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1. A recap on Generalized Approximate Message Passing
1.1. Derivation of GAMP

For the reader’s convenience and for familiarizing with the notation adopted throughout this work, we sketch the derivation
of the Generalized Approximate Message Passing (GAMP) equations for Generalized Linear Estimation (GLE) models. For
a longer discussion, we refer the reader to Refs. (Rangan, 2011; Ma et al., 2018; Kabashima et al., 2016). We assume the
setting of Eq. (1) of the Main Text, that is a graphical model defined by the Hamiltonian:

Hy,F (x) =
∑
µ

`
(
yµ, 〈F µ,x〉

)
+
∑
i

r(xi), (1)

with the further assumption that the entries of F are i.i.d. zero-mean Gaussian variables with variance 1/N , i.e Fµi ∼
N (0, 1/N) (but the derivation also applies to non-Gaussian variables with the same mean and variance). The configuration
space is assumed to be some subset χN of R. For discrete spaces, integrals should be replace with summations. Also, we
consider the regime of large M and N , with finite α = M/N . The starting point for the derivation of GAMP equations is
the Belief Propagation (BP) algorithm (Mezard & Montanari, 2009), characterized by the exchange of two sets of messages:

νti→µ(xi) ∝ e−βr(xi)+
∑
ν 6=µ log ν̂tν→i(xi) (2)

ν̂t+1
µ→i(xi) ∝

∫
χN−1

∏
j 6=i

dνtj→µ(xj) e
−β`(yµ,〈Fµ,x〉). (3)

For the dense graphical model we are considering, by virtue of central limit arguments, we can relax the resulting identities
among probability densities to relations among their first and second moments. The resulting approximated version of BP
goes under the name of relaxed Belief Propagation (rBP) (Guo & Wang, 2006; Rangan, 2010; Mézard, 2017).

We define the expectations over the measure in Eq.(2) as 〈•〉ti→µ, and its moments as 〈x〉ti→µ = x̂ti→µ and
〈
x2
〉t
i→µ =

∆t
i→µ + (x̂ti→µ)2. In high dimensions we can see that the scalar product 〈F µ,x〉 in Eq.(3) becomes Gaussian distributed

according to N (
∑
j F

µ
j x̂

t
j→µ + Fµi (xi − x̂ti→µ),

∑
j 6=i(F

µ
j )2∆t

j→µ).

In order to obtain the relationship between the moments of the two sets of distributions it is useful to introduce two scalar
estimation functions, the input and output channels, that fully characterize the problem. The associated free entropies
(Barbier et al., 2018) (i.e., log-normalization factors) can be expressed as:

ϕin(B,A) = log

∫
χ

dx e−
1
2Ax

2+Bx−β r(x) (4)

ϕout(ω, V, y) = log

∫
dz√
2πV

e−
1

2V (z−ω)2−β `(y,z). (5)

Then, defining gtµ = ∂ωϕ
out(ω′, V ′, y) and Γtµ = −∂2

ωϕ
out(ω′, V ′, y), both evaluated in ω′ =

∑
j(F

µ
j )2∆t

j→µ and
V ′ =

∑
j F

µ
j x̂

t
j→µ, we can express through them the approximate message-passing, obtained at the second order of the

Taylor expansion of the messages:

log ν̂t+1
µ→i(xi) =ϕout

∑
j

Fµj x̂
t
j→µ + Fµi (xi − x̂ti→µ),

∑
j 6=i

(Fµj )2∆t
j→µ, yµ

+ const. (6)
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Next, we close the equations on single site quantities, discarding terms which are sub-leading for large N and assuming
zero mean and 1/N variance i.i.d entries in F . Thus, we can remove the cavities and approximate the parameters of the
(non-cavity) estimation channels as follows:

Bti =
∑
µ

Fµi g
t
µ − x̂t−1

i

∑
µ

(Fµi )2Γtµ (7)

Ati =
∑
µ

(Fµi )2Γtµ (8)

ωtµ =
∑
i

Fµi x̂
t
i − gtµ

∑
i

(Fµi )2∆t
i (9)

V tµ =
∑
i

(Fµi )2∆i. (10)

Finally, the expectations introduced above can be obtained via the derivatives:

gtµ = ∂ωϕ
out,t
µ (11)

Γtµ = −∂2
ωϕ

out,t
µ (12)

x̂ti = ∂Bϕ
in,t
i (13)

∆t
i = ∂2

Bϕ
in,t
i , (14)

where we used the shorthand notation ϕin,t
i = ϕin(Bti , A

t) and ϕout,t
µ = ϕout(ωtµ, V

t−1, y).

