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Abstract
We study Lipschitz bandits, where a learner re-
peatedly plays one arm from an infinite arm set
and then receives a stochastic reward whose ex-
pectation is a Lipschitz function of the chosen arm.
Most of existing work assume the reward distri-
butions are bounded or at least sub-Gaussian, and
thus do not apply to heavy-tailed rewards arising
in many real-world scenarios such as web adver-
tising and financial markets. To address this lim-
itation, in this paper we relax the assumption on
rewards to allow arbitrary distributions that have
finite (1 + ε)-th moments for some ε ∈ (0, 1], and
propose algorithms that enjoy a sublinear regret
of Õ

(
T (dzε+1)/(dzε+ε+1)

)
where T is the time

horizon and dz is the zooming dimension. The
key idea is to exploit the Lipschitz property of
the expected reward function by adaptively dis-
cretizing the arm set, and employ upper confi-
dence bound policies with robust mean estimators
designed for heavy-tailed distributions. Further-
more, we provide a lower bound for Lipschitz
bandits with heavy-tailed rewards, and show that
our algorithms are optimal in terms of T . Finally,
we conduct numerical experiments to demonstrate
the effectiveness of our algorithms.

1. Introduction
The multi-armed bandits (MAB) is a powerful framework
for modeling sequential decision-making under uncertainty,
and has found applications in various areas such as medical
trials (Robbins, 1952), news recommendation (Li et al.,
2010), and network routing (Kveton et al., 2015). In the
classic stochastic MAB, there are K independent arms and
a learner. In each round, the learner chooses one of K arms
to play and then obtains a reward drawn i.i.d. over time
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from a fixed but unknown probability distribution associated
with the chosen arm. In order to maximize his gain, the
learner has to balance the trade-off between exploration and
exploitation, i.e., pulling the less pulled arms to acquire
more information while playing the seemingly optimal arms
to obtain more reward. For this problem, the standard metric
is regret, defined as the difference between the cumulative
reward of the learner and that of the best arm in hindsight.
In their seminal paper, Lai & Robbins (1985) established an
Ω(K log T ) lower bound on regret, and various algorithms
matching this lower bound have been developed (Lai &
Robbins, 1985; Agrawal, 1995b; Auer et al., 2002a).

One limitation of the stochastic MAB is that the lower bound
scales linearly with the number of arms K, and thus dete-
riorates as K goes large and becomes vacuous when the
arm set is infinite. Another limitation is the fully inde-
pendent setting on arms which is too pessimistic, since in
many real-world scenarios the expected rewards of different
arms could be related. To address these limitations, Klein-
berg et al. (2008a) and Bubeck et al. (2009) introduced a
variant of the stochastic MAB—Lipschitz bandits, which
admits infinite arm set and models the relation between the
expected rewards of different arms through a Lipschitz func-
tion. More precisely, in this setting the arm set X can be
from any metric space (X ,D), and each time after pulling
an arm x ∈ X , the learner receives a reward y sampled
independently from some distribution Px satisfying

E[y|x] = EPx [y] = µ(x)

where µ is called the expected reward function and is Lips-
chitz with respect to the metric D, i.e.,

|µ(u)− µ(v)| ≤ D(u, v), ∀u, v ∈ X .

The goal of the learner is to minimize the (pseudo) regret:

R(T ) = T max
x∈X

µ(x)−
T∑
t=1

µ(xt)

where xt is the arm chosen by the learner in round t.

While the Lipschitz bandits has been extensively studied in
the literature (Bubeck et al., 2011; Kleinberg et al., 2013;
Slivkins, 2014; Magureanu et al., 2014; Locatelli & Carpen-
tier, 2018), most of existing work either assume the rewards
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are bounded or require the sub-Gaussian properties of re-
ward distributions , i.e., there exists a constant a > 0 such
that for all x ∈ X ,

E[eλ(y−E[y|x])] ≤ eaλ
2/2, ∀λ > 0.

However, in many real-life problems, such as financial mar-
kets (Cont & Bouchaud, 2000) and web advertising (Park
et al., 2013), the rewards fluctuate sharply and do not behave
bounded or sub-Gaussian but follow heavy-tailed distribu-
tions (Foss et al., 2011), i.e.,

lim
a→∞

Pr(y > a|x) · eλa =∞, ∀λ > 0.

