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Appendix

A Brief review of Gaussian processes

Gaussian Processes (GPs, Rasmussen & Williams, 2006),
as a popular example of Bayesian nonparametrics, provides
a principled probabilistic framework for non-parametric
Bayesian inference over functions. This is achieved by im-
posing rich and flexible nonparametric priors over functions
of interest. As flexible and interpretable function approxi-
mators, their Bayesian nature also enables GPs to provide
valuable information of uncertainties regarding predictions
for intelligence systems, all wrapped up in a single, exact
closed form solution of posterior inference.

We briefly introduce GPs for regression. Assume that we
have a set of observational data {(x,, ¥, }\_,), where x,,
is the D dimensional input of n th data point, and y,, is
the corresponding scalar target of the regression problem.
A Gaussian Process model assumes that y,, is generated
according the following procedure: firstly a function f(-)
is drawn from a Gaussian Process GP(m, k) (to be defined
later). Then for each input data x,,, the corresponding y,, is
then drawn according to:
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A Gaussian Process is a nonparametric distribution defined
over the space of functions, such that:

Definition 2 (Gaussian Processes). A Gaussian process
(GP) is a collection of random variables, any finite number
of which have a joint Gaussian distributions. A Gaussian
Process is fully specified by its mean function m(-) : RP
R and covariance function K(-,-) : (RP,RP) — R, such
that any finite collection of function values f are distributed
as Gaussian distribution N (f;m, Kg), where (m),, =
m(xy), (Kg)nn =KX, Xn/).

Now, given a set of observational data {(x,,, y,)}\_;, we
are able to perform probabilistic inference and assign poste-
rior probabilities over all plausible functions that might have
generated the data. Under the setting of regression, given a
new test point input data x,., we are interested in posterior
distributions over f,. Fortunately, this posterior distribution
of interest admits a closed form solution f, ~ N (pis, 3 ):

pe = m+ Ky ¢(Kg 4+ 0*I) "' (y —m) (A.])

Y = Kuox, — Kut(Kg + 01) 7 Ky, (A.2)

In our notation, (y)n, = Yn, (Kx,£)n = K(x«,X,), and
Kx,x, = K(x4,x.). Although the Gaussian Process re-
gression framework is theoretically very elegant, in practice

its computational burden is prohibitive for large datasets
since the matrix inversion (Kg +02I) ! takes O(N?) time
due to Cholesky decomposition. Once matrix inversion is
done, predictions in test time can be made in O(N) for
posterior mean i, and O(N?) for posterior uncertainty .,
respectively.

Despite the success and popularity of GPs (and other
Bayesian non-parametric methods) in the past decades, their
O(N3) computation and O(N?) storage complexities make
it impractical to apply GPs to large-scale datasets. There-
fore, people often resort to complicated approximate meth-
ods, e.g. see Seeger et al. (2003); Quifionero-Candela &
Rasmussen (2005); Snelson & Ghahramani (2006); Titsias
(2009); Hensman et al. (2013); Bui et al. (2016b); Bui &
Turner (2014); Saatci (2012); Cunningham et al. (2008);
Turner & Sahani (2010).

Another critical issue to be addressed is the representational
power of GP kernels. It has been argued that local ker-
nels commonly used for nonlinear regressions are not able
to obtain hierarchical representations for high dimensional
data (Bengio et al., 2005), which limits the usefulness of
Bayesian non-parametric models for complicated tasks. A
number of solutions were proposed, including deep GPs
(Damianou & Lawrence, 2013; Cutajar et al., 2016; Bui
et al., 2016a), the design of expressive kernels (van der Wilk
et al., 2017; Duvenaud et al., 2013; Tobar et al., 2015), and
the hybrid model with features from deep neural nets as the
input of a GP (Hinton & Salakhutdinov, 2008; Wilson et al.,
2016). However, the first two approaches still struggle to
model complex high dimensional data such as texts and im-
ages; and in the third approach, the merits of fully Bayesian
approach has been discarded.

B Brief review of variational inference, and
the black-box a-energy

We give a brief review of modern variational techniques,
including standard variational inference and black-box a-
divergence minimization (BB-«), on which our methodol-
ogy is heavily based. Considers the problem of finding the
posterior distribution, p(f|D, 7), D = {x, }2__; under the

model likelihood p(x|6, 7) and a prior distribution pg(6):

1
p(0|D, 1) x Zpg(@) l;Ip(an,T).
Here 7 is the hyper-parameter of the model, which will be
optimized by (approximate) maximum likelihood.

