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A. Proof of Theorem 1
Theorem 1 Assume (1) and (2) hold. For sufficiently large T such that

log T ≥ 5

8
(4ν)−

1
ε

the regret of SDTM with parameter r > 0 satisfies

E[R(T )] ≤ 2rT + (4νT )
1

1+ε (16Nc(r) log T )
ε

1+ε

where Nc(r) is the r-covering number of the arm set X .

Proof. Let x∗ ∈ arg maxx∈X µ(x) be an optimal arm. By the definition of the oracle, there must exist k ∈ [K] such that
x∗ ∈ Xk and hence D(x∗, x̄k) ≤ 2r. Since the expected reward function µ is Lipschitz, we have

µ(x∗)− µ(x̄k) ≤ D(x∗, x̄k) ≤ 2r. (17)

On the other hand, let x̄∗ ∈ arg maxx̄i,i∈[K] µ(x̄i) be an optimal skeleton arm. By theoretical guarantees of UCB policies
used with the truncated mean estimator (Bubeck et al. 2013, Proposition 1), the expected difference between the cumulative
reward of the pulled arms and that of the optimal skeleton arm x̄∗ can be upper bounded as follows

E

[
T∑
t=1

µ(x̄∗)−
T∑
t=1

µ(xt)

]
≤ (4νT )

1
1+ε (16K log T )

ε
1+ε . (18)

Combining (17) and (18) and recalling that K ≤ Nc(r), we obtain

E

[
T∑
t=1

µ(x∗)−
T∑
t=1

µ(xt)

]
≤ 2rT + (4νT )

1
1+ε (16Nc(r) log T )

ε
1+ε

where we use the fact that µ(x̄k) ≤ µ(x̄∗). �

B. Proof of Corollary 2
Corollary 2 We have ∑

r=2−i:i∈N,r≥r0

Nz(r)

r1/ε
≤ O

(
r
−(dz+1/ε)
0

)
and thus

R(T ) ≤ O
(

inf
r0∈(0,1)

(
r0T + log T · r−(dz+1/ε)

0

))
≤ Õ

(
T

dzε+1
dzε+ε+1

)
where dz is the zooming dimension of (X , µ), defined in (5).

Proof. We have

∑
r=2−i:i∈N,r≥r0

Nz(r)

r1/ε
≤

∑
i∈N:2−i≥r0

2idz+i/εZ ≤
blog2

1
r0
c∑

i=0

2idz+i/εZ ≤
∫ log2

1
r0

+1

0

2idz+i/εZ di ≤ (2/r0)dz+1/εZ

log (2dz+1/ε)

where Z is the zooming constant of (X ,D). �
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C. Proof of Theorem 3
Theorem 3 Assume (2) and (12) hold. With probability at least 1− 2δ, the regret of ADMM satisfies

R(T ) ≤ inf
r0∈(0,1)

(
r0T+

68(102σ̄)
1
ε log (e1/8T 2/δ)

∑
r=2−i:i∈N,r≥r0

Nz(r)

r1/ε

)

where σ̄ is defined in (13) and Nz(r) is the r-zooming number of (X , µ). Furthermore, by the first inequality in Corollary 2
we have

R(T ) ≤ Õ
(
T

dzε+1
dzε+ε+1

)
where dz is the zooming dimension of (X , µ), defined in (5).

Proof. We use the same notations as in the proof of Theorem 2 and propose the following lemmas, which are counterparts
of Lemmas 1, 2, 3, and 4 respectively. For brevity, we only prove Lemmas 5 and 6, and the proofs of Lemmas 7 and 8 can
be done in the same way as in appendices G and H respectively.

Lemma 5 LetR be the set comprised of all rounds in which Step 21 of Algorithm 4 is executed. Then, with probability at
least 1− 2δ, for all rounds t ∈ R and all active arms x ∈ At, we have

|µ̂t(x)− µ(x)| ≤ rt+1(x).