Till now, we have very limited knowledge on Lipschitz ban-
dits with heavy-tailed rewards. One was given by Kleinberg
et al. (2008b), who demonstrated that their algorithm enjoys
a regret bound of Õ

(
T (3dz+5)/(3dz+6)

)
1 under the assump-

tion that the heavy-tailed rewards have finite third moments,
where dz is the zooming dimension to be defined in Section
3.1. However, this result suffers the following limitations.
First, the assumption on rewards is too stringent since many
heavy-tailed distributions have infinite variance and hence
do not admit finite third moments, such as Pareto distri-
butions with shape parameter α ∈ (1, 2] and Student’s t-
distributions with degrees-of-freedom parameter γ ∈ (1, 2].
Second, the algorithm is far away from optimal as there
exists a large gap between the regret bound and the lower
bound established in this paper.

To address these drawbacks, we only assume the reward
distributions have finite (1 + ε)-th moments for some ε ∈
(0, 1] , i.e., there exists a constant ν such that for all x ∈ X ,

E[|y|1+ε|x] ≤ ν (1)

which is a common assumption in bandits learning with
heavy-tailed rewards (Bubeck et al., 2013; Medina & Yang,
2016; Shao et al., 2018). Under this milder assumption,
we propose two algorithms that attain a sublinear regret of
Õ
(
T (dzε+1)/(dzε+ε+1)

)
, and derive a lower bound match-

ing our upper bound. To the best of our knowledge, they
are the first optimal algorithms for Lipschitz bandits with
heavy-tailed rewards. Both algorithms adopt adaptive dis-
cretization procedures to exploit the Lipschitz property of
the expected reward function. To handle heavy-tailed re-
wards, one of our algorithms conducts a dynamic truncation
on the observed reward, and the other algorithm makes ues
of a median of means estimator.

2. Related Work
In this section, we briefly review the related work.

1We use the Õ notation to hide constant factors as well as
polylogarithmic factors in T .

2.1. Lipschitz Bandits

In his seminal work, Agrawal (1995a) studied a special case
of Lipschitz bandits under the name of “continuum-armed
bandits” in which the arm set is an interval on the line (say,
X = [0, 1]), and developed an allocation-based algorithm
that achieves an O(T 3/4) regret. Along this line of study,
Kleinberg & Leighton (2003) established an Ω(T 1/2) lower
bound. Later, Kleinberg (2005) improved the lower bound
to Ω(T 2/3), and proposed a discretization-based method
that enjoys a nearly optimal regret of Õ(T 2/3).

One of the first papers that investigated Lipschitz ban-
dits on general metric spaces was due to Kleinberg et al.
(2008a). They proposed the zooming algorithm which en-
joys a regret of Õ

(
T (dz+1)/(dz+2)

)
for bounded rewards.

In the full version of this paper (Kleinberg et al., 2008b),
they extended the analysis to classes of heavy-tailed re-
ward distributions with finite third moments and derived
an Õ

(
T (3dz+5)/(3dz+6)

)
regret. Another concurrent and

independent work was given by Bubeck et al. (2009). They
proposed a tree-based algorithm and demonstrated it attains
a regret of Õ

(
T (dz+1)/(dz+2)

)
for sub-Gaussian rewards.

By further assuming the expected reward function has a
finite number of maxima and is smooth around each max-
ima, they derived a regret bound of Õ(

√
T ). Similar regret

bounds in which the order on T is dimensionality-free also
exist if the expected reward function is endowed with some
additional curvatures. This line of research, ranging from
specific to general, include linear bandits (Auer, 2002; Dani
et al., 2008; Abbasi-Yadkori et al., 2011), generalized linear
bandits (Filippi et al., 2010; Zhang et al., 2016; Jun et al.,
2017), and convex bandits (Agarwal et al., 2011).

2.2. Learning with Heavy-tailed Distributions

There exists a rich body of work on learning with heavy-
tailed distribution (Audibert et al., 2011; Catoni, 2012; Hsu
& Sabato, 2014; Brownlees et al., 2015; Hsu & Sabato, 2016;
Zhang & Zhou, 2018). For brevity, below we only discuss
the related work in bandits literature. Liu & Zhao (2011)
firstly relaxed the sub-Gaussian assumption on rewards to
allow heavy-tailed reward distributions that have finite mo-
ments of order 1 + ε for some ε ∈ (0, 1]. They studied the
stochastic MAB setting and proposed an algorithm based on
a deterministic sequencing of exploration and exploitation,
which attains a polynomial regret of O(T 1/(1+ε)). Later,
Bubeck et al. (2013) derived the first logarithmic regret of
O
(∑

∆i>0 ∆
−1/ε
i log T

)
through combining UCB policies

with robust mean estimators, where ∆i is the gap between
the expected reward of the i-th arm and that of the optimal
arm. They also provided an matching lower bound. Medina
& Yang (2016) extended the analysis to linear bandits and
derived sublinear regret bounds, which are subsequently
improved to be nearly optimal by Shao et al. (2018).
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3. Lipschitz Bandits with Heavy-tailed
Rewards

In this section, we first review necessary preliminaries, then
present our algorithms as well as their theoretical guarantees,
and finally propose a matching lower bound.