A slight simplification of the message passing (which involves O(N2) operations per iteration), relies on the observation
that due to the statistical properties of F the quantities Ai and Vµ do not depend on their indexes (Rangan, 2011), so we can
define their scalar counterparts:

At = cF
∑
µ

Γtµ, (15)

V t = cF
∑
i

∆t−1
i , (16)

where cF =
∑
µ,i(F

µ
i )2/(MN) ≈ 1/N . Therefore we obtain:

ωtµ =
∑
i

Fµi x̂
t−1
i − gt−1

µ V t−1 (17)

gtµ = ∂ωϕ
out,t
µ (18)

Γtµ = −∂2
ωϕ

out,t
µ (19)

At = cF
∑
µ

Γtµ (20)

Bti =
∑
µ

Fµi g
t
µ + x̂t−1

i At (21)

x̂ti = ∂Bϕ
in,t
i (22)

∆t
i = ∂2

Bϕ
in,t
i (23)

V t = cF
∑
i

∆t
i. (24)

Eqs. (17-24) are known as the GAMP iterations, and are valid for t ≥ 1, given some initial condition x̂t=0 and V t=0, along
with gt=0

µ = 0, ∀µ.

1.2. Zero-temperature limit of GAMP

In order to apply the GAMP algorithm to MAP estimation or MAP + regularizer, we have to consider the zero-temperature
limit β ↑ ∞ . The limiting form of the equations depends on the model and on the regime (e.g. low or high α). Here we
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consider models defined on continuous spaces χN and in the high α regime (e.g. α > 1 for phase retrieval). In this case,
while taking the limit, the message have to be rescaled appropriately in order for them to stay finite. Therefore we rescale
the messages through the substitutions:

A→ βA (25)
Bi → βBi (26)
V → V/β (27)
gµ → βgµ (28)
∆i → ∆i/β. (29)

With these rescalings, the GAMP equations (17-24) are left unaltered, but the expressions for the free entropies of the scalar
channels become

ϕin(B,A) = max
x∈χ

−r(x)− 1

2
Ax2 +Bx (30)

ϕout(ω, V, y) = max
z
− (z − ωµ)2

2V
− `(y, z), (31)

as it is easy to verify.

1.3. GAMP equations for real-valued phase retrieval and AMP.A equations

In the special case of the phase retrieval problem, with a loss `(y, ω) = (y − |ω|)2 and L2-norm r(x) = λx2/2 and at zero
temperature, the two scalar estimation channels of Eqs.(30) and (31) become:

ϕin(B,A) =
B2

2(A+ λ)
(32)

ϕout(ω, V, y) =− (y − |ω|)2

2V + 1
. (33)

Thus, Eqs. (18, 22, 23, 24) simply yield:

gtµ =
2(yµ − |ωtµ|)

2V t + 1
sign(ωtµ) (34)

x̂ti =
Bti

At + λ
(35)

∆t
i =

1

At + λ
(36)

V t = NcF
1

At + λ
. (37)

Eq. (19) is instead singular, since it involves the derivative of the sign function. Since we have

ωtµ =
∑
i

Fµi x̂
t−1
i −

gt−1
µ

At−1 + λ
(38)

gtµ =
2(yµ − |ωtµ|)

2V t + 1
sign(ωtµ) (39)

At = −cF
∑
µ

∂2
ωϕ

out,t
µ (40)

xti = (At + λ)

(∑
µ

Fµi g
t
µ + x̂t−1

i At

)
, (41)

because of the singularity, the value of At cannot be simply evaluated on a given finite sample. A possible way of dealing
with this issue is to use a smoothing strategy in the first iterations of the message passing, replacing the sign function with a
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continuous version of it. Alternatively, in Ref. (Ma et al., 2018; 2019), the author propose to self-consistently adapt the
regularizer λ at each time step in order to absorb the divergent contribution. Also, the dynamics At can be replaced by the
corresponding and non-singular SE estimate. We find that all these solutions are difficult to implement in a robust way and
lead to some numerical instabilities that have to be dealt with great care. As we commented in the Main Text, this problem
does not affect the GASP version of the algorithm, because of the additional Gaussian kernel that smoothens the output
scalar estimation channel.

