = max{Ly, Ly }. It can be easily shown
that L. < L. In most block structured problems, we
have Ly < L.

Definition 2. For a differentiable function f(-), if
IVf(8)]] = 0, then 8 is a FOSP. If ||V f(0)| < ¢, then
0 is an e-FOSP.

Definition 3. If |[Vf(0)|| = 0 and A\uin(V2f(0)) <
0, 0 is a strict (non-degenerate) saddle point, where
Amin(V2£(0)) denotes the minimum eigenvalue of matrix

V2£(9).

Remark 1. For a differentiable function f(-), if 0 is a
FOSP, and there exists ¢ > 0 so that for any 6’ in the
e-neighborhood of @, we have f(0) < f(6'), then 6 is a
local minimum. A saddle point @ is a FOSP that is not a
local minimum.

Definition 4. A twice-differentiable function f(-) is
p-Hessian Lipschitz if

IV2£(0) = V(0" <pll0—6|, v6,0". (7)

Definition 5. For a p-Hessian Lipschitz function f(-), 0 is
a SOSP if [V f(0)] = 0 and Anin(V2£(6)) > 0. If the
following holds

||Vf(9)|| <e€ and /\Hlin(VQf(a)) > =y ¥

where €, > 0, then 0 is an (e,~)-SOSP.

Assumption 1. Function f(-) is L-smooth, block-wise
smooth with gradient Lipschitz constants Ly, Ly, and
p-Hessian Lipschitz.

4. Perturbed Alternating Gradient Descent
4.1. Algorithm Description

A-GD is a classical algorithm that optimizes the variables
of an optimization problem in an alternating manner
(Bertsekas, 1999), meaning that when one block of
variables is updated, the remaining block is fixed to be the
same as its previous solution. Mathematically, the iterates
of A-GD are updated by the following rule

x(HD =x) — v, f(x1),y®), (9)
y D =y® — vy f (x0T y®) (9b)
where 6 £ [x y|T is partitioned by two blocks, superscript
(t) denotes the iteration counter and 77 < 1/L,,x stands
for the stepsize. Our proposed algorithm is based on A-GD,
but modified in a way similar to the recent work (Jin et al.,
2017), which adds some noise in PGD.

The details of the implementation of PA-GD are shown
in Algorithm 1, where Ay denotes the difference of the
objective value at the initial point and global optimal
solution, € represents the predefined target error, ¢ is the
predefined target probability, and more definitions of the
parameters used in Algorithm 1 are shown in Table 2. The
algorithm works in the following way:

1) Algorithm 1 just implements the ordinary A-GD
before the iterates achieve an approximate FOSP, which
is defined by the condition: |V, f(x® y®)|?> +
[Vy f(xEHD, y)? < g

2) When some additional conditions are satisfied, that is,
the algorithm has waited long enough from the last time
that any noise is added (indicated by the condition t — ¢, >
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Table 2. Definition of Parameters in Algorithm 1.

PARAMETERS EXPRESSION/RANGE

n (0, 1/ Limax]

Do max {6,4(L/Lmax)” + 1}
pP1 1+ L/Lmax

D2 1+ Llog(4d)/(2Lmax)

¢ min{136, 8(3pj + 12po + 12)}
5 (0,1]

€ (07 L2de/p]

=53, 2 '
X max{log(“HEZERL) 4
€

gm (xp1)?p2
J: _Vel/o

™ 25 (xp1)3p2

tn di;ai\/x—;g? +3

r L(xxaxES(XP1)2P2

9

I

4
3
2
1
>0
1
2
3
4

4

iteration (t)

Figure 1. The objective function is f(8) = 07 A0,0 = [z y|"

R2X1. (left) Contour of the objective values and the trajectory
(pink color) of PA-GD started near strict saddle point [0, 0], where
A =[12;21] € R**2, and the length of the arrows indicate the

strength of —V f(0) projected onto directions x, y respectively.

(right) Convergence rate comparison between GD and A-GD
with random initialization, where A = [1 1000;1000 1], the
stepsize of A-GD is 1/Lmax = 1, and the stepsize of GD is
1/L =1/1001.

tyy in Algorithm 1), we add some random noise uniformly
taken from By(r) (a d-dimensional ball centered at 0 with
radius 7);

3) If the objective value is not decreased sufficiently after
adding the perturbation for ty, steps (specifically, not
decreased by at least fy,), then Algorithm 1 stops and
returns an approximate SOSP solution.

It is worth noting that the structure of the algorithm is
similar to the PGD in (Jin et al., 2017). The perturbation at
certain iterates plays an important role in showing that the
iterates converge to SOSPs. The key difference between

PGD and PA-GD lies in the way of updating variables.

