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Abstract
In Generalized Linear Estimation (GLE) prob-
lems, we seek to estimate a signal that is ob-
served through a linear transform followed by
a component-wise, possibly nonlinear and noisy,
channel. In the Bayesian optimal setting, Gener-
alized Approximate Message Passing (GAMP) is
known to achieve optimal performance for GLE.
However, its performance can significantly de-
grade whenever there is a mismatch between the
assumed and the true generative model, a situa-
tion frequently encountered in practice. In this
paper, we propose a new algorithm, named Gener-
alized Approximate Survey Propagation (GASP),
for solving GLE in the presence of prior or model
mis-specifications. As a prototypical example, we
consider the phase retrieval problem, where we
show that GASP outperforms the corresponding
GAMP, reducing the reconstruction threshold and,
for certain choices of its parameters, approaching
Bayesian optimal performance. Furthermore, we
present a set of State Evolution equations that ex-
actly characterize the dynamics of GASP in the
high-dimensional limit.

1. Introduction
Approximate message passing (AMP) algorithms have be-
come a well established tool in the study of inference prob-
lems (Donoho et al., 2009; Donoho & Montanari, 2016;
Advani & Ganguli, 2016) that can be represented by dense
graphical models. An important feature of AMP is that its
dynamical behavior in the large system limit can be exactly
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predicted through a dynamical system involving only scalar
quantities called State Evolution (SE) (Bayati & Monta-
nari, 2011). This relationship paved the way for a series of
rigorous results (Rangan & Fletcher, 2012; Deshpande &
Montanari, 2014; Deshpande et al., 2016). It also helps clar-
ify the connection to several fascinating predictions obtained
through the replica analysis in statistical physics (Mézard
et al., 1987). In the optimal Bayesian setting, where one
has perfect information on the process underlying data gen-
eration, AMP has been empirically shown to achieve opti-
mal performances among polynomial algorithms for many
different problems. However, in the more realistic case
of mismatch between the assumed and the true generative
model, i.e. when AMP is not derived on the true posterior
distribution, it may become sub-optimal. A possible source
of problems for the AMP class of algorithms is the out-
break of Replica Symmetry Breaking (Mézard et al., 1987),
a scenario where an exponential number of fixed point and
algorithmic barriers dominate the free energy landscape ex-
plored by AMP. This phenomena can be accentuated in case
of model mismatch: a notable example is maximum likeli-
hood estimation (as opposed to estimation by the posterior
mean, which corresponds to the low temperature limit of a
statistical physics model.

These considerations are well known within the physics
community of disordered systems (Krzakala et al., 2016),
where the problem of signal estimation is informally re-
ferred to as “crystal hunting”. Estimation problems in high
dimensions are characterized by a complex energy-entropy
competition where the true signal is hidden in a vast and po-
tentially rough landscape. In a wide class of problems, one
observes the presence of a algorithmically “hard” phase for
some range of values for the parameters defining the prob-
lem (e.g. signal-to-noise ration). In this regime, all known
polynomial complexity algorithms fail to saturate the in-
formation theoretic bound (Ricci-Tersenghi et al., 2019).
While reconstruction is possible in principle, algorithms
are trapped in a region of the configuration space with low
overlap with the signal and many local minima (Antenucci
et al., 2019a; Ros et al., 2019).

In a recent work (Antenucci et al., 2019b), a novel message-
passing algorithm, Approximate Survey Propagation (ASP),
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was introduced in the context of low-rank. The algorithm
is based on the 1-step Replica Symmetry Breaking (1RSB)
ansatz from spin glass theory (Mézard et al., 1987), which
was specifically developed to deal with landscapes popu-
lated by exponentially many local minima. It was shown
that ASP on the mismatched model could reach the perfor-
mance of (but not improve on) matched AMP and do far
better than mismatched AMP (Antenucci et al., 2019a;b). In
the present paper, we build upon these previous works and
derive the ASP algorithm for Generalized Linear Estimation
(GLE) models. Since the extension of AMP to GLE prob-
lems is commonly known as GAMP, we call Generalized
Approximate Survey Propagation (GASP), our extension
of ASP. We will show that also in this case, in presence of
model mismatch, (G)ASP improves over the corresponding
(G)AMP.