3.1. Preliminaries

Following previous studies (Kleinberg et al., 2013; Slivkins,
2014), we introduce some notions which are crucial to de-
signing algorithms and analyzing lower bounds for Lipschitz
bandits. Let X be an arm set and D be a metric on it. We
assume X is compact and without loss of generality the
diameter of X is not more than 1, i.e.,

sup
u,v∈X

D(u, v) ≤ 1. (2)

Let B(x0, r0) denote a (closed) ball of radius r0 > 0 cen-
tered at x0 ∈ X , defined by

B(x0, r0) = {x ∈ X : D(x, x0) ≤ r0}.

We say a collection of balls is an r-covering of X if the
radius of each ball is not more than r and the union of these
balls covers X . The r-covering number of X is defined as
the minimal number of balls in an r-covering of X :

Nc(r) = min {|S| : S is an r-covering of X}.

The covering dimension of X is defined as the minimal
d ≥ 0 such that Nc(r) is O(r−d) for any r > 0:

dc = min {d ≥ 0 : ∃a > 0, Nc(r) ≤ ar−d,∀r > 0}. (3)

We also define the covering constant C of X as the minimal
a to make the above inequality true, i.e.,

C = min {a ≥ 0 : Nc(r) ≤ ar−dc ,∀r > 0}. (4)

Another useful notion is the doubling constant of X which
is denoted by M and defined as the smallest k such that any
ball of radius r in X can be covered by not more than k
balls of half the radius.

While the above notions only focus on the arm set X , the
following notions, originated from Kleinberg et al. (2008a),
take the expected reward function µ into account as well.
Let x∗ ∈ arg maxx∈X µ(x) be an optimal arm and denote
by Xr the r-optimal region, defined as

Xr = {x ∈ X : r/2 < µ(x∗)− µ(x) ≤ r}.

Then, we define the r-zooming number of (X , µ) as the
minimal number of balls of radius not more than r/18 re-
quired to cover Xr, denoted by Nz(r). Here the constant
18 is due to technical reasons (see Appendix G). Next, we

define the zooming dimension dz and the zooming constant
Z of (X , µ) in the same way as in (3) and (4) respectively:

dz = min {d ≥ 0 : ∃a > 0, Nz(r) ≤ ar−d,∀r > 0}; (5)

Z = min {a ≥ 0 : Nz(r) ≤ ar−dz ,∀r > 0}. (6)

Finally, we would like to discuss the relation between the
covering dimension and the zooming dimension. On one
hand, since the r-optimal region Xr is a subset of X , it can
be covered by not more than Nc(r) balls of radius at most
r and hence M5Nc(r) balls of radius at most r/18, which
implies Nz(r) ≤ M5Nc(r) and dz ≤ dc. On the other
hand, in some benign cases, the zooming dimension can
be much smaller than the covering dimension, as indicated
by Kleinberg et al. (2008a). For example, let X be a d-
dimensional ball of diameter 1 in the Euclidean space and
set µ(x) = 1 − ‖x − x∗‖2, where x∗ ∈ X is the optimal
arm. Then, for any r > 0, the r-optimal region Xr = {x ∈
X : r/2 < ‖x − x∗‖2 ≤ r} can be covered by not more
than M5 balls of radius at most r/18, which implies the
zooming dimension of (X , µ) is 0, whereas the covering
dimension of X is d as shown by Engelking (1978).

3.2. Warm-up: Static Discretization

The basic idea behind existing algorithms for Lipschitz ban-
dits is to exploit the Lipschitz property of the expected re-
ward function by discretizing the arm set, and there exist two
types of discretization schemes, namely static discretization
and adaptive discretization. While our proposed algorithms
that achieve optimal regret bound are inspired by the zoom-
ing algorithm (Kleinberg et al., 2008a) in which an adaptive
discretization procedure is employed, to help understanding,
we start with a suboptimal but simple algorithm that is based
on static discretization.