Proof. Fix t ∈ R and x ∈ At. By Lemma 2 in Bubeck et al. (2013), with probability at least 1− 2δ
T 2 we have

|µ̂t(x)− µ(x)| ≤ (12σ)
1

1+ε

(
16 log (e1/8T 2/δ)

nt(x)

) ε
1+ε

≤ (12σ̄)
1

1+ε

(
16 log (e1/8T 2/δ)

nt(x)

) ε
1+ε

= rt+1(x).

Taking the union bound over x ∈ At and t ∈ R and noticing |At| ≤ T, ∀t ∈ R, we conclude the proof. �

Lemma 6 With probability at least 1− 2δ, for all rounds t ∈ [T ] and all active arms x ∈ At, we have

∆(x) ≤ 3
√

2rt+1(x).

Proof. Fix t ∈ [T ]. For each active arm x ∈ At, there exist three different scenarios as follows.

(i) x is pulled by Step 4 or Step 10 of Algorithm 4 in round t. In this scenario, on one hand, we have

nt(x) ≤ 16 log (e1/8T 2/δ) + 1

and hence

rt+1(x) = (12σ̄)
1

1+ε

(
16 log (e1/8T 2/δ)

nt(x)

) ε
1+ε

≥ (12σ̄)
1

1+ε

(
16 log (e1/8T 2/δ)

16 log (e1/8T 2/δ) + 1

) ε
1+ε

≥ (3
√

2)−
1

1+ε

(
35

36

) ε
1+ε

=
35

36
·
(

3
√

2 · 35

36

)− 1
1+ε

≥ 35

36
·
(

3
√

2 · 35

36

)−1

≥ 1

3
√

2

where the second inequality follows from the definition of σ̄ in (13) and the following fact: 16 log (e1/8T 2/δ) > 35
for T > 1 and δ ∈ (0, 1/2). On the other hand, let x∗ ∈ arg maxx∈X µ(x) be an optimal arm. We have ∆(x) =

µ(x∗)− µ(x) ≤ D(x∗, x) ≤ 1. Thus, we obtain 3
√

2rt+1(x) ≥ ∆(x).

(ii) x is pulled by Step 12 of Algorithm 4 in round t. In this case, we have t− 1 ∈ R and the arm selection rule implies

µ̂t−1(x) + 2rt(x) ≥ µ̂t−1(x′) + 2rt(x
′), ∀x′ ∈ At. (19)
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Note that At = At−1. By Lemma 5, we get

µ(x) ≥ µ̂t−1(x)− rt(x), µ̂t−1(x′) ≥ µ(x′)− rt(x′), ∀x′ ∈ At. (20)

Combining (19) and (20), we obtain

µ(x) + 3rt(x) ≥ µ(x′) + rt(x
′), ∀x′ ∈ At. (21)

Note that the execution of Step 12 implies X ⊆ ∪x∈AtB(x, rt(x)). Thus, for the optimal arm x∗ there must exist an active
arm x̄∗ ∈ At such that

D(x∗, x̄∗) ≤ rt(x̄∗)
which, together with the Lipschitz property of µ, indicates

µ(x∗) ≤ µ(x̄∗) + rt(x̄∗).

Combining the above inequality and (21) with substitution x′ = x̄∗, we obtain

µ(x) + 3rt(x) ≥ µ(x∗).

On the other hand, we have

rt+1(x)

rt(x)
=

(
nt−1(x)

nt(x)

) ε
1+ε

=

(
nt−1(x)

nt−1(x) + 1

) ε
1+ε

≥ 1√
2
.

Therefore, we get 3
√

2rt+1(x) ≥ 3rt(x) ≥ ∆(x).

(iii) x is not played in round t. In this scenario, let s be the last round in which x is pulled. Then, we have rt+1(x) = rs+1(x)
and the proof reduces to (i) or (ii). �

Lemma 7 With probability at least 1− 2δ, for all i = 0, 1, 2, . . .,

|ĀT (i)| ≤ Nz(2−i).