2. Model specification
An instance of the general class of models to which GASP
can be applied is defined, for some integer M and N , by
an observed signal y ∈ RM and an M × N observation
matrix F . Clearly, this scenario encompasses also GLE. We
denote with F µ, µ ∈ [M ], the rows of F and refer to the
ratio α = M/N as the sampling ratio of F . We consider a
probability density distribution p(x) on a (possibly discrete)
space χN , χ ⊆ R, defined as:

p(x) =
1

Z
e−βHy,F (x), (1)

where, following statistical physics jargon, β plays the role
of an inverse temperature, Z is a normalization factor called
partition function (both Z and p implicitly depend on β,y
and F ), andHy,F is the Hamiltonian of the model, that in
our setting takes the form:

Hy,F (x) =

M∑
µ=1

`
(
yµ, 〈F µ,x〉

)
+

N∑
i=1

r(xi). (2)

Here 〈•, •〉 denotes the scalar product and we call ` and r the
loss function and the regularizer of the problem respectively.

In this quite general context, the purpose of GASP is to ap-
proximately compute the marginal distribution p(xi), along
with some expected quantities such as e.g. x̂ = Epx. The
approximation entailed in GASP turns out to be exact under
some assumptions in the large N limit, as we shall later
see. A crucial assumption in the derivation of the GASP
algorithm (and of GAMP as well), is that the entries of F
are independently generated according to some zero mean
and finite variance distribution.

Although the general formulation of GASP, presented in
Sec. 2 of the SM, is able to deal with any model of the form
(1), we will here restrict the setting to discuss Generalized
Linear Estimation (Rangan, 2011).

In GLE problems, p(x) is sensibly chosen in order to in-
fer a true signal x0 ∈ RN , whose components are as-
sumed to be independently extracted from some prior P0,
x0,i ∼ P0 ∀i ∈ [N ]. The observations are indepen-
dently produced by a (probabilistic) scalar channel P out:
yµ ∼ P out(• | 〈F µ,x0〉).

It is then reasonable to choose `
(
y, z) = − logP out(y|z),

r(x) = − logP0(x) and β = 1, so that the probability den-
sity p(x) corresponds to the true posterior P (x|F ,y) ∝
P out(y|x,F )P0(x), where ∝ denotes equality up to a nor-
malization factor. We refer to this setting as to the Bayesian-
optimal or matched setting (Barbier et al., 2018). Notice that
in the β ↑ ∞ limit p(x) concentrates around the maximum-
a-posteriori (MAP) estimate. If β 6= 1 or if the Hamiltonian
doesn’t correspond to the minus log posterior (e.g, when P0

and P out used in the Hamiltonian do not correspond to true
ones) we talk about model mismatch.

As a testing ground for GASP, and the corresponding State
Evolution, we here consider the phase retrieval problem,
which has undergone intense investigation in recent years
(Candes et al., 2015; Dhifallah & Lu, 2017; Chen et al.,
2018; Goldstein & Studer, 2018; Mondelli & Montanari,
2018; Sun et al., 2018; Mukherjee & Seelamantula, 2018).
We examine its noiseless and real-valued formulation, where
observations are generated according to the process

x0 ∼ N (0, IN ), (3)
Fµi ∼ N (0, 1/N) ∀µ ∈ [M ],∀i ∈ [N ], (4)
yµ ∼ |〈F µ,x0〉|. (5)

for some M and N , such that α = M/N > 1. For such
generative model, we will focus on the problem of recover-
ing x0 by minimizing the energy functionHy,F (x) of Eq.
(2), in the case

`(y, z) = (y − |z|)2, (6)

r(x) =
1

2
λx2. (7)

Since the setting assumed for inference corresponds to MAP
estimation in presence of a noisy channel, we are dealing
with a case of model mismatch. The effect of the parameter
λ on the estimation shall be explored in Sec. 7, but we
assume λ = 0 until then. The optimization procedure will
be performed using the zero-temperature (i.e. β ↑ ∞)
version of the GASP algorithm.

3. Previous work on Approximate Message
Passing for Phase Retrieval

Generalized approximate message passing (GAMP) was
developed and rigorously analyzed in Refs. (Rangan, 2011)
and (Javanmard & Montanari, 2013). It was then applied
for the first time to the (complex-valued) phase retrieval
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problem in Ref. (Schniter & Rangan, 2015). In Ref. (Barbier
et al., 2018) the authors report an algorithmic threshold for
the perfect recovery of αalg ≈ 1.13, when using matched
AMP on the real-valued version of the problem. This is to
be compared to the information theoretic bound αIT = 1.