Recall the definition of the r-covering numberNc(r), which
tells us that for any r > 0, the arm set X can be covered
by not more than Nc(r) balls of radius at most r. While
the implementation of finding such balls depends on the
specific geometry of the arm set, we assume access to an
oracle which takes input of an arm set X and a resolution
parameter r and outputs K balls of radius not more than r
covering X withK ≤ Nc(r). Equipped with this oracle, we
are now ready to describe the algorithm. Firstly, we query
the oracle with X and r and receive K balls B1, . . . ,BK .
Then, we partition the arm set X by constructing

Xi = Bi ∩ X − ∪s∈[i−1]Xs, i ∈ [K].2

In this way, we can ensure that X1, . . . ,XK are mutually
disjoint and their union is exactly X . Next, for each Xi, we
pick an arbitrary arm x̄i from it. We refer to these arms

2We denote {1, 2, . . . , n} by [n] for n ∈ N+ and use the
convention that [0] = ∅.
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x̄1, . . . , x̄K as skeleton arms, as they essentially constitute
a skeleton of the arm set X in the sense that for any arm
x ∈ X , there must exist an Xi such that x ∈ Xi ⊆ Bi and
thus D(x, x̄i) ≤ 2r. Finally, we reduce the problem to a
K-armed bandits problem on the skeleton arms and employ
algorithms for multi-armed bandits.

However, since the rewards of these skeleton arms follow
distributions that are not necessarily sub-Gaussian, classic
UCB algorithms that are built upon on the empirical mean
estimator do not apply. To address this problem, we adopt
UCB policies with the truncated mean estimator, which
converges to the mean of reward even under heavy-tailed
distributions (Bubeck et al., 2013). Specifically, in the first
K rounds, we play each skeleton arm once. After that, let
nt(x̄i) be the count of times the skeleton arm x̄i has been
pulled up to round t and denote by yi,s the reward observed
after the s-th playing of x̄i. In each round t > K, we first
compute the average truncated reward of each skeleton arm
x̄i, i ∈ [K] as follows

µ̂t(x̄i) =
1

nt−1(x̄i)

nt−1(x̄i)∑
s=1

yi,s1|yi,s|≤( νs
2 log t )

1/(1+ε) (7)

where ν is defined in (1) and the computation can be per-
formed incrementally to reduce the time complexity. Then,
following the principle of “optimism in the face of uncer-
tainty”, we play arm xt that achieves the highest average
truncated reward plus a confidence term:

xt = arg max
x̄i

µ̂t(x̄i) + 4ν
1

1+ε

(
2 log t

nt−1(x̄i)

) ε
1+ε

(8)

in which ties are broken arbitrarily. The above procedure
is summarized in Algorithm 1, and is referred to as Static
Discretization with Truncated Mean (SDTM).

It remains to tune the value of the parameter r of SDTM. To
this end, we analyze the relation between the regret of the
algorithm and the value of r as follows.

Theorem 1 Assume (1) and (2) hold. For sufficiently large
T such that

log T ≥ 5

8
(4ν)−

1
ε

the regret of SDTM with parameter r > 0 satisfies

E[R(T )] ≤ 2rT + (4νT )
1

1+ε (16Nc(r) log T )
ε

1+ε

where Nc(r) is the r-covering number of the arm set X .

Here, the first term in the regret bound stems from the gap
between the expected reward of the optimal skeleton arm
and that of the optimal arm in X , and the second term is
incurred by not playing the optimal skeleton arm. It is easy
to see that as one term falls the other term rises. To obtain a

Algorithm 1 Static Discretization with Truncated Mean
(SDTM)

Require: resolution parameter r > 0
1: Query the oracle with X and r
2: Receive K balls B1, . . . ,BK from the oracle
3: for i = 1, 2, . . . ,K do
4: Construct Xi = Bi ∩ X − ∪s∈[i−1]Xs
5: Pick an arbitrary arm x̄i from Xi
6: end for
7: for t = 1, 2, . . . ,K do
8: Play arm x̄t
9: Observe reward yt

10: end for
11: for t = K + 1,K + 2, . . . , T do
12: Compute truncated means of x̄i, i ∈ [K] as in (7)
13: Play arm xt defined by (8)
14: Observe reward yt
15: end for

tight bound, we substitute Nc(r) ≤ Cr−dc into the RHS of
the second inequality in Theorem 1 and minimize it over r,
from which we derive an optimal configuration of r:

r =

(
(4νT )1/(1+ε)(16C log T )ε/(1+ε)dcε

2T (1 + ε)

) ε+1
dcε+ε+1

(9)

and the following corollary:

Corollary 1 Let r be configured as in (9). We have

E[R(T )] ≤ Õ
(
T

dcε+1
dcε+ε+1

)
in which dc is the covering dimension of the arm set X ,
defined in (3).