In each update of variables, we implement one step of
gradient descent on block x, and then proceed to block
y. Once the algorithm has sufficient decrease of the
objective value, it implies that the algorithm converges to
some good solution. Otherwise, some perturbation may

Algorithm 1 Perturbed Alternating Gradient Descent

Input: 0 Lo, L, 0,7 = 0/ Linax, p, €,0, A
for t = 1,...do
Update x(t“) via (9a).
if (| Vo f(x®, y )2+ [ Vy f(xEHD y D)2 < g

and t — t > ty, then

5(t) + 0" and tp <t
(t)

0 = + &0 <1 Add perturbation
Update x(“rl) via (9a) again.
end if

Update y *+1) via (9b).
if t —tp > tyn and £(81) — £ (0
~(tp
return 0

end if
end for

(tp)) > — fin then

be needed to help the iterates escape from the saddle
points. If after the perturbation the objective value does
not decrease sufficiently after a number of further iterations,
the algorithm terminates and returns the iterate before the
last perturbation.

To illustrate the practical behavior of the algorithm, we
provide an example that shows the trajectory of A-GD after
a small perturbation at a stationary point. In Figure 1, it is
clear that @ = [0 0]" is a FOSP and also a strict saddle
point since the eigenvalues of A are —1 and 3 respectively.
When zx is fixed, function f(€) is convex with respect
to y and vice versa, however, the objective function is
nonconvex. It can be observed that PA-GD can escape from
the strict saddle point efficiently while A-GD will not move
at @ = [0 0] without perturbation.

4.2. Convergence Rate Analysis

Despite the fact that PA-GD exploits a different way of
updating variables compared with GD, SGD, and their
variants, we will show that it can still escape from
strict saddle points with high probability with suitable
perturbation. The main theorem is presented as follows.
Theorem 1. Under Assumption 1, there exists a constant
¢ > min{136,8(3p3 + 12p0 —|— 12)} such that: for any
N <1/ Lo, 6 € (0,1], € < Zmax and Ay 2 F(91))— f7,
with probability 1 — 0, the lterates generated by PA-GD
converge to an (€, /€)-SOSP 0 satisfying

IVFO) <€ and Auin(VZf(0)) > —\/pe
in the following number of iterations:
1) <C Lmaxp1p2Af 1 < p1p2d2LmaXAf)> (10)
€2 €26

where f* denotes the global minimum value of the
objective function.
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Remark 2. When n = 1/L is used, the ratio L/Lax
becomes 1, so the convergence rate of PA-GD becomes

@ (%ﬁfm log* deA(sf . This result shows that if
a smaller stepsize is used, the worst-case convergence rate
of PA-GD is faster (with smaller constants) . This property
is consistent with the known result when block coordinate
descent is used in convex optimization problems, e.g., see
(Sun & Hong, 2015, Theorem 2.1). Also, in this case the
convergence rate is reduced to the one of PGD up to some
logarithmic factors, although the analysis is still different.

5. Convergence Analysis

In this section, we will present the main proof steps of
convergence analysis of PA-GD.

5.1. The Main Difficulty of the Proof

First, let us understand the challenge in the analysis of
PA-GD compared with that of P-GD.

Gradient Descent: GD searches the descent direction of
the objective function in the entire space R?. Without loss
of generality, we assume oY =o. According to the mean
value theorem, the GD update can be expressed as

o(t+1) — g(t) _ nvf(g(t))

1
=0 —nVf(0)—1n </ v2f(ae<t>)da) 6" (11
JO

where 0 < a < 1. It can be observed that the update rule of
GD contains the information of the Hessian matrix at point
0" in the integral, i.e., VQf(aH(t)). To be more specific,
letting 1 = V2 f(0*) where 6* denotes a saddle point, we
can rewrite (11) as

0 = (1 — )0 — A" — v f0)  (12)

where A() £ fol (V2f(a8)

Based on the p-Hessian Lipschitz property, we can show
that ||A®)|| is upper bounded by the difference of iterates.
By exploiting the negative curvature of the Hessian matrix
at saddle point 8", we can project the iterate onto the
direction where the eigenvalue of I — nH is greater than 1.
This leads to the fact that the norm of the iterates projected
along this direction will be increasing exponentially as
the algorithm proceeds around point 8*, implying that
the sequence generated by GD is able to escape from
the saddle point efficiently. The details of characterizing
the convergence rate have been analyzed previously in
(Jin et al., 2017).

—H)da.