The performance of GAMP in the MAP estimation set-
ting, instead, was investigated in Ref. (Ma et al., 2018;
2019). A “vanilla” implementation of the zero tempera-
ture GAMP equations for the absolute value channel was
reported to achieve perfect recovery for real-valued signals
above αalg ≈ 2.48. The authors were able to show that the
algorithmic threshold of GAMP in the mismatched case can
however be drastically lowered by introducing regulariza-
tion a regularization term ultimately continued to zero. The
AMP.A algorithm proposed in (Ma et al., 2018; 2019) uses
an adaptive L2 regularization that improves the estimation
threshold and also makes the algorithm more numerically
robust compensating a problematic divergence that appears
in the message-passing equations (see Sec. 1.3 in the SM
for further details).

Another important ingredient for AMP.A’s performance is
initialization: in order to achieve perfect recovery one has to
start from a configuration that falls within the basin of attrac-
tion of the true signal, which rapidly shrinks as the sampling
ratio α decreases. A well-studied method for obtaining a
configuration correlated with the signal is spectral initial-
ization, introduced and studied in Refs. (Jain et al., 2013;
Candes et al., 2015; Chen & Candes, 2015): in this case the
starting condition is given by the principal eigenvector of
a matrix obtained from the data matrix F and the labels y
passed through a nonlinear processing function. The asymp-
totic performance of this method was analyzed in (Lu & Li,
2017), while the form of the optimal processing function
was described in (Mondelli & Montanari, 2018; Luo et al.,
2019). However, since the SE description is based on the
assumption of the initial condition being uncorrelated with
the data, in AMP.A the authors revisited the method, propos-
ing a modification that guarantees “enough independency”
while still providing high overlap between the starting point
and the signal.

With the combination of these two heuristics, AMP.A is able
to reconstruct the signal down αalg ≈ 1.5. In the present pa-
per we will show that, with a basic continuation scheme, the
1RSB version of the zero temperature GAMP can reach the
Bayes-optimal threshold αalg ≈ 1.13 also in the mismatched
case, without the need of spectral initialization.

3.1. GAMP equations at zero temperature

Here we provide a brief summary of the AMP equations
for the general graphical model of Eq. (1), in the β ↑ ∞
limit. This is both to allow an easy comparison with our
novel GASP algorithm and to introduce some notation that

will be useful in the following discussion. There is some
degree of model dependence in the scaling of the messages
when taking the zero-temperature limit: here we adopt the
one appropriate for over-constrained models in continuous
space. Details of the derivation can be found in Sec. 1 of
the SM, along with the specialization of the equations for
phase retrieval.

First, we introduce two free entropy functions associated to
the input and output channels (Rangan, 2011):

ϕin(B,A) = max
x
−r(x)− 1

2
Ax2 +Bx (8)

ϕout(ω, V, y) = max
u
− (u− ω)2

2V
− `(y, u). (9)

We define for convenience ϕin,t
i = ϕin(Bti , A

t) and ϕout,t
µ =

ϕout(ωtµ, V
t−1, yµ). In our notation the GAMP message

passing equations read:

ωtµ =
∑
i

Fµi x̂
t−1
i − gt−1µ V t−1 (10)

gtµ = ∂ωϕ
out,t
µ (11)

Γtµ = −∂2ωϕout,t
µ (12)

At = cF
∑
µ

Γtµ (13)

Bti =
∑
µ

Fµi g
t
µ + x̂t−1i At (14)

x̂ti = ∂Bϕ
in,t
i (15)

∆t
i = ∂2Bϕ

in,t
i (16)

V t = cF
∑
i

∆t
i (17)

where cF = 1
MN

∑
µ,i(F

µ
i )2. It is clear from the equations

that the two free entropy functions are supposed to be twice
differentiable. This is not the case for phase retrieval, where
GAMP encounters some non-trivial numerical stability is-
sues: during the message-passing iterations one would have
to approximately evaluate an empirical average of ∂2ωϕ

out,t
µ ,

containing Dirac’s δ-function. This is the problem encoun-
tered in AMP.A of Ref. (Ma et al., 2018). We will see that
this problem is not present in GASP thanks to a Gaussian
smoothing of the denoising function.