3.3. Improved Method: Adaptive Discretization

While SDTM is simple, it has an obvious limitation: the
arm set is discretized before the learning process and the
discretization is fixed during the execution of the algorithm.
Intuitively, an improvement can be obtained by adaptively
discretizing the arm set based on the rewards observed over
time. As we shall see, such adaptive approaches, while
still suffering an Õ

(
T (dcε+1)/(dcε+ε+1)

)
regret in the worst

case (i.e., dz = dc), can attain much tighter regret bound
for benign cases (i.e., dz < dc).

3.3.1. ADAPTIVE DISCRETIZATION WITH TRUNCATED
MEAN

Our first adaptive algorithm is called Adaptive Discretiza-
tion with Truncated Mean (ADTM) and is outlined in Algo-
rithm 2, where δ is a confidence parameter. Inspired by the
zooming algorithm (Kleinberg et al., 2008a), we maintain
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Algorithm 2 Adaptive Discretization with Truncated Mean
(ADTM)

Require: confidence parameter δ ∈ (0, 1/2)
1: Initialize A = ∅
2: for t = 1, 2, . . . , T do
3: if X 6⊆ ∪x∈AB(x, rt(x)) then
4: Pick an arbitrary arm x from the uncovered region

X − ∪x∈AB(x, rt(x))
5: Add x into A
6: Initialize µ̂(x) = 0 and n(x) = 0
7: Play arm xt = x
8: else
9: Play arm xt = arg maxx∈A µ̂(x) + 2rt(x)

10: end if
11: Observe reward yt
12: Update

µ̂(xt) =

n(xt)µ̂(xt) + yt · 1
|yt|≤

(
νn(xt)+ν

log (T2/δ)

) 1
(1+ε)

n(xt) + 1

and n(xt) = n(xt) + 1
13: end for

an active arm set A ⊆ X as the discretization of X , which
is initialized to be ∅ and is updated in the beginning of each
round. Each arm x in this set is called active arm and is
associated with a time varying confidence radius:

rt(x) = 4ν̄
1

1+ε

(
log (T 2/δ)

n(x)

) ε
1+ε

(10)

in which
ν̄ = max

(
ν,
(
12
√

2
)−(1+ε)

)
(11)

with ν defined in (1), and n(x) is the count of times an
arm x has been played before round t.3 During the whole
learning process, we only play active arms.

We now describe the algorithm in detail. In each round t, we
first check whether the union of balls defined by pairs of ac-
tive arms and their confidence radius covers the arm set, i.e.,
X ⊆ ∪x∈AB(x, rt(x)). If it is false, we pick an arbitrary
arm x from the uncovered region X − ∪x∈AB(x, rt(x)),
designate it as an active arm (i.e., add x into A), and play
this arm. Its average truncated reward µ̂(x) and the count
of times it has been played n(x) are both initialized to be 0.
Otherwise, we select arm xt from the active arm set A with
the highest sum of average truncated reward and double
confidence radius to play. Finally, after observing reward yt,
we update the average truncated reward of xt and the count
of times it has been played.

3Here n(x) in fact varies with t, and the reason for using
n(x) rather than nt(x) is to be consistent with the pseudocode of
Algorithm 2.

It would be helpful to compare ADTM with the simple static
algorithm SDTM in Section 3.2. Both algorithms employ
the truncated mean estimator and adopt the UCB policy, and
the main difference between them lies in the discretization
procedure. While SDTM conducts static discretization by
querying an oracle, ADTM discretizes the arm set adapting
to the rewards observed over time. This adaptive discretiza-
tion approach leads to a tighter regret bound for ADTM,
which depends on the zooming dimension dz instead of the
covering dimension dc, as shown by the following theoreti-
cal results.

Theorem 2 Assume (1) and (2) hold. With probability at
least 1− 2δ, the regret of ADTM satisfies

R(T ) ≤ inf
r0∈(0,1)

(
r0T+

17(34ν̄)
1
ε log (T 2/δ)

∑
r=2−i:i∈N,r≥r0

Nz(r)

r1/ε

)
where ν̄ is defined in (11) and Nz(r) is the r-zooming num-
ber of (X , µ).

Substituting Nz(r) ≤ Zr−dz into the above inequality, we
obtain the following corollary in which the order on T in
regret bound is explicitly given.

Corollary 2 We have∑
r=2−i:i∈N,r≥r0

Nz(r)

r1/ε
≤ O

(
r
−(dz+1/ε)
0

)
and thus

R(T ) ≤ O
(

inf
r0∈(0,1)

(
r0T + log T · r−(dz+1/ε)

0

))
≤ Õ

(
T

dzε+1
dzε+ε+1

)
where dz is the zooming dimension of (X , µ), defined in (5).