Alternating Gradient Descent: However, the A-GD
algorithm only updates partial variables of vector 6.
Similarly, from the mean value theorem we can express the
A-GD rule of updating variables with assuming 6 = o

as follows:

Fxty )

=0") —nVf(0) -7 / H () dad
0

PIGRY :g(t)_n[ xf (x0, y ™) }

-1
—n/ H (0)dad®  (13)
0

where
0 0
t
(" () £ ,
V2, f(ax+, ay) 0
2 (t) (t) 2 () (t)
’H(t)(a)é Vi f(ax'™ ay'™) Viy flax'™ ay'?) ]
0 Vf,yf(ozx(t“‘l), ay(t))

From the above expression, it can be seen clearly that the
update rule of A-GD does not include a full Hessian matrix
at any point but only partial ones.

Furthermore, the right hand side of (13) not only contains
the second-order information of the previous point, i.e.,
[x(®),y®)] but also the one of the most recently updated
point, i.e., [x(**1) y(*)]. These features of A-GD make the
convergence analysis fundamentally different from the GD-
and/or SGD-type of algorithms. The split block structure
of the second-order information of the objective function
and dependence between the two blocks represent the main
challenges in understanding the behavior of the sequence
generated by the A-GD algorithm.

5.2. The Sketch of the Proof

First, we split ‘H as two parts, which are

[ VESO) 50
B SR 44 RS

0 0
Vixf(67) 0
and obviously we have H = H; + H..

Then, recursion (13) can be written as

0+D) | 3,9t

— oW _ 77'Hu9(t) _ nAEf)H(” nAl(t)B(t+1) (15)

Where A(t) £ fol HO () — Hy)da, A(t) N

fo —H,;)da. However, it is still unclear from (15)
how the 1terat10n evolves around the strict saddle point.

To highlight ideas, let us define

MA2I+0H;, T2I-nH,. (16)
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It can be observed that M is a lower triangular matrix
where the diagonal entries are all 1s; therefore it is
invertible. After taking the inverse of matrix M on both
sides of (15), we can obtain

p(t+1) — M—ng(t)_nM—lAS&)o(t)_nM—lAl(t)e(tJrl).

Our goal of analyzing the recursion of 6™ becomes to find
the maximum eigenvalue of M~'T. With the help of the
matrix perturbation theory, we can quantify the difference
between the eigenvalues of matrix H that contains the
negative curvature and matrix M~ T that we are interested
in analyzing. To be more precise, we give the following
lemma.

Lemma 1. Under Assumption 1, let H = V? f(8) denote

the Hessian matrix at @ where \pin(H) < —v and v > 0.

We have

al
1+ L

Lmax

Amax(MTIT) > 1+ 17)

where M, T are defined in (16) and Ay ax (M ~1T) denotes

the maximum eigenvalue of matrix M~'T.

Lemma 1 illustrates that there exits a subspace spanned by
the eigenvector of M~ T whose eigenvalue is greater than
1, indicating that the sequence generated by A-GD can still
potentially escape from the strict saddle point by leveraging
such negative curvature information. Next, we can give a
sketch of the proof of Theorem 1.

PA-GD updates the variables block by block, so we have to
provide the new proofs different from the previous work in
(Jin et al., 2017) to show that PA-GD can still escape from
saddle points with the perturbation technique.

First, if the size of the gradient is large enough, Algorithm 1
just implements the ordinary A-GD. We give the descent
lemma of A-GD as follows.

Lemma 2. Under Assumption 1, for the A-GD algorithm
with step-size 1 < 1/ Lax, we have

760 < f(61)
= 7 (IVxf O,y D)2 + [Ty £ (D, yO) 2).

Second, if the iterates are close to a strict saddle point, we
can show that the A-GD algorithm after a perturbation can
give a sufficient objective decrease with high probability
in terms of the objective value. To be more precise, the
statement is given as follows.

Lemma 3. Under Assumption 1, let x > 1, and 0, ¢, ,

Jin, tin calculated as Algorithm 1 describes. Let 5(t) £

[xX®) ¥OIT be a strict saddle point, which satisfies

L

max

9@ )P < (1+2()7) (19 @0, 5012

n IIVyf(i(t“),?(”)IIQ) <opigh<c (18)

and /\min(VQf(é(t)

) < .

~(t
Let 69 £ 9" + & where €Y is generated randomly
which follows the uniform distribution over By(r), and let
01+ pe the iterates of PA-GD. With at least probability

1~ s =X, we have f(00) — ;(6") < ~fin

We remark that Lemma 2 is well-known, while the main
challenges lie in proving Lemma 3. In the following, we
outline the main idea used in proving the latter. The formal
statements of these steps are shown in the appendix; see
Lemma 7-Lemma 9 therein.