4. Generalized Approximate Survey
Propagation

The (G)ASP algorithm builds on decades of progress within
the statistical physics community in understanding and deal-
ing with rough high-dimensional landscapes. The starting
point for the derivation of the algorithm is the partition
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function of m replicas (or clones) of the system {xa}ma=1:

Zmy,F =

∫ m∏
a=1

N∏
i=1

dxai e
−β

∑m
a=1Hy,F (xa). (18)

Note that, while this probability measure factorizes trivially,
setting m 6= 1 can introduce many important differences
with respect to the standard case, both from the algorith-
mic and from the physics standpoints (Monasson, 1995;
Antenucci et al., 2019b).

We write down the Belief Propagation (BP) equations as-
sociated to the replicated factor graph, where messages are
probability distributions associated to each edge over the
single-site replicated variables x̄i = (x1i , . . . , x

m
i ). We

make the assumption that the messages are symmetric un-
der the group of replica indexes permutations. This allows
for a parametrization of the message passing that can be
continued analytically to any real value of m. The resulting
algorithm goes under the name of 1RSB Cavity Method or,
more loosely speaking, of Survey Propagation (with refer-
ence in particular to a zero temperature version of the 1RSB
cavity method in discrete constraint satisfaction problems),
and led to many algorithmic breakthroughs in combinato-
rial optimization on sparse graphical models (Mézard et al.,
2002; Braunstein et al., 2005; Krzakała et al., 2007). One
possible derivation of the (G)ASP algorithm is as the dense
graph limit of the Survey Propagation equations, in the
same way as AMP is obtained starting from BP. The deriva-
tion requires two steps. First, BP messages are projected
by moment-matching onto (replica-symmetric) multivariate
Gaussian distributions on the replicated variables x̄ ∈ Rm,
which we express in the form

ν(x̄) ∝
∫

dh e−
1

2∆0
(h−x̂)2

m∏
a=1

e−
1

2∆1
(xa−h)2 ; (19)

Then, messages on the edges are conveniently expressed in
term of single site quantities. We note that, some statistical
independence assumptions on the entries of the measure-
ment matrix are crucial for the derivation, as goes for AMP
as well. While the starting point of the derivation assumed
integer m, the resulting message passing can be analytically
continued to any real m. Applying this procedure to the
GLE graphical model of Eq. (1) we obtain the GASP equa-
tions. Here we consider the β ↑ ∞ limit to deal with the
MAP estimation problem. Details of the GASP derivation
and the finite β GASP equations are given in Sec. 2 of the
SM. Particular care has to be taken in the limit procedure,
as a proper rescaling with β is needed for each parameter.
For instance, as the range of sensible choices for m shrinks
towards zero for increasing β, we rescale m through the
substitution m← m/β.

Relying on the definitions given Eqs. (8) and (9), we intro-

Algorithm 1 GASP(m) for MAP
initialize gµ = 0 ∀µ
initialize V0, V1, x̂i ∀i to some values
for t = 1 to tmax do

compute ωµ, gµ,Γ0
µ,Γ

1
µ ∀µ using ( 22,23, 24, 25)

compute A0, A1 using (26,27)
compute Bi, x̂i,∆0,i,∆1,i ∀i using ( 28, 29, 30, 31)
compute V 0, V 1 using (32, 33)

end for

duce the two 1RSB free entropies:

φin(B,A0, A1,m) =
1

m
log

∫
Dz emϕ

in(B+
√
A0z,A1)

(20)

φout(ω, V0, V1, y,m) =
1

m
log

∫
Dz emϕ

out(ω+
√
V0 z, V1,y).