3.3.2. ADAPTIVE DISCRETIZATION WITH MEDIAN OF
MEANS

Our second adaptive algorithm is called Adaptive Discretiza-
tion with Median of Means (ADMM), which follows the
general framework of the first one but takes a different me-
dian of means estimator (MME). As outlined in Algorithm
3, given n observed rewards of an arm x, MME divides
these rewards into M groups, computes empirical mean
within each group, and returns the median of these em-
pirical means. For MME, we only require that for some
ε ∈ (0, 1], the central (1 + ε)-th moments of the reward
distributions are bounded, i.e., there exists a constant σ > 0
such that

E[|y − E[y]|1+ε|x] ≤ σ, ∀x ∈ X . (12)
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The theoretical analysis of MME (Bubeck et al., 2013) indi-
cates that the concentration bound of MME holds only for
n ≥ 16 log (e1/8T 2/δ).

To this end, as shown in Algorithm 4, we introduce a flag
variable called replay and keep it true until an arm has been
played at least 16 log (e1/8T 2/δ) times. Furthermore, for
the sake of computing MME, for each active arm x in A
we use H(x) to store historical rewards of x. Finally, due
to the difference between the concentration bound of MME
and that of the truncated mean estimator, we modify the
definition of the confidence radius rt(x) in (10) slightly:

rt(x) = (12σ̄)
1

1+ε

(
16 log (e1/8T 2/δ)

n(x)

) ε
1+ε

in which
σ̄ = max

(
σ,
(
36
√

2
)−1
)

(13)

with σ defined in (12), and n(x) is the count of times an
arm x has been pulled before round t.

Similar to the regret bounds of ADTM in Theorem 2 and
Corollary 2, we have the following theorem regarding the
regret of ADMM.

Theorem 3 Assume (2) and (12) hold. With probability at
least 1− 2δ, the regret of ADMM satisfies

R(T ) ≤ inf
r0∈(0,1)

(
r0T+

68(102σ̄)
1
ε log (e1/8T 2/δ)

∑
r=2−i:i∈N,r≥r0

Nz(r)

r1/ε

)

where σ̄ is defined in (13) and Nz(r) is the r-zooming num-
ber of (X , µ). Furthermore, by the first inequality in Corol-
lary 2 we have

R(T ) ≤ Õ
(
T

dzε+1
dzε+ε+1

)
where dz is the zooming dimension of (X , µ), defined in (5).

Remark. The regret bound of ADMM depends on the
central (1 + ε)-th moments of the reward distributions, at
the cost of a worse constant factor in the leading term com-
pared to Theorem 2. The central moments are insensitive to
constant shift changes in distributions and, in some cases,
could be much smaller than the raw moments in the regret
bound of ADTM in Theorem 2. However, while ADTM is
an efficient algorithm, ADMM requires storing the learning
history and is thus inefficient.

3.3.3. COMPARISON WITH THE ZOOMING ALGORITHM

While our two adaptive algorithms are inspired by the zoom-
ing algorithm (Kleinberg et al., 2008a), we would like to

Algorithm 3 Median of Means Estimator (MME)

Require: observed rewards y1, y2, . . . , yn, confidence δ
T 2

1: Set M = b8 log (e1/8T 2/δ)c and B = bn/Mc
2: for m = 1, 2, . . . ,M do
3: Compute ŷm = 1

B

∑mB
i=(m−1)B+1 yi

4: end for
5: Return the median of (ŷ1, ŷ2, . . . , ŷM )

Algorithm 4 Adaptive Discretization with Median of Means
(ADMM)

Require: confidence parameter δ ∈ (0, 1/2)
1: Initialize A = ∅, replay = false
2: for t = 1, 2, . . . , T do
3: if replay then
4: Play arm xt = xt−1

5: else
6: if X 6⊆ ∪x∈AB(x, rt(x)) then
7: Pick an arbitrary arm x from the uncovered re-

gion X − ∪x∈AB(x, rt(x))
8: Add x into A
9: Initialize n(x) = 0,H(x) = ∅

10: Play arm xt = x
11: else
12: Play arm xt = arg maxx∈A µ̂(x) + 2rt(x)
13: end if
14: end if
15: Observe reward yt and add yt intoH(xt)
16: Update n(xt) = n(xt) + 1
17: if n(xt) < 16 log (e1/8T 2/δ) then
18: Set replay = true
19: else
20: Set replay = false
21: Update µ̂(xt) = MME(H(xt), δ/T