We emphasize that the main contributions of this paper lies
in the analysis of the first two steps, where the special
update rule of PA-GD is analyzed so that the negative
curvature of H around the saddle points can be utilized.

Step 1 (Lemma 7) Consider a generic sequence u)
generated by PA-GD. We characterize the relation between

the distance between u(*) and é(t) and the decrease of the
objective value.

Step 2 (Lemma 8) Consider two generic sequences
generated by PA-GD, u®, w® initialized around the
saddle point. Leveraging the negative curvature around the
strict saddle point, by Lemma 1 we know that there exits
a direction, i.e., €, which is spanned by the eigenvector of
M~!'T whose corresponding eigenvalue is greater than 1.
When the initial points of these two iterates are separated
apart away from each other along direction € with a
small distance, meaning that w) = o 4 vré, v €
[6/(2v/d), 1], we can show that if iterate u(*n) is still
near the saddle point, the other sequence w'* will give
a sufficient decrease of the objective value with less than
tn steps, implying that iterates w(*) can escape from the
saddle point with less than ¢y, steps.

Step 3 (Lemma 9) We can quantify the probability that

Figure 2. Convergence comparison between A-GD and PA-GD,
where € = 10™%, gin = /10, = 0.02, tyy = 10//c, r = ¢/10.
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Figure 3. Convergence comparison among GD, PGD and PA-GD, where ¢ = 107'°, gy, = ¢/10, ts = 10/1/¢, 7 = ¢/10.

the A-GD sequence will give a sufficient decrease of the
objective value within 7" iterations after the perturbation
(Jin et al., 2017, Lemma 14,15).

6. Numerical Results

In this section, we will use several numerical results to
illustrate the effectiveness of the proposed algorithm on
escaping strict saddle points.

6.1. A toy example
First, we present a simple example that shows there are two

equal local optimal solutions, i.e., the global optimal points.

Consider a nonconvex objective function, i.e.,
T 1 4
1(6) = 0"A6 + 64, (19)

where @ = [z y]T. Here, we can easily show the shape
of objective function (19) in the two dimensional (2D) case
in Figure 2 (left), where A = [1 2;2 1] € R?*2. It can
be observed clearly that there exists a strict saddle point at
[0 0] and two other local optimal points. We randomly

initialize the algorithms around strict saddle point [0 0]T.

The convergence comparison between GD and PA-GD is
shown in Figure 2 (right). It can be observed that PA-GD
converges faster than GD to the global optimal point. Note
that if we initialize the iterates exactly at the origin, GD
will not move but PA-GD can still converge to the global
optimal solution.

6.2. Matrix factorization

We test the algorithms for the problem of matrix
factorization. =~ We randomly generate matrix Z* =
U*(V*)T with dimension n = 800, m = 200, = 10 and
initialize GD, PGD and PA-GD around saddle point 0. The

step-sizes of the GD, PGD, PA-GD algorithms are denoted
as 1. All perturbation related parameters of PA-GD and
PGD, e.g., gin, tih, 7, are the same for fair comparison at
some extent. Figure 3(a) shows the superiority of PA-GD
in the matrix factorization problem. When the step-size
is large, GD and PGD cannot decrease the objective value
monotonically or sufficiently but PA-GD can, since the
regularizer (or step-size) of PA-GD depends on Ly, rather
than L. PA-GD and PGD converge faster since the negative
curvature can be captured by adding the random noise.
Also, it can be observed that PA-GD converges to the global
optimal solution of this problem.

6.3. Two-layer linear neural networks

We also implement the algorithms in the application of
two-layer linear neural networks, where the data matrices
are randomly generated with dimension n = 100,m =
40,7 = 20, k = 20. The other settings are the same as the
above section in solving the matrix factorization problem.
In can be observed from Figure 3(b) that PA-GD converges
faster compared with other ones by the largest stepsize to
the global optimal solution of this problem. When GD uses
a large stepsize, e.g., n = 1 x 1072, it will diverge, which
is the reason why PA-GD is preferred.

7. Concluding Remarks

In this paper, a perturbed A-GD algorithm is proposed,
with the objective of finding SOSPs of nonconvex smooth
problems. The main contribution of this work is a new
analysis that takes into consideration the block structure
of the updates for the perturbed A-GD algorithm. By
exploiting the negative curvature, it is established that
with high probability the algorithms can converge to an
(€,/€)-SOSP with O(1/¢?) iterations.
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