Lemma 8 With probability at least 1− 2δ, for all i = 0, 1, 2, . . .,∑
x∈ĀT (i)

nT (x)∆(x) ≤ 2
i+1
ε · (51σ̄)

1
ε · 68 log (e1/8T 2/δ)Nz(2

−i).

The remaining proof is the same as that of Theorem 2 and is omitted here. �

D. Proof of Theorem 4
Theorem 4 Fix an arm set X with diameter 1 and a parameter of moment ε ∈ (0, 1]. Define κ = 21/ε·ε

log 2 and

Rc(T ) = inf
r0∈(0,1)

(
r0T + log T

∑
r=2−i:i∈N,r≥r0

Nc(r)

r1/ε

)
where Nc(r) is the r-covering number of X . Then, for any T > 2 and any positive number R ≤ Rc(T ), there exists a set I
of problem instances on X such that
(i) for each problem instance I ∈ I, define

Rz(T ) = inf
r0∈(0,1)

(
r0T + log T

∑
r=2−i:i∈N,r≥r0

Nz(r)

r1/ε

)
in which Nz(r) is the r-zooming number of I . We have Rz(T ) ≤ 3R/(8κ log T ).
(ii) for any algorithm A, there exists at least one problem instance I ∈ I on which the expected regret of A satisfies
E[R(T )] ≥ R/(2560κ log T ).

Proof. Our proof is inspired by Slivkins (2014) and makes use of the needle-in-the-haystack technique, which is firstly
proposed by Auer et al. (2002b) for analyzing multi-armed bandits and then extended to Lipschitz bandits by Kleinberg et al.
(2013).
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Step 1 (Constructing instance set I) We begin with the following lemma.

Lemma 9 Define

R′c(T ) = inf
r0∈(0,1)

(
r0T + log T · Nc(r0)

r
1/ε
0

)
.

Then for any T > 2, Rc(T ) ≤ κR′c(T ).

Proof. Since Nc(r) is non-increasing with r, we have

Rc(T ) = inf
r0∈(0,1)

(
r0T + log T

∑
r=2−i:i∈N,r≥r0

Nc(r)

r1/ε

)
≤ inf
r0∈(0,1)

(
r0T + log T ·Nc(r0)

∑
r=2−i:i∈N,r≥r0

r−
1
ε

)
in which the last term can be upper bounded as follows

∑
r=2−i:i∈N,r≥r0

r−
1
ε =

blog2
1
r0
c∑

i=0

2
i
ε ≤

∫ log2
1
r0

+1

0

2
i
ε di =

(2/r0)
1/ε − 1

log (21/ε)
≤ 21/ε · ε

log 2 · r1/ε
0

.

Recalling κ = 21/ε·ε
log 2 > 1, we conclude the proof. �

Fix T > 2 and R ≤ Rc(T ). Let r = R
2κT (1+log T ) and N = max(2, bTr1+1/εc). Based on Lemma 9, we can bound r and

N as follows.

Lemma 10 We say a subset S ⊆ X is an r-packing of X if the distance between any two points in S is at least r, i.e.,
infu,v∈S D(u, v) ≥ r. Let Np(r) denote the r-packing number of X , defined as the maximal number of points in an
r-packing of X :

Np(r) = max{|S| : S is an r-packing of X}.
We have

r < 1/2 and N ≤ Np(r).

Proof. Define function f(r) = Nc(r)
r1+1/ε . Since f(1) = 1, limr→0 f(r) = +∞, and f(r) is decreasing on (0, 1), there must

exist r̂ ∈ (0, 1) such that f(r̂) ≤ T ≤ f(r̂/2). From the first inequality, we obtain

R ≤ Rc(T ) ≤ κR′c(T ) ≤ κ
(
r̂T +

Nc(r̂)

r̂1/ε
log T

)
≤ r̂κT (1 + log T )

which implies r ≤ r̂κT (1+log T )
2κT (1+log T ) = r̂

2 <
1
2 . From the second inequality, we have

Tr1+1/ε ≤ T (r̂/2)
1+1/ε ≤ Nc(r̂/2)

(r̂/2)
1+1/ε

(r̂/2)
1+1/ε ≤ Nc(r).