(21)

Here
∫
Dz denotes the standard Gaussian integra-

tion
∫
dz exp(−z2/2)/

√
2π. Using the shorthand no-

tations φin,t
i = φin(Bti , A

t
0, A

t
1,m) and φout,t

µ =

φout(ωtµ, V
t−1
0 , V t−11 , yµ,m) (notice the shift in the

time indexes), and using again the definition cF =
1

MN

∑
µ,i(F

µ
i )2 (hence EcF = 1/N in our setting), the

GASP equations read:

ωtµ =
∑
i

Fµi x̂
t−1
i − gt−1µ (mV t−10 + V t−11 ) (22)

gtµ = ∂ωφ
out,t
µ (23)

Γt0,µ = 2∂V1φ
out,t
µ − (gtµ)2 (24)

Γt1,µ = −∂2ωφout,t
µ +mΓt0,µ (25)

At0 = cF
∑
µ

Γt0,µ (26)

At1 = cF
∑
µ

Γt1,µ (27)

Bti =
∑
µ

Fµi g
t
µ − x̂t−1i (mAt0 −At1) (28)

x̂ti = ∂Bφ
in,t
i (29)

∆t
0,i = −2∂A1φ

in,t
i − (x̂ti)

2 (30)

∆t
1,i = ∂2Bφ

in,t
i −m∆t

0,i. (31)

V t0 = cF
∑
i

∆t
0,i (32)

V t1 = cF
∑
i

∆t
1,i (33)

The computational time and memory complexity per itera-
tion of the algorithm is the same of GAMP and is determined
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by the linear operations in Eqs. (22) and (28). With respect
to GAMP, we have the additional (but sub-leading) com-
plexity due to the integrals in the input and output channels.
In some special cases, the integrals in Eqs. (20) and (21)
can be carried out analytically (e.g. in the phase retrieval
problem).

Notice that GASP iteration reduces to standard GAMP it-
erations if V0 and A0 are initialized (or shrink) to zero,
but can produce non-trivial fixed points depending on the
initialization condition and on the value of m.

We remark the importance of setting the time-indices cor-
rectly in order to allow convergence (Caltagirone et al.,
2014). The full algorithm is detailed in Alg. 1.

The expressions for the special case of the absolute value
channel (6) and L2 regularization (7) can be found in Sec.
2.4 of the SM. An important comment is that the divergence
issue arising in AMP.A, in the same setting, does not affect
GASP: the discontinuity in the expression for the minimizer
of Eq. (9) is smoothed out in the 1RSB version by the
Gaussian integral in Eq. (20). We also note that, in phase
retrieval, a problematic initialization can be obtained by
choosing configurations that are exactly orthogonal to the
signal, since the message-passing will always be trapped in
the uninformative fixed-point (due to the Z2 symmetry of
the problem). However, for finite size instances, a random
Gaussian initial condition will have an overlap ρ ≡ 〈x̂,x0〉
of orderO

(
1/
√
N
)

with the signal, which allows to escape
the uninformative fixed point whenever it is unstable (i.e.
for high α).

In Fig. 1 (Top and Middle), we show the probability of a per-
fect recovery and convergence times of GASP for the real-
valued phase retrieval problem, for different sampling ratios
α and values of the symmetry-breaking parameter m, with
λ = 0. The initial condition is given by V t=0

0 = V t=0
1 = 1

and x̂t=0 ∼ N (0, IN ). Notice that standard Gaussian ini-
tialization is able to break the symmetry of the channel and,
at large t, GASP matches the fixed points predicted by SE
(see next Section) with a small initial overlap with the true
signal (ρt=0 = 10−3). In order to achieve signal recovery
at low α, the symmetry-breaking parameter has to be in-
creased. In correspondence of values m ≈ 100, we report
an algorithmic threshold around αλ=0

alg ≈ 1.5. This thresh-
old is comparable to the one of AMP.A, without exploiting
adaptive regularization and spectral initialization as AMP.A
(and which could be employed also for GASP).

We report that, at fixed m, when α is increased above a
certain value the message-passing will stop converging. The
oscillating/diverging behavior of the messages can however
be exploited for hand-tuning m, in the absence of a replica
analysis to support the selection of its most appropriate
value. More details can be found in Sec. 3 of the SM.
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Figure 1. (Top) Probability of perfect recovery of the true signal
using GASP (Alg. 1), as a function of the sampling ratio α =
M/N . (Middle) GASP and SE result after t = 103 iterations. Start
at t = 0 with ρ = 10−3 for SE and x̂ ∼ N (0, IN ) for GASP
(N = 103, averaged over 100 samples). (Bottom) Overlap ρt

with the true signal predicted by SE dynamics at α = 2 and initial
overlap ρ = 0.1 (black lines) compared to 10 GASP trajectories
for each value of m. Here N = 104.
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We presented here the zero-temperature limit of the GASP
message-passing to solve the MAP problem. Refer to Sec.
2 of the SM for a more general formulation dealing with the
class of graphical models in the form of Eq. 1.