2. Derivation of Generalized Approximate Survey Propagation
We will derive the GASP equation for a general GLE model specified by (1). As already explained in the Main Text, we will
follow (Antenucci et al., 2019b) and work within the (real) replicas formalism. The derivation is similar to the one outlined
for the GAMP algorithm, which goes from Belief Propagation (BP) to relaxed Belief Propagation (rBP) to Approximate
Message Passing (AMP). In fact, GASP is obtained by applying the very same procedure that leads to GAMP to an auxiliary
graphical model that corresponds to considering multiple copies of the system.

2.1. Relaxed Survey Propagation

As an intermediate step toward the derivation of GASP equations, we derive the relaxed Survey Propagation (rSP) equations
for out GLE problem. This corresponds to a Gaussian closure of the standard BP equations on the replicated factor graph of
the problem, under replica symmetric assumptions. We assume the setting of Eq. (1) of the Main Text, that is a graphical
model defined by the Hamiltonian:

Hy,F (x) =
∑
µ

`
(
yµ, 〈F µ,x〉

)
+
∑
i

r(xi), (42)

with the further assumption that the entries of F are i.i.d. zero-mean Gaussian variables with variance 1/N , i.e Fµi ∼
N (0, 1/N) (but the derivation also applies to non-Gaussian variables with the same mean and variance). The configuration
space is assumed to be some subset χN of R. For discrete spaces, integrals should be replaced with summations. Also, we
consider the regime of large M and N , with finite α = M/N .

Quite peculiarly, the family of message passing algorithm corresponding to the 1RSB framework (i.e. SP, rSP, ASP), are
simply obtained as the BP, rBP and AMP equations for a replicated graphical model,

p({xa}ma=1) =
1

Zmy,F
e−β

∑m
a=1Hy,F (xa), (43)

where m is the number of replicas. The parameter m is not to be confused with the number of replica n that it is usually sent
to zero in the replica trick, but it has to be interpreted as the Parisi symmetry breaking parameter in the 1RSB scheme or as
the number of real clones within Monasson’s method (Monasson, 1995)). While the replicated model is trivially factorized
over the replicas, a highly non-trivial picture emerges when p is considered as the limit distribution obtained by inserting a
coupling term among the replicas and then letting it go to zero. Since the discussion about this technique (pioneered by
Monasson in Ref. (Monasson, 1995)) is quite articulated and has its root in a few decades of development in spin-glass
theory, we refer the interested reader to (Mézard et al., 1987; Mezard & Montanari, 2009; Antenucci et al., 2019a;b) and
reference therein for an overview of the theoretical aspects behind this approach. From here on we present the innovative
aspects of our contribution, which extends the work of Ref. (Antenucci et al., 2019b) to GLE models.

We denote with xi ∈ ξm the replicated variable on site i, and write a first set of BP equations in the form:

νi→µ(x̄i) ∝ e−β
∑m
a=1 r(x

a
i )+

∑
ν 6=µ log ν̂ν→i(x̄i), (44)

where we omit time indexes. In the large N limit, we can exploit the statistical assumptions on F and the central limit
theorem to perform a Gaussian approximation of the messages. Also, we assume symmetry of the messages νi→µ(x̄i)
under permutation of replica indexes, which holds self-consistently if one makes a similar assumption also on the messages
ν̂ν→i(x̄i). Messages are then multivariate Gaussian distribution conveniently parametrized by the mean x̂i→µ and two
parameters ∆0,i→µ and ∆1,i→µ in the form:

νi→µ(x̄i) ∝
∫

dh e
− 1

2∆0,i→µ
(h−x̂i→µ)2 ∏

a

e
− 1

2∆1,i→µ
(xai−h)2

, (45)
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also known as caging ansatz in the glass and spin-glass community (Charbonneau et al., 2017). According to this Gaussian
projection, the first and second moments of messages are given by

〈xai 〉i→µ = x̂i→µ (46)

〈xai xbi 〉i→µ = ∆0,i→µ + x̂2
i→µ (47)

〈(xai )2〉i→µ = ∆1,i→µ + ∆0,i→µ + x̂2
i→µ. (48)

The values of x̂i→µ, ∆0,i→µ and ∆1,i→µ can be obtained by matching the moments of the r.h.s. of 44. From now on the
derivation is very close to that of Section 1.1 for GAMP, therefor we relax the notation and drop some indexes. Let us define
the input channel free entropy:

φin(B,A0, A1,m) =
1

m
log

∫
Dz

(∫
χ

dx e−βr(x)− 1
2A1x

2+(B+
√
A0z)x

)m
. (49)

Let us also denote with 〈ψ(x̄)〉 the expectation over the corresponding measure, in the m-replicated space, of a test function
ψ, that is

〈ψ(x̄)〉 =

∫
Dz
∫
χm

∏m
a=1 dx

a e−βr(x
a)− 1

2A1(xa)2+(B+
√
A0z)x

a

ψ(x̄)∫
Dz
∏m
a=1 dx

a e−βr(x
a)− 1

2A1(xa)2+(B+
√
A0z)xa

. (50)

For appropriate values of Bν→i, A0,ν→i and A1,ν→i to be determined by second order expansion of log ν̂ν→i(x̄i), and for
replica indexes a and b,a 6= b, from Eq. (44) we obtain:

∂Bφ
in = 〈xa〉 (51)

∂2
Bφ

in = (〈(xa)2〉 − 〈xaxb〉) +m
(
〈xaxb〉 − 〈xa〉2

)
(52)

2∂A0
φin = (〈(xa)2〉 − 〈xaxb〉) +m〈xaxb〉 (53)

2∂A1
φin = −〈(xa)2〉. (54)

Using the above formulas, we can project the measure on Rm corresponding to φin onto the space of replica-symmetric
Gaussian distributions, parametrized by x̂, ∆0 and ∆1. Defining for convenience φin

i→µ = φin(A0,i→µ, A1,i→µ, Bi→µ),
with the quantities A0,i→µ, A1,i→µ and Bi→µ to be defined later, by moment matching we obtain:

x̂i→µ = ∂Bφ
in
i→µ, (55)

∆0,i→µ =
1

m− 1

(
∂2
Bφ

in
i→µ + 2∂A1φ

in
i→µ + x̂2

i→µ
)
, (56)

∆1,i→µ = ∂2
Bφ

in
i→µ −m∆0,i→µ. (57)

Defining the messages

ωµ→i =
∑
j 6=i

Fµj x̂j→µ, (58)

V0,µ→i =
∑
j 6=i

(
Fµj
)2

∆0,j→µ, (59)

V1,µ→i =
∑
j 6=i

(
Fµj
)2

∆1,j→µ, (60)

we can express the central limit approximation for the BP equations at factor node µ as

ν̂µ→i(x̄i) ∝
∫
χm(N−1)

∏
j 6=i

d νj→µ(x̄j) e
−β

∑
a `(yµ,〈F

µ,xa〉) (61)

∝
∫

d z0 e
− 1

2V0,µ→i
(z0−ωµ)2

m∏
a=1

(∫
Dz1 e

−β `(yµ,Fµi x
a
i+z0+

√
V1z1)

)
. (62)
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The expansion of the message ν̂µ→i(x̄i) that we use for our Gaussian closure of the BP messages are conveniently expressed
in terms of the derivatives of the output channel free entropy

φout(ω, V0, V1, y,m) =
1

m
log

∫
d z0√
2πV0

e−
1

2V0
(z0−ω)2

(∫
Dz1 e

−β `(y,z0+
√
V1z1)

)m
. (63)