We conclude the proof by the fact that Nc(r) ≤ Np(r) (Kleinberg et al., 2013) and 2 ≤ Np(r). �

The above lemma ensures that we can find a set of arms U = {u1, . . . , uN} ⊆ X such that infx,y∈U D(x, y) ≥ r. Based on
U , we construct a set of problem instances I = {I1, . . . , IN}. Let us fix i ∈ [N ] and describe the construction of Ii: the
expected reward function µi is defined as

µi(x) =


7r
8 , x = ui
3r
4 , x = uj , j ∈ [N ] and j 6= i

max( r2 ,max
u∈U

µi(u)−D(x, u)), otherwise
(22)

and the reward distributions are defined by

Pr(y|x) = pi(y|x) =

{
µi(x)r1/ε, y = r−1/ε

1− µi(x)r1/ε, y = 0
. (23)

One can show that for i = 1, 2, . . . , N , µi is Lipschitz and the (1 + ε)-th moment of pi is upper bounded by 7/8.



Optimal Algorithms for Lipschitz Bandits with Heavy-tailed Rewards

Step 2 (Proving i) Let I be a problem instance in I. Recall the definition of ρ-optimal region: Xρ = {x ∈ X : ρ/2 <
∆(x) ≤ ρ}. It is clear that for ρ ≥ 3r/4, we have Xρ = ∅ and thus Nz(ρ) = 0. It follows that

Rz(T ) = inf
r0∈(0,1)

(
r0T + log T

∑
ρ=2−i:i∈N,ρ≥r0

Nz(ρ)

ρ1/ε

)
≤ 3

4
rT + log T

∑
ρ=2−i:i∈N,ρ≥ 3

4 r

Nz(ρ)

ρ1/ε
≤ 3R

8κ log T

where the last inequality is due to r = R
2κT (1+log T ) .

Step 3 (Proving ii) Following the framework of Kleinberg et al. (2013), we first introduce an auxiliary problem instance
I0 in which the expected reward function µ0 is defined as

µ0(x) =

{
3r
4 , x = uj , j ∈ [N ]

max( r2 ,max
u∈U

µ0(u)−D(x, u)), otherwise

and the reward distributions are defined by

Pr(y|x) = p0(y|x) =

{
µ0(x)r1/ε, y = r−1/ε

1− µ0(x)r1/ε, y = 0
.

The advantage of this construction of I0 is that the extent to which any other problem instance Ii ∈ I deviates from I0 can
be controlled as follows. Let Si = B(ui, 3r/8). For each i ∈ [N ], we have

µi(x) = µ0(x), ∀x ∈ X − Si;
µ0(x) ≤ µi(x) ≤ µ0(x) + r/8, ∀x ∈ Si.

(24)

Let Ω = X ×{0, r−1/ε} be a sample space. Fix an arbitrary algorithmA and observe that for i = 0, . . . , N and t ∈ [T ], the
t-step history of A executed on Ii is a random variable ht = (x1, y1), . . . , (xt, yt) ∈ Ωt following a probability distribution
Qti which is defined on Ωt and determined by A and Ii. For clarity, in the following we abuse the notation slightly by
using Qi to denote QTi . For i = 1, . . . , N , let Y ti be the indicator of the event xt ∈ Si and define Zi =

∑T
t=1 Y

t
i . Since

S1, . . . , SN are mutually disjoint and
∑N
i=1 EQ0 [Zi] ≤ T , there must exist k ∈ [N ] such that EQ0 [Zk] ≤ T/N . Based on

this inequality and the relation between µ0 and µi in (24), we have the following lemma.