Variational inference (VI, Jordan et al., 1999) converts the
above inference problem into an optimization problem, by
first proposing a class of approximate posterior ¢(#), and
then minimize the KL-divergence from the approximate
posterior to the true posterior Dk [¢||p]. Equivalently, VI



Variational Implicit Processes

optimizes the following variational free energy,
Fveg = log p(D|) — Dk[q(0)||p(0|D, 7)]

Built upon the idea of VI, BB-« is a modern black-box
variational inference framework that unifies and interpolates
between VI (Jordan et al., 1999) and expectation propaga-
tion (EP)-like algorithms (Minka, 2001; Li et al., 2015).
BB-a performs approximate inference by minimizing the
following a-divergence (Zhu & Rohwer, 1995) D, [p||q]:

Dablll = (1—-J/p<eraﬂe>1-ade).

a-divergence is a generic class of divergences that in-
cludes the inclusive KL-divergence (a=1, corresponds to
EP), Hellinger distance («=0.5), and the exclusive KL-
divergence (a = 0, corresponds to VI) as special cases.

Traditionally, power EP (Minka, 2004) optimizes an a-
divergence locally with exponential family approximation
a(8) 5 £po(0) T1,, fu(0).fu(6) o exp [AT6(6)] via mes-
sage passing. It converges to a fixed point of the so called
power EP energy:

Lpep( Mo, {An}) =log Z(No) + (% —1)log Z(),;)

| X
- Z log/p(xn|9,7)o‘ exp [(Aq — a)\n)TqS(H)] do,

where A, = Ao+ Y., A, is the natural parameter of ¢(6).
On the contrary, BB-« directly optimizes Lpgp with tied
factors f,, = f to avoid prohibitive local factor updates and
storage on the whole dataset. This means \,, = A for all n
and A\, = Ao + N . Therefore instead of parameterizing
each factors, one can directly parameterize ¢(6) and replace
all the local factors in the power-EP energy function by
f(0) x (q(0)/po(0))*/N. After re-arranging terms, this
gives the BB-« energy:

ca o ()]

which can be further approximated by the following if the
dataset is large (Li & Gal, 2017):

Lo(q) = Dxelqlpo] — éz log E, [p(xn]0,7)] .

The optimization of £, (q) could be performed in a black-
box manner with reparameterization trick (Kingma &
Welling, 2013), Monte Carlo (MC) approximation and mini-
batch training. Empirically, it has been shown that BB-«

with « # 0 can return significantly better uncertainty esti-
mation than VI, and has been applied successfully in dif-
ferent scenarios (Li & Gal, 2017; Depeweg et al., 2016).
From hyper-parameter learning (i.e., 7 in p(x, |0, 7)), it is
shown in Li & Turner (2016) that the BB-« energy £, (q)
constitutes a better estimation of log marginal likelihood,
log p(D|7) when compared with the variational free energy.
Therefore, for both inference and learning, BB-« energy is
extensively used in this paper.

C Derivations

C.1 Proof of Proposition 1 (finite dimensional case)

Proposition 1. If z is a finite dimensional random vari-
able, then there exists a unique stochastic process, with
finite marginals that are distributed exactly according to
Definition 1.

Proof Generally, consider the following noisy IP model:

FC) ~TIP(go(-)spa)s Yn = f(Xn) + €ns €n ~N(0,0%).

For any finite collection of random variables y;., =
{y1,--,yn}, ¥Yn we denote the induced distribution as
p1:n(Y1.n). Note that p1.,(y1.,) can be represented as
Epz) ([T N (yi; 9(xi; 2), 0)]. Therefore for any m < n,
we have

/pl:”(ylin)dyﬂl+1:71,
://HN(%;g(xi7z)702)p(z)dZdym+1:n
=1
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Note that the swap of the order of integration relies on that
the integral is finite, which is true when the prior p(z) is
proper. Therefore, the marginal consistency condition of
Kolmogorov extension theorem is satisfied. Similarly, the
permutation consistency condition of Kolmogorov extension
theorem can be proved as follows: assume 7(1 : n) =
{m(1),...,m(n)} is a permutation of the indices 1 : n, then

Pr(1:n) (yTr(lzn))

= / HN(yn(i); 9(Xx(i),2),0%)p(z)dz
=1

= /HN(yiQQ(XiaZ)aaz)p(Z)dZ = Pron(Y1em).
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Therefore, by Kolmogorov extension theorem, there exists
a unique stochastic process, with finite marginals that are
distributed exactly according to Definition 1.

O

C.2 Proof of Proposition 2 (infinite dimensional case)

Proposition 2. Let z(-) ~ SP(0, C) be a centered continu-
ous stochastic process on L2(R?) with covariance func-
tion C(-,-). Then the operator g(x,z) = O(z2)(x) :=
W[ Sy Ki(x,x)z(x)dx), 0 < M < +oo defines
a stochastic process if K, € L*(R? x RY) , his a
Borel measurable, bijective function in R and there exist
0 < A < +oo such that |h(x)| < Al|z| forVr € R.