5. State Evolution for GASP
State Evolution (SE) is a set of iterative equations involving
a few scalar quantities, that were rigorously proved to track
the (G)AMP dynamics, in the sense of almost sure conver-
gence of empirical averages (Javanmard & Montanari, 2013)
in the largeN limit and with fixed sampling ratioα = M/N .
Following the analysis of Ref. (Rangan, 2011) for GAMP,
in order to present the SE equations for GASP we assume
that the observation model yµ ∼ P out(• | 〈F µ,x0〉) is such
that can be expressed in the form yµ ∼ h(〈F µ,x0〉, ξµ) for
some function h(z, ξ), with ξµ a scalar- or vector-valued
random variable modeling the noise and sampled according
to some distribution Pξ . We also set Fµi ∼ N (0, 1/N) i.i.d..
The recursion is a closed set of equations over the variables
ρ̂t, q̂t0, A

t
0, A

t
1, ρ

t, qt0, V
t
0 and V t1 Initializing at time t = 0

the variables ρ, q0, V0 and V1, the SE equations for t ≥ 1:

ρ̂t = αE
[
∂z∂ωφ

out(ωt, V t−10 , V t−11 , h(z, ξ),m)
]

(34)

q̂t0 = αE
[ (
∂ωφ

out(ωt, V t−10 , V t−11 , y,m)
)2 ]

(35)

At0 = αE
[
2∂V1

φout(ωt, V t−10 , V t−11 , y,m)
]
− q̂t0 (36)

At1 = αE
[
− ∂2ωφout(ωt, V t−10 , V t−11 , y,m)

]
+mAt0,

(37)

where the expectation is over the process ωt ∼ N (0, qt−10 ),
z ∼ N (ρt−1/qt−10 ωt, E[x20]− (ρt−1)2/qt−10 ), ξ ∼ Pξ and
y ∼ h(z, ξ). Also, we have a second set of equations that
read:

ρt = E
[
x0 ∂Bφ

in(Bt, At0, A
t
1)
]

(38)

qt0 = E
[(
∂Bφ

in(Bt, At0, A
t
1,m)

)2]
(39)

V t0 = E
[
− 2∂A1φ

in(Bt, At0, A
t
1,m)

]
− qt0 (40)

V t1 = E
[
∂2Bφ

in(Bt, At0, A
t
1)
]
−mV t0 (41)

where the expectation is over the Markov chain x0 ∼ P0,
Bt ∼ N (ρ̂tx0, q̂

t
0).

The trajectories of V t0 , V
t
1 , A

t
0 and At1 in GASP concentrate

for large N on their expected value given by the SE dy-
namics. In order to frame the GASP State Evolution in
the rigorous setting of Ref.(Javanmard & Montanari, 2013),
we define a slightly different message-passing by replacing
their GASP values for a given realization of the problem
with the correspondent sample-independent SE values. Also,
we replace cF with the expected value 1/N . Let us define
the denoising functions:

ηout(ω, y, t) = ∂ωφ
out(ω, V t−10 , V t−11 , y,m) (42)

ηin(B, t) = ∂Bφ
in(B,At0, A

t
1,m) (43)

and their vectorized extensions ηout(ω,y, t) =
(ηout(ω1, y1, t), . . . , η

out(ωM , yM , t)) and ηin(ω,y, t) =
(ηin(B1, t), . . . , η

in(BN , t)). The modified GASP message-
passing then reads

ωt = F ηin(Bt−1, t− 1)− din
t−1η

out(ωt−1,y, t− 1)
(44)

Bt = F T ηout(ωt,y, t)− dout
t η

in(Bt−1, t− 1) (45)

where the divergence terms are given by

din
t =

1

N

N∑
i=1

∂Bη
in(Bti , t)

dout
t =

1

N

M∑
µ=1

∂ωη
out(ωtµ, yµ, t)

(46)

Message-passing (44, 45) falls within the class of AMP
algorithms analyzed in Ref. (Javanmard & Montanari, 2013)
(under some further technical assumptions, see Proposition
5 there). Therefore, it can be rigorously tracked by the SE
Eqs. (34,41) in the sense specified in that work. In particular,
denoting here x̂t = ηin(Bt, t), we have have almost sure
converge in the large system limit of the overlap with the
true signal and of the norm of x̂t to their SE estimates:

lim
N→∞

1

N
〈x̂t,x0〉 = ρt (47)

lim
N→∞

1

N
〈x̂t, x̂t〉 = qt0 (48)