Lemma 11 The Kullback–Leibler divergence from Qk to Q0 satisfies

KL(Q0, Qk) ≤ 39/200.

Proof. The proof is postponed to Appendix I for the sake of readability. �

Equipped with the above lemma, we are now ready to prove (ii) in Theorem 4. Let E be the event that Zk ≤ 7T
4N . By the

Markov’s inequality, we have

Q0(Ē) ≤ EQ0
[Zk]

7T/(4N)
≤ T/N

7T/(4N)
=

4

7

and thus Q0(E) ≥ 3/7. By the Pinsker’s inequality, we obtain

Qk(E) ≥ Q0(E)−
√
KL(Q0, Qk)/2 ≥ 1/10

which implies

EQk [T − Zk] ≥ Qk(E)EQk [T − Zk | E ] ≥ 1

10

(
T − 7T

4N

)
≥ T

80
.

On the problem instance Ik, in any round where the algorithm A plays an arm that is not in Sk, it suffers an instantaneous
regret of at least r/8. Thus, we have

EQk [R(T )] ≥ r

8
EQk [T − Zk] ≥ rT

640
≥ R

2560κ log T

where the last inequality follows from r = R
2κT (1+log T ) . �
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E. Proof of Lemma 1
Lemma 1 With probability at least 1− 2δ, for all rounds t ∈ [T ] and all active arms x ∈ At, we have

|µ̂t(x)− µ(x)| ≤ rt+1(x).

Proof. Fix t ∈ [T ] and x ∈ At. By Lemma 1 in Bubeck et al. (2013), with probability at least 1− 2δ
T 2 the following holds

|µ̂t(x)− µ(x)| ≤ 4ν
1

1+ε

(
log (T 2/δ)

nt(x)

) ε
1+ε

≤ 4ν̄
1

1+ε

(
log (T 2/δ)

nt(x)

) ε
1+ε

= rt+1(x).

Taking the union bound over x ∈ At and t = 1, 2, . . . , T and noticing |At| ≤ T, ∀t ∈ [T ], we conclude the proof. �

F. Proof of Lemma 2
Lemma 2 With probability at least 1− 2δ, for all rounds t ∈ [T ] and all active arms x ∈ At, we have

∆(x) ≤ 3
√

2rt+1(x).

Proof. Fix t ∈ [T ]. For each active arm x ∈ At, there exist three different scenarios as follows.

(i) x is pulled by Step 7 of Algorithm 2 in round t. In this scenario, on one hand, we have nt(x) = 1 and

rt+1(x) = 4ν̄
1

1+ε

(
log (T 2/δ)

nt(x)

) ε
1+ε

≥ 4ν̄
1

1+ε ≥ 1

3
√

2

where we use the fact that log (T 2/δ) ≥ log 4 ≥ 1 for T > 1. On the other hand, let x∗ ∈ arg maxx∈X µ(x) be an optimal
arm. We have

∆(x) = µ(x∗)− µ(x) ≤ D(x∗, x) ≤ 1

where the first inequality holds since µ is Lipschitz, and the second inequality is due to the assumption in (2). Thus, we
obtain 3

√
2rt+1(x) ≥ ∆(x).

(ii) x is pulled by Step 9 of Algorithm 2 in round t. In this case, we have t ≥ 2 and nt−1(x) ≥ 1 and the arm selection rule
implies

µ̂t−1(x) + 2rt(x) ≥ µ̂t−1(x′) + 2rt(x
′), ∀x′ ∈ At. (25)

Note that At = At−1. By Lemma 1, we get

µ(x) ≥ µ̂t−1(x)− rt(x), µ̂t−1(x′) ≥ µ(x′)− rt(x′), ∀x′ ∈ At. (26)

Combining (25) and (26), we obtain

µ(x) + 3rt(x) ≥ µ(x′) + rt(x
′), ∀x′ ∈ At. (27)

Note that the execution of Step 9 implies X ⊆ ∪x∈AtB(x, rt(x)). Thus, for the optimal arm x∗ there must exist an active
arm x̄∗ ∈ At such that

D(x∗, x̄∗) ≤ rt(x̄∗)
which, together with the Lipschitz property of µ, indicates

µ(x∗) ≤ µ(x̄∗) + rt(x̄∗).