Proof Since £2(RY) is closed under finite summation,
without loss of generality, we consider the case of M =
1 where O(z)(x) = h([ K(x,x')z(x')dx). According
to Karhunen-Loeve expansion (K-L expansion) theorem
(Loeve, 1977), the stochastic process z can be expanded as
the stochastic infinite series,

z(x) = ZZiqSi(x), Z)\i < +00.

Where Z; are zero-mean, uncorrelated random variables
with variance \;. Here {¢;}5°, is an orthonormal basis of
L£2(R9) that are also eigen functions of the operator O¢(z)
defined by O¢(2)(x) = [ C(x,x’)z(x’)dx’. The variance
A; of Z; is the corresponding eigen value of ¢;(x).

Apply the linear operator
On(2)(x) = [ K (x,x)2(x i’
on this K-L expansion of z, we have:
Ok(2)00) = [ Koxx)s(xix
- /K(x, x') i Zipi(x")dx'
=37 [ Keexaiax,
1 (C.1)

where the exchange of summation and integral is guar-
anteed by Fubini’s theorem. Therefore, the functions
{[, K(x,x")¢;(x')dx'}22, forms a new basis of L2(R?).
To show that the stochastic series C.1 converge:

||ZZ¢/K(X,x')qﬁi(x’)dxﬂiz

< NOIPINY_ Ziga(x)[Z2

=10x|1*Y_ 11Zill3,
i

where the operator norm is defined by

10kl = inf{e 2 0+ [|Ox(f)llc2 < cl|fllc2, ¥F € L2RY)}.

This is a well defined norm since O is a bounded oper-
ator (K € L2(R? x R?)). The last equality follows from
the orthonormality of {¢;}. The condition > ;" \; < 0o
further guarantees that Y ;° || Z;||* converges almost surely.
Therefore, the random series (C.1) converges in £2(R)
a.s..

Finally we consider the nonlinear mapping h(-). With A(-)
a Borel measurable function satisfying the condition that
there exist 0 < A < +oo such that |h(z)| < Alx| for
Vz € R, it follows that h o O (z) € £2(R?). In summary,
g = Or(2) = h o Ok(z) defines a well-defined stochastic
process on £2(R9).

O

Despite of its simple form, the operator g = h o Ok (z) is
in fact the building blocks for many flexible transformations
over functions (Guss, 2016; Williams, 1997; Stinchcombe,
1999; Le Roux & Bengio, 2007; Globerson & Livni, 2016) .
Recently Guss (2016) proposed the so called Deep Function
Machines (DFMs) that possess universal approximation
ability to nonlinear operators:

Definition 3 (Deep Function Machines (Guss, 2016)). A

deep function machine g = Oppa(z,S) is a computa-
tional skeleton S indexed by I with the following properties:

e Every vertex in S is a Hilbert space H; where | € 1.

e [fnodesl € A C I feed into ' then the activation on
I is denoted y* € H; and is defined as

v =ho (Y Ow(y)

lcA

Therefore, by Proposition 2, we have proved:

Corollary 2 Let z(-) ~ SP(0,C) be a centered continuous
stochastic process on H = L2(R?). Then the Deep function
machine operator g = Oprp (2, S) defines a well-defined
stochastic process on H.

C.3 Inverse Wishart process as a prior for kernel
functions

Definition 4 (Inverse Wishart processes (Shah et al., 2014)).
Let ¥ be random function ¥(-,-) : X x X — R. A stochas-
tic process defined on such functions is called the inverse
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Wishart process on X with parameter v and base function
U X x X — R, if for any finite collection of input data
X = {xs}1<s<N,, the corresponding matrix-valued eval-
uation ¥(X,X) € II(N5) is distributed according to an
inverse Wishart distribution ¥.(X, X) ~ IWg(v, ¥ (X, X)).
We denote ¥ ~ IWP (v, ¥(-,-)).

Consider the problem in Section 3.1 of minimizing the ob-
jective

u(m7 ]C) = DKL[p(fa y|Xv a)Hqg’P(f, y|X7 m()7 ]C(v ))]

Since we use ¢(y|f) = p(ylf), this reduces U(m, K) to
D r[p(f|1X,0)]|ggp (£f|X,m, K)]. In order to obtain opti-
mal solution wrt. U (m, K), it sufficies to draw S fantasy
functions (each sample is a random function f(-)) from the
prior distribution p(f|X, #), and perform moment matching,
which gives exactly the MLE solution, i.e., empirical mean
and covariance functions

My g (X Z fs(x (C.2)
Kine(x1,%2) = < ZA x1)A4(x2), (C.3)
As(x) = fs(x) — mype(X). (C.4)

In practice, in order to gain computational advantage, the
number of fantasy functions .S is often small, therefore we
further put an inverse wishart process prior over the GP
covariance function, i.e. K(-,-) ~ ZWP(v, ¥). By doing
so, we are able to give MAP estimation instead of MLE
estimation. Since inverse Wishart distribution is conjugate
to multivariate Gaussian distribution, the maximum a poste-
riori (MAP) solution is given by

Kiap(x1,X2)

= I/+S+1]V+1{zs: AS(XI)AS(X2) + \I/(Xl,XQ)}.