In Fig. 1(Bottom), we compare the SE dynamics to the
original GASP one (Alg. 1). We compare SE prediction for
the evolution of the overlap ρ to that observed in 10 sample
trajectories of GASP at N = 1000, for a sampling ratio of
α = 2 and different values of m. The initial estimate x̂t=0

in GASP was set to be a mixture x̂t=0 ∼ N (0, IN )+0.1x0.
Therefore we initialize SE with ρt=0 = 0.1, and qt=0 =
1 + (ρt=0)2. Moreover, we set V t=0

0 = V t=0
1 = 1 for both.

As expected, we observe a good agreement between the two
dynamics.

6. Effective Landscape and Message-Passing
Algorithms

The posterior distribution of statistical models in the hard
phase is known to be riddled with glassy states (Antenucci
et al., 2019a) preventing the retrieval of the true signal, a
situation which is exacerbated in the low temperature limit
corresponding to MAP estimation.

Within the replica formalism, the 1RSB free energy provides
a description of this complex landscape. The Parisi parame-
ter m allows to select the contributions of different families
of states. More specificallym acts as an inverse temperature
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coupled to the internal free energy of the states: increas-
ing m selects families of states with lower complexity (i.e.,
states that are less numerous) and lower free energy.

The fixed points of the State Evolution of GASP are in one-
to-one correspondence to the stationary points of the 1RSB
free energy, and while the role of m in the dynamics of SE
is difficult to analyze, some insights can be gained from the
static description given by the free energy.

For phase retrieval in the MAP setting without regulariza-
tion, a stable fixed-point of GAMP can be found in the
space orthogonal to the signal (i.e. at overlap ρ = 0) for
values of the sampling ratio below αGAMP ≈ 2.48 (Ma et al.,
2018), which is the algorithmic threshold for GAMP. For
GASP instead, it is possible to see that the uninformative
fixed-point is stable only below αGASP ≈ 1.5, a noticeable
improvement of the threshold with respect to GAMP. This
is obtained by choosing the m corresponding to lowest com-
plexity states according to the 1RSB free energy (see Sec. 3
of the SM for further details). As we will see in the follow-
ing, both these thresholds can be lowered by employing a
continuation strategy for the regularizer.

A thorough description of the results of the replica analysis
and of the landscape properties for GLE models will be
presented in a more technical future work.

7. MAP estimation with an L2 regularizer
The objective function introduced in Eq. (2) contains a L2

regularization term weighted by an intensity parameter λ.

Regularization plays and important role in reducing the
variance of the inferred estimator, and can be crucial when
the observations are noise-affected, since it lowers the sen-
sitivity of the learned model to deviations in the training
set. However, as observed in (Ma et al., 2018; 2019; Balan,
2016), regularization is also useful for its smoothing effect,
and can be exploited in non-convex optimization problems
even in the noiseless setting. When the regularization term
is turned up, the optimization landscape gradually simplifies
and it becomes easier to reach a global optimizer. However,
the problem of getting stuck in bad local minima is avoided
at the cost of introducing a bias. The continuation strategy is
based on the fact that such biased estimator might be closer
than the random initial configuration to the global optimizer
of the unregularized objective : in a multi-stage approach,
regularization is decreased (down to zero) after each warm
restart.

Among the many possible continuation schedules for λ (a
little decrease after each minimization, or, as in AMP.A, at
the end of each iteration) in this paper we choose a simple
two-stage approach: first we run GASP till convergence
with a given value of λ > 0, then we set λ = 0 in the

successive iterations.
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Figure 2. Phase diagrams corresponding to the SE asymptotic
analysis of GAMP (top) and GASP (bottom). The color maps
indicate the overlap ρ reached at convergence in the presence of
an L2 regularizer of intensity λ.

In Fig.2, we compare the asymptotic performance (tracked
by SE) of GAMP and GASP for the phase retrieval prob-
lem with an L2 regularization. The color map indicates
the overlap with the signal reached at the end of the first
stage of our continuation strategy (with λ 6= 0), while the
black curves delimit the perfect retrieval regions, where the
overlap reached at the end of stage two (with λ = 0) is
ρ = 1.