Combining the above inequality and (27) with substitution x′ = x̄∗, we obtain

µ(x) + 3rt(x) ≥ µ(x∗).

On the other hand, we have

rt+1(x)

rt(x)
=

(
nt−1(x)

nt(x)

) ε
1+ε

=

(
nt−1(x)

nt−1(x) + 1

) ε
1+ε

≥ 1√
2
.

Therefore, we get 3
√

2rt+1(x) ≥ 3rt(x) ≥ ∆(x).

(iii) x is not played in round t. In this scenario, let s be the last round in which x is pulled. Then, we have rt+1(x) = rs+1(x)
and the proof reduces to (i) or (ii). �
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G. Proof of Lemma 3
Lemma 3 With probability at least 1− 2δ, for all i ∈ N,

|ĀT (i)| ≤ Nz(2−i).

Proof. By the definition of the r-zooming number, for i = 0, 1, 2, . . ., the set ĀT (i) can be covered by not more than
Nz(2

−i) balls of radius at most 1
18×2i . In the following, we show that each of these balls contains at most one arm from

ĀT (i). In fact, suppose that there exist two arms u, v ∈ ĀT (i) falling into the same ball. On one hand, we have

D(u, v) ≤ 1

9× 2i
. (28)

On the other hand, without loss of generality, we assume arm u is added into the active arm set AT before arm v. Let t be
the time when arm v is added into AT . The execution of Algorithm 2 ensures t ≥ 2 and

D(u, v) > rt(u). (29)

By Lemma 2, we have

rt(u) = rt+1(u) ≥ ∆(u)

3
√

2
>

1

6
√

2× 2i
>

1

9× 2i

which, together with (28) and (29), leads to a contradiction. Thus, |ĀT (i)| ≤ Nz(2−i). �

H. Proof of Lemma 4
Lemma 4 With probability at least 1− 2δ, for all i ∈ N,∑

x∈ĀT (i)

nT (x)∆(x) ≤ 2
i+1
ε · 17

ε+1
ε ν̄

1
ε log (T 2/δ)Nz(2

−i).

Proof. For any arm x ∈ ĀT (i), by Lemma 2 we have

∆(x) ≤ 3
√

2rT+1(x) ≤ 17ν̄
1

1+ε

(
log (T 2/δ)

nT (x)

) ε
1+ε

.

Rearranging the above inequality, we obtain

nT (x)∆(x) ≤ 17
ε+1
ε ν̄

1
ε log (T 2/δ)∆(x)

− 1
ε ≤ 2

i+1
ε × 17

ε+1
ε ν̄

1
ε log (T 2/δ)

where the second inequality is due to ∆(x) > 2−(i+1). We finish the proof by applying Lemma 3. �

I. Proof of Lemma 11
Lemma 11 The Kullback–Leibler divergence from Qk to Q0 satisfies

KL(Q0, Qk) ≤ 39/200.

Proof. We first bound the KL divergence from p0 to pk:

KL(p0, pk) = µ0(x)r1/ε log

(
µ0(x)r1/ε

µk(x)r1/ε

)
+ (1− µ0(x)r1/ε) log

(
1− µ0(x)r1/ε

1− µk(x)r1/ε

)
.