2)
22: end if
23: end for

emphasize a significant difference between our algorithms
and the zooming algorithm. Specifically, once a new arm
is added into the active arm set, our algorithms will play
this arm immediately, which is not the case in the zooming
algorithm. In the analysis of the zooming algorithm, at each
round, one has to assume that the mean rewards of all arms
are upper bounded by a known constant to prove Claim
2.2 in Kleinberg et al. (2008a) for those active arms that
have never been played before this round. Note that this
assumption is valid only for bounded rewards. If we directly
extend the zooming algorithm to unbounded rewards (even
if the rewards are sub-Gaussian), we need this additional
assumption (e.g., Theorem 4.14 in Kleinberg et al. 2008b).
In contrast, our algorithms ensure that at the beginning of
each round, all active arms have been played at least once
so as to avoid this assumption.
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3.4. Lower Bound

Finally, we show that our adaptive algorithms are optimal
in terms of T by establishing the following lower bound.

Theorem 4 Fix an arm set X with diameter 1 and a param-
eter of moment ε ∈ (0, 1]. Define κ = 21/ε·ε

log 2 and

Rc(T ) = inf
r0∈(0,1)

(
r0T + log T

∑
r=2−i:i∈N,r≥r0

Nc(r)

r1/ε

)
where Nc(r) is the r-covering number of X . Then, for any
T > 2 and any positive number R ≤ Rc(T ), there exists a
set I of problem instances on X such that
(i) for each problem instance I ∈ I, define

Rz(T ) = inf
r0∈(0,1)

(
r0T + log T

∑
r=2−i:i∈N,r≥r0

Nz(r)

r1/ε

)
in which Nz(r) is the r-zooming number of I . We have
Rz(T ) ≤ 3R/(8κ log T ).
(ii) for any algorithm A, there exists at least one problem
instance I ∈ I on which the expected regret of A satisfies
E[R(T )] ≥ R/(2560κ log T ).

Remark. The above theorem essentially establishes an
Ω(Rz(T )) lower bound on expected regret suffered by any
algorithm, which matches the O(Rz(T )) regret bounds in
Theorems 2 and 3 up to constant factors. While there exist
lower bounds of Lipschitz bandits for sub-Gaussian rewards
(Slivkins, 2014), to the best of our knowledge, this is the
first lower bound for heavy-tailed rewards.

4. Analysis
Due to the limitation of space, we only prove Theorem 2
and the omitted proofs can be found in the supplementary
material.

4.1. Proof of Theorem 2

Notations. Note that the active arm set A is time varying,
and for each active arm x ∈ A, its average truncated reward
µ̂(x) and the count of times it has been pulled n(x) also
change after being played. For convenience, we use At,
µ̂t(x), and nt(x) to denote the value of A, µ̂(x), and n(x)
in the end of the t-th round respectively.

Following Kleinberg et al. (2008a), we first propose to
bound the distance between the mean of reward µ(x) and
the average truncated reward µ̂t(x) for each active arm x.

Lemma 1 With probability at least 1− 2δ, for all rounds
t ∈ [T ] and all active arms x ∈ At, we have

|µ̂t(x)− µ(x)| ≤ rt+1(x).

Let x∗ ∈ arg maxx∈X µ(x) be an optimal arm and ∆(x) =
µ(x∗) − µ(x) be the gap between the expected reward of
an arm x and that of the optimal arm. The following lemma
shows that this gap can be upper bounded by the confidence
radius of x up to constant factor.

Lemma 2 With probability at least 1− 2δ, for all rounds
t ∈ [T ] and all active arms x ∈ At, we have

∆(x) ≤ 3
√

2rt+1(x).

Remark. Recall that our Adaptive Discretization with
Truncated Mean algorithm uses balls centered at active arms
to cover the arm set. The above lemma tells us that the
radius of the ball centered at active arm x is lower bounded
by ∆(x)/(3

√
2). Roughly speaking, this implies that our

algorithm uses more balls (of smaller radius) to discretize
near-optimal arms and less balls (of larger radius) to cover
poor arms.

We proceed to prove Theorem 2 and partition the set com-
prised of all active arms inAT that are suboptimal as follows

{x ∈ AT : ∆(x) > 0} = ∪∞i=0ĀT (i)

in which

ĀT (i) = {x ∈ AT | 2−(i+1) < ∆(x) ≤ 2−i}. (14)

Then, we establish upper bounds for the cardinality of ĀT (i)
by making use of Lemma 2.

Lemma 3 With probability at least 1− 2δ, for all i ∈ N,

|ĀT (i)| ≤ Nz(2−i).

Based on Lemmas 2 and 3, we can further bound the regret
incurred by playing arms in ĀT (i).