Introducing the second order expansion

log ν̂µ→i(x̄i) = gµ→i
∑
a

xai −
1

2
A1,µ→i

∑
a

(xai )2 +
1

2
A0,µ→i

∑
a,b

xai x
b
i (64)

we can write the last set of rSP messages as

gµ→i = ∂ωφ
out
µ→i (65)

Γ0,µ→i =
1

m− 1

(
∂2
ωφ

out
µ→i − (2∂V1

φout
µ→i − g2

µ→i)
)

(66)

Γ1,µ→i =
1

m− 1
(∂2
ωφ

out
µ→i −m(2∂V1

φout
µ→i − g2

µ→i)) (67)

(68)

Incoming messages on the input nodes are then given by

Bi→µ =
∑
ν 6=µ

F νi gν→i (69)

A0,i→µ =
∑
ν 6=µ

(F νi )2Γ0,ν→i (70)

A1,i→µ =
∑
ν 6=µ

(F νi )2Γ1,ν→i (71)

(72)

The closed set of Equations (55-60) and (65-71), along with the free entropy definitions in Eqs. (49) and (63), define the rSP
iterative message passing.

2.2. The GASP Equations

Under our statistical assumptions on the sensing matrix F , in order to reduce the computational complexity of
rSP, it is possible to close the equations the rSP message passing in terms of single site or scalar quantities
ωµ, gµ,Γ0,µ,Γ1,µ, A0, A1, Bi,∆0,i,∆1,i, V0 and V1, therefore obtaining the GASP equation. In fact, the values
A0,i→µ, A1,i→µ and V0,µ→i, V1,µ→i concentrate and can be straightforwardly replaced by their scalar counterparts. In order
to present in this section all of the necessary ingredients of the GASP algorithm, we rewrite here the two scalar channel free
entropies from previous section. Adopting a form that makes clear the nested structure of the 1RSB free-entropy and it’s
relation to the corresponding RS free entropy used in GAMP, we write fro the input channel

φin(B,A0, A1,m) =
1

m
log

∫
Dz emϕ

in(B+
√
A0z,A1) (73)

ϕin(h,A1) = log

∫
χ

dx e−βr(x)− 1
2A1x

2+hx (74)

and for the output channel

φout(ω, V0, V1, y,m) =
1

m
log

∫
Dz emϕ

out(ω+
√
V0 z, V1,y), (75)

ϕout(u, V1, y) = log

∫
Dz e−β `(y,u+

√
V1z). (76)
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As usual,
∫
Dz denotes standard Gaussian integration

∫
dz exp(−z2/2)/

√
2π. We will use the notation φin

i =
φin(Bi, A0, A1,m) and φout

µ = φout(ωµ, V0, V1, yµ,m) and drop time indexes for the time being. Given the definition
Bi =

∑
µ F

µ
i gµ→i, we can write

x̂i→µ = ∂Bφ
in(A0, A1, Bi − Fµi gµ→i) (77)

≈ x̂i − Fµi gµ∂
2
Bφ

in
i , (78)

which can be then inserted in the definition ωµ =
∑
i F

µ
i x̂i→µ resulting in

ωµ =
∑
i

Fµi x̂i − gµ
∑
i

(Fµi )
2
∂2
Bφ

in
i . (79)

The other relevant equation is

gµ→i = ∂ωφ
out(V0, V1, ω

µ − Fµi x̂
i→µ) (80)

≈ gµ − Fµi x̂
µ∂2

ωφ
out
µ , (81)

which analogously leads to
Bi =

∑
µ

Fµi gµ − x̂i
∑
µ

(Fµi )
2
∂2
ωφ

out
µ . (82)

We now introduce back the time indexes, and use the shorthand notations φin,t
i = φin(Bti , A

t
0, A

t
1,m) and φout,t

µ =

φout(ωtµ, V
t−1
0 , V t−1

1 , yµ,m). Using again the definition cF = 1
MN

∑
µ,i(F

µ
i )2 (hence E cF = 1/N in our setting), with

some initialization for x̂t=0
i ,V t=0

0 , V t=0
1 and setting gt=0

µ = 0, we finally obtain

ωtµ =
∑
i

Fµi x̂
t−1
i − gt−1

µ (mV t−1
0 + V t−1

1 ) (83)

gtµ = ∂ωφ
out,t
µ (84)