(C.5)

Where N is the number of data points in the training set
X where m(-) and IC(-, ) are evaluated. Alternatively, one
could also use the posterior mean Estimator (PM) that mini-
mizes posterior expected squared loss:

Kom(x1,%2)
1
= m{; AS(XI)AS(X2) + \II(X17X2)}.

(C.6)

In the implementation of this paper, we choose Cpy estima-
tor with v = N and ¥(x1,x3) = ¥§(X1,x2). The hyper
parameter 1 is trained using fast grid search using the same
procedure for the noise variance parameter, as detailed in
Appendix F.

C.4 Derivation of the upper bound I/ (m, K)or sleep
phase

Applying the chaine rule of KL-divregence, we have

J(m, K) =Dxo[p(f|X,y, 0)l|gor (£ X, y,m(), K(:,"))]
=Dx.[p(f,y|X, 0)||qggr (£, y|X, m(-),K(-,-))]

— Dxe[p(y|X, 0)llggr (y X, m(:), K(-,-))]

=U(m, K) — Dxr[p(y]X, 0)|lggr (y|X, m(-), K(-,-

Therefore, by the non-negative property of KL divergence,
we have J(m, ) < U(m,K). Since we select ¢(y|f) =
p(y|f), the optimal solution of U (m, K) also minimizes
Diw (p(y|X. 6)l[ggp (y|X. m(-),K(,-))). Therefore not
only the upper bound / is optimized in sleep phase, the
gap —DxL(p(y|X, 0)|lggr (y|X,m(-), K(:,-))) is also de-
creased when the mean and covariance functions are opti-
mized.

C.5 Empirical Bayes approximation for VIP with a
hierarchical prior on 6

The implicit processes (such as Bayesian neural networks
and GPs) could be sensitive to the choice of the model
parameters (that is, parameters 6 of the prior). To make our
variational implicit process more robust we further present
an empirical Bayesian treatment, by introducing an extra
hierarchical prior distribution p(6) on the prior parameters 6,
and fitting a variational approximation ¢(6) to the posterior.
Sleep phase updates remain the same when conditioned on a
given configuration of §. The a-energy term in wake phase
learning becomes

log ggp (y|X)
~log /0 4or (y1X, 0)p(8)d6 ~ L3p(a(a), 4(0)).
L&p(q(a), q(0))

1 N
T a > 108 Eqgayq(o) 4" (ynlxn, 2, 0)°]

— Dxe[g(a)l[p(a)] — Dk[q(6)||p(0)]-

Compared with the approximate MLE method, the only ex-
tra term needs to be estimated is — Dy [¢(6)||p(0)]. Note
that, introducing ¢(6) will double the number of parameters.
In the case of Bayesian NN as an IP, where 6 contains means
and variances for weight priors, then a simple Gaussian g(6)
will need two sets of means and variances variational param-
eters (i.e., posterior means of means, posterior variances of
means,posterior means of variances, posterior variances of
variances). Therefore, to make the representation compact,
we choose ¢(6) to be a Dirac-delta function §(6,), which
results in an empirical Bayesian solution.

(C.7)

Another possible alternative approach is, instead of explic-
itly specifying the form and hyperparameters for p(6),we
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can notice that from standard variational lower bound

log g (y|X) = Eq(9)[log ggr (¥ X, 8)] — Dxr[a(0)[|p(0)].

Then Dxy1.[¢(9)||p(6)] can be approximated by

—Dx1[q(0)]|p(6)] = —Eq(0)[log ggp (y|X, 0)] 4 constant
= —logggp(y|X, 04) + constant

Therefore, we can use — log ggp(y|X, 6,) as the regular-
ization term instead, which penalizes the parameter con-
figurations that returns a full marginal log likelihood (as
opposed to the diagonal likelihood in the original BB-«
energy iZT],\’ log Eq(2)4(0)46P (Yn|Xn, 2, 0)) that is too
high, especially the contribution from non-diagonal covari-
ances. We refer this as likelihood regularization. In practice,
—log qgp (y1X, 0,) is estimated on each mini-batch.

D KL divergence on function space v.s. KL
divergence on weight space

We briefly discuss KL divergence on function space in finite
dimensional case. In the sleep phase of VIP, we have pro-
posed minimizing the following KL divergence in function
space:

U(m, ]C) = DKL[p(yv f