In both cases we set the initial variances ∆ to 1, and consider
an initial condition with a small positive overlap with the
signal, ρ = 0.1. An assumption of this kind is indeed needed
to ensure that we avoid lingering on the fixed-point at ρ = 0;
however, the specific value of ρ can be chosen arbitrarily
(e.g., it could be taken much smaller without affecting the
phase diagrams). Even in real-world applications, it is often
the case that the non-orthogonality requirement is easily
met, for example in many imaging applications the signal is
known to be real non-negative. As explained in the previous
section, we also set q0 = 1 + ρ2 in the initialization of the
self-overlap parameter.
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In the GASP phase diagram, for each α and λ, the value of
m was set to the thermodynamic optimum value m? (ob-
tained at ρ = 0), and was kept fixed throughout the two
stages of our continuation strategy. Thism? can be obtained
by optimizing the 1RSB free energy over the symmetry-
breaking parameter; the numerical values of m, correspond-
ing to the points in the plot, can be found in Sec. 3 of the
SM, in Fig. 1. It is not strictly necessary to fix m to this
specific value, as any value in a broad range of around m?

will still be effective (see for example Fig. 2 in the SM). As
expected from the numerical experiments at λ = 0, we can
see from Fig. 2 that when the regularizer becomes too small
an uninformative fixed-point (in ρ = 0) becomes attractive
for the dynamics of GASP and signal recovery becomes
impossible below αalg ∼ 1.5 (we expect also the recovery
region with α ∈ [1.13, 1.3] at λ = 0.001 to shrink and close
when the regularizer is further decreased).

It is clear that the introduction of an L2-norm is crucial for
reducing the algorithmic gap of both GAMP and GASP (the
information theoretic threshold is αIT = 1), as previously
observed in (Ma et al., 2018; 2019). In this work we find
that also in GLE problems, when the mismatched setting is
considered (and inference happens off the Nishimori line
(Nishimori, 2001; Antenucci et al., 2019b)), the more fitting
geometrical picture provided by the 1RSB ansatz can be ex-
ploited algorithmically: with a simple continuation strategy
it is possible to lower the algorithmic threshold of GASP
down to the Bayes-optimal value α = 1.13.

8. Discussion
We presented Generalized Approximate Survey Propaga-
tion, a novel algorithm designed to improve over AMP in
the context of GLE inference problems, when faced with a
mismatch between assumed and true generative model. The
algorithm, parametrized by the symmetry-breaking parame-
term, allows one to go beyond some symmetry assumptions
at the heart of the previous algorithms, and proves to be more
suited for the MAP estimation task considered in this work.

In the prototypical case of real-valued phase retrieval, we
have shown that with little tuning of m it is possible to
modify the effective landscape explored during the message-
passing dynamics and avoid getting stuck in otherwise at-
tractive uninformative fixed points. Furthermore, we have
seen that, even in the noiseless case, a simple continuation
strategy, based on the introduction of an L2 regularizer, can
guide GASP close enough to the signal and allow its re-
covery, extending the region of parameters where GASP is
more effective than GAMP. In some cases we observed that
GASP can achieve perfect retrieval until the Bayes-optimal
threshold, at the sampling ratio α ∼ 1.13. We also derived
the 1RSB State Evolution equations, and showed that they
can be used as a simple tool for tracking the asymptotic

behaviour of GASP.

We delay a comprehensive analysis of the landscape associ-
ated to GLE models to a more technical publication, where
we will also deal with the case of noisy observation channels.
A straightforward follow-up of the present work could focus
on the search for an adaptation scheme for the L2 regular-
izer, possibly extending the work of Refs. (Ma et al., 2018;
2019), and more importantly, for a criterion to identify the
best setting for the symmetry-breaking parameter. Another
possible future line of work could go in the direction of re-
laxing some of the assumptions made in deriving the GASP
algorithm over the observation matrix. This could motivate
the derivation of a 1RSB version of the Vector Approximate
Message Passing equations (Schniter et al., 2016). Also,
the extension of GASP to deep non-linear inference model,
along the lines of Ref. (Manoel et al., 2017; Fletcher et al.,
2018) seems to be promising and technically feasible.

CL thanks Junjie Ma for sharing and explaining the code of
their AMP.A algorithm.
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