Γt0 =
1

m− 1

(
∂2
ωφ

out,t
µ − (2∂V1φ

out,t
µ − (gtµ)2)

)
(85)

Γt1 =
1

m− 1
(∂2
ωφ

out,t
µ −m(2∂V1

φout,t
µ − (gtµ)2)) (86)

At0 = cF
∑
µ

Γt0 (87)

At1 = cF
∑
µ

Γt1 (88)

Bti =
∑
µ

Fµi g
t
µ − x̂t−1

i (mAt0 −At1) (89)

x̂ti = ∂Bφ
in,t
i (90)

∆t
0,i =

1

m− 1

(
∂2
Bφ

in,t
i + 2∂A1φ

in,t
i + (x̂ti)

2
)

(91)

∆t
1,i = ∂2

Bφ
in,t
i −m∆t

0,i (92)

V t0 = cF
∑
i

∆t
0,i (93)

V t1 = cF
∑
i

∆t
1,i. (94)

Equations (83-94), along with the free entropy definitions in Eqs. (73, 75) are the GASP iterative equations.

2.3. Zero Temperature Limit

In order to apply the GASP algorithm to MAP estimation, we have to consider the zero-temperature limit β ↑ ∞ of the
message passing. The limiting form of the equations depends on the model and on the regime (e.g. low or high α). Here we
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consider models defined on continuous spaces χN and in the high α regime (e.g. α > 1 for phase retrieval). In this case,
while taking the limit, the messages have to be rescaled appropriately in order to keep them finite. Therefore, we rescale the
messages through the substitutions

A0 → β2A0 (95)
A1 → βA1 (96)
B → βB (97)
ω → ω (98)
V0 → V0 (99)
V1 → V1/β (100)
g → βg (101)
m→ m/β (102)

∆0 → ∆0 (103)
∆1 → ∆1/β, (104)

in Equations (83-94) and Eqs. (73, 76). Taking the β → ∞ limit we recover the GASP equations for MAP estimation
presented in the Main Text.

2.4. GASP equations for real-valued phase retrieval problem

Putting together Eqs.(32) and (33), and the definitions in Eqs.(73) and (75), we can obtain the zero temperature limit of the
two GASP scalar estimation channels, in the special case of the phase retrieval loss `(y, u) = (y − |u|)2 and an L2-norm
r(x) = λx2/2. The expressions simply become:

φin(B,A0, A1, y,m) =− B2

2(A1 + λ−mA0)
− 1

2m
log

(
1− mA0

A1 + λ

)
(105)

φout(ω, V0, V1,m) =
1

m
log (Z+ + Z−)− 1

2m
log

(
1 +

2mV0

1 + 2V1

)
, (106)

where we defined for compactness:

Z± =H

(
− 2mV0y ∓ ω(1− 2V1)√

V0(1 + 2V1)(1 + 2V1 + 2mV0)

)
exp

(
− m(ω ± y)2

1 + 2V1 + 2mV0

)
. (107)

Moreover, the zero temperature limit of GASP Eqs. (90, 91, 92) after the rescaling discussed in previous paragraph, gives:

x̂i =
Bi

A1 + λ−mA0
(108)

∆0
i =

A0

(A1 + λ)(A1 + λ−mA0)
(109)

∆1
i =

1

A1 + λ−mA0
−m∆0

i . (110)

3. Setting the symmetry-breaking parameter
The 1RSB formalism, from which the (G)ASP equations are derived, is based on the introduction of a symmetry-breaking
parameter, the so-called Parisi parameter m (Mézard et al., 1987), that allows the description of the fine structure of highly
non-convex (“glassy”) landscapes.

In replica analyses, the physical meaning of m is the following: when the studied model develops a 1RSB structure, by
tuning m in its natural range of variability (0, 1], it is possible to focus the Gibbs measure on the different families of
exponentially numerous “states” (i.e., basins of solutions of the inference problem) that populate the loss landscape (Mézard
et al., 1987). The dominant states, i.e. those where a perfect sampling algorithm would land with high probability, are
described at the thermodinamically optimal value m?, that extremizes the free-energy of the model.
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In the real-replica formalism employed to derive the ASP equations (Monasson, 1995; Antenucci et al., 2019b), however,
m is an external parameter that can be analytically continued to take any real value, and is no-longer strictly bound to the
interval (0, 1]. In fact, both the algorithm and its SE characterization are valid even if the model has not developed a proper
1RSB structure, and m can be simply thought as a parametrization the family of algorithms ASP(m) (Antenucci et al.,
2019b). We note that, in the zero-temperature limit, when the proper scaling of m with β →∞ is chosen (Eqs. 95 to 104),
even the physically meaningful interval of variability of m is of course extended to (0,∞).
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Figure 1. Optimal value of the symmetry-breaking parameter m = m? (as employed in the GASP phase diagram in Fig. 2 in the Main
Text, bottom plot), for different values of the regularizer λ.

In Fig. 1, we show the numerical values of the thermodynamic optima m = m? in the zero-temperature phase retrieval
problem (obtained analytically in correspondence of ρ = 0, at varying values of α and λ, from a replica computation that
will be presented in a more technical future work). These are the values that were employed in the corresponding GASP
phase diagram, presented in the Main Text in Fig. 2.

We remark, however, that this particular choice was mostly due to the need of consistency in the criterion for fixing m
throughout the various regions of the phase diagram. In fact, as it was already noted in the Bayesian case (Antenucci et al.,
2019b), the thermodynamical optimum might not be the best choice for m, since other values seem to allow better inference
(e.g., a decreased final MSE). Since we are here interested in the MAP estimation task, our performance evaluation is
based solely on the possibility of achieving retrieval of the signal. This condition is definitely less demanding than that
of obtaining the best MSE, and in fact we find that wide ranges of values for m are effective in correspondence of each α
and λ. Fig. 1 is nevertheless indicative of how m should be incremented when the observation matrix gets smaller or when
weaker regularizers are employed.

In order to show the robustness of GASP(m) with respect to the choice of different values for the symmetry-breaking
parameter, in Fig. 2 we plot the total number of iterations required to converge to the signal (indicated by the color map), for
fixed values of m. The plotted number of iterations include both stages in our simple continuation strategy. As it can be
seen in the plot, this total number tends to increase as α is lowered, since the inference problem becomes harder.

The colored curves mark the lower border of the regions of effectiveness of GASP(m), with m fixed in each region, at which
the number of iterations required by the algorithm diverge. It is clear, indeed, that a careful fine-tuning of m is unnecessary,
and that it is quite intuitive how to adapt it when a different instance of the problem is given. For example, in the noiseless
case, a basic strategy is to fix λ in the range [0.001 : 0.01] and then test O(1) different values for m, until MSE = 0 is
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Figure 2. Total number of iterations to convergence for GASP(m). The colored curves delimit (from below) the perfect recovery regions
of GASP with the indicated value for m.

obtained at convergence of the message-passing.

As a last data point, we report in Fig. 3 the behaviour of the overlap with the true signal of the estimator given by GASP, for
two different system sizes, large times and as a function of α. We observe that for large N transitions become sharper and
experimental points approach the asymptotic prediction from SE.
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Figure 3. GASP and SE result after t = 103 iterations. Start at t = 0 with ρ = 10−3 for SE and x̂ ∼ N (0, IN ) for GASP. Circles are for
N = 103, squares for N = 104, . results are averaged over 100 samples. Lines are predictions from SE.
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bayes-optimal matrix factorization. IEEE Transactions on Information Theory, 62(7):4228–4265, 2016.

Ma, J., Xu, J., and Maleki, A. Approximate message passing for amplitude based optimization. In Dy, J. and Krause,
A. (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pp. 3365–3374, Stockholmsmssan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL
http://proceedings.mlr.press/v80/ma18e.html.

Ma, J., Xu, J., and Maleki, A. Optimization-based amp for phase retrieval: The impact of initialization and l2-regularization.
IEEE Transactions on Information Theory, 2019.
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