Lemma 4 With probability at least 1− 2δ, for all i ∈ N,∑
x∈ĀT (i)

nT (x)∆(x) ≤ 2
i+1
ε ·17

ε+1
ε ν̄

1
ε log (T 2/δ)Nz(2

−i).

We are now ready to prove the theorem. For any r0 ∈ (0, 1),
we have

R(T ) = Tµ(x∗)−
T∑
t=1

µ(xt) =
∑
x∈AT

nT (x)∆(x)

=
∑

x∈AT :∆(x)≤r0

nT (x)∆(x)

︸ ︷︷ ︸
A

+
∑

x∈AT :∆(x)>r0

nT (x)∆(x)

︸ ︷︷ ︸
B

.

In the following, we bound A and B separately.
(i) A can be bounded easily:

A ≤ r0

∑
x∈AT :∆(x)≤r0

nT (x) ≤ r0T. (15)
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(a) a = 0 (b) a = −2

Figure 1. Comparison of our algorithms versus the zooming algorithm for heavy-tailed rewards

(ii) To bound B, we make use of the definition of ĀT (i) in
(14) and apply Lemma 4.

B ≤
∑

i∈N:2−i≥r0

∑
x∈ĀT (i)

nT (x)∆(x)

≤17(34ν̄)
1
ε log (T 2/δ)

∑
i∈N:2−i≥r0

Nz(2
−i)2

i
ε

=17(34ν̄)
1
ε log (T 2/δ)

∑
r=2−i:i∈N,r≥r0

Nz(r)

r1/ε
.

(16)

Combining (15) and (16), we finish the proof. �

5. Experiments
In this section, we provide numerical experiments to illus-
trate the performance of our proposed algorithms: ADTM
and ADMM. For comparison, we adopt a type of zoom-
ing algorithm proposed in Section 4.5 of Kleinberg et al.
(2008b) as the baseline, which requires the existence of
finite third moments of reward distributions.

Following Magureanu et al. (2014), we set X = [0, 1] with
D being the Euclidean metric on it, and choose

µ(x) = a−min(|x− 0.4|, |x− 0.8|)

as the expected reward function in which a is a constant.
To generate heavy-tailed rewards, we adopt the Pareto dis-
tribution with shape parameter α = 3.1 so that the third
moments of rewards are bounded and thus the zooming al-
gorithm can apply. Specifically, each round after playing an
arm x, the learner receives a stochastic reward y satisfying
y = µ(x) + η − α

α−1 in which

Pr (η|x) =

{
α

ηα+1 , η ≥ 1

0, η < 1
.

By straightforward calculations, we can bound the moments
of different orders of y as follows and configure confidence

radius of each tested algorithm accordingly:

E[y|x] = µ(x) ≤ ā, E[|y|3|x] ≤ ā3 + 1.92ā+ 24.96

E[|y|2|x] ≤ ν = ā2 + 0.64, E[|y − µ(x)|2|x] ≤ σ = 0.64.

where ā = max(|a|, |a − 0.4|). Then, following common
practice (Zhang et al., 2016; Jun et al., 2017), we scale the
confidence radius by a factor c searched within [1e− 2, 1].

We consider two cases: a = 0 and a = −2. For each case,
we run 40 independent repetitions and report the average
cumulative regret of each tested algorithm in Figure 1. As
can be seen, not surprisingly, our adaptive algorithms out-
perform the zooming algorithm in both cases. In the first
case, ADTM achieves the smallest regret which is expected,
since compared to ADMM it has a more favorable constant
factor in regret bound, and in this case the upper bound of
second raw moments ν is only 1.25 times as large as that of
second central moments σ. By contrast, in the second case,
due to the significant ratio of ν/σ = 10, ADTM suffers
a larger regret and ADMM behaves the best. Finally, the
curves of ADMM in both cases are nearly the same, which
is consistent with Theorem 3 and supports the claim that
ADMM is insensitive to constant shift changes in rewards.

6. Conclusion and Future Work
We have proposed two adaptive algorithms for Lipschitz
bandits with heavy-tailed rewards. Our algorithms only re-
quire the existence of finite (1 + ε)-th moments of rewards
for some ε ∈ (0, 1], and are optimal in the sense that the
regret bounds match the lower bound established in this
paper. One of our algorithms is efficient but its regret deteri-
orates as the absolute bound of the expected reward function
maxx |µ(x)| increases. The other one enjoys a regret bound
that depends on the central moments and is thus insensi-
tive to constant shift changes in rewards but is inefficient.
Therefore, a natural question arises: is there an efficient al-
gorithm with regret bound depending on central moments?
Obtaining such algorithm seems highly non-trivial even for
the multi-armed setting, and we leave it as a future work.
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