In the following, we consider two different scenarios, i.e., x ∈ X − Sk and x ∈ Sk.
(i) x ∈ X − Sk. By (24), we have µk(x) = µ0(x) and thus

KL(p0, pk) = 0. (30)



Optimal Algorithms for Lipschitz Bandits with Heavy-tailed Rewards

(ii) x ∈ Sk. By (24), we have µ0(x) ≤ µk(x) ≤ µ0(x) + r/8 which implies

KL(p0, pk) ≤ µ0(x)r1/ε log

(
µ0(x)r1/ε

µ0(x)r1/ε

)
+ (1− µ0(x)r1/ε) log

(
1− µ0(x)r1/ε

1− µ0(x)r1/ε − r1+1/ε/8

)
≤ (1− µ0(x)r1/ε)

(
r1+1/ε/8

1− µ0(x)r1/ε − r1+1/ε/8

)
= (1− µ0(x)r1/ε − r1+1/ε/8 + r1+1/ε/8)

(
r1+1/ε/8

1− µ0(x)r1/ε − r1+1/ε/8

)
=
r1+1/ε

8
+

(
r1+1/ε/8

)2
1− µ0(x)r1/ε − r1+1/ε/8

≤ r1+1/ε

8
+

(
r1+1/ε/8

)2
1− 7r1+1/ε/8

≤ r1+1/ε

8
+

(
r1+1/ε/8

)2
4r1+1/ε − 7r1+1/ε/8

=
13

100
r1+1/ε

(31)

where the second inequality follows from the well-known inequality: log a ≤ a− 1, ∀a > 0, the third inequality is due to
µ0(x) ∈ [r/2, 3r/4], and the last inequality holds since 4r1+1/ε ≤ 4 · (1/2)1+1/ε ≤ 4 · (1/2)2 = 1.

We continue the proof of Lemma 11 as follows. Denote by KL(·, · | ·) the conditional KL divergence also known as
conditional relative entropy (Cover & Thomas, 1991; Kleinberg et al., 2013). For t = 1, . . . , T , we have

KL(Qt0, Q
t
k | ht−1) =

∑
ht∈Ωt

Qt0(ht) log

(
Qt0(ht | ht−1)

Qtk(ht | ht−1)

)

=
∑
ht∈Ωt

Qt0(ht) log

(
Qt0(xt | ht−1)

Qtk(xt | ht−1)
· Q

t
0(yt | xt, ht−1)

Qtk(yt | xt, ht−1)

)

=
∑
ht∈Ωt

Qt0(ht) log

(
Qt0(yt | xt, ht−1)

Qtk(yt | xt, ht−1)

)
where the first equality is the definition of conditional KL divergence and the last equality is due to the fact that the
distribution of xt given ht−1 depends only on the algorithm A. We proceed as follows

KL(Qt0, Q
t
k | ht−1) =

∑
ht∈Ωt

Qt0(ht) log

(
Qt0(yt | xt, ht−1)

Qtk(yt | xt, ht−1)

)

=
∑

ht−1∈Ωt−1

∫
xt∈X

∑
yt∈{0,r−1/ε}

Qt0(yt | xt, ht−1) log

(
Qt0(yt | xt, ht−1)

Qtk(yt | xt, ht−1)

)
d Qt0(xt, h

t−1)

=
∑

ht−1∈Ωt−1

∫
xt∈X

KL(p0, pk) d Qt0(xt, h
t−1)

(30)
=

∑
ht−1∈Ωt−1

∫
xt∈Sk

KL(p0, pk) d Qt0(xt, h
t−1)

(31)

≤
∑

ht−1∈Ωt−1

∫
xt∈Sk

13

100
r1+1/ε d Qt0(xt, h

t−1)

=
13

100
r1+1/εQt0(xt ∈ Sk).

Finally, by the chain rule of KL divergence we have

KL(Q0, Qk) = KL(QT0 , Q
T
k ) =

T∑
t=1

KL(Qt0, Q
t
k | ht−1) ≤

T∑
t=1

13

100
r1+1/εQt0(xt ∈ Sk) =

13

100
r1+1/εEQ0 [Zk].
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where we use the convention that h0 = ∅. Recalling EQ0
[Zk] ≤ T/N and N = max(2, bTr1+1/εc), we obtain

EQ0 [Zk] ≤ 3

2
r−(1+1/ε)

which completes the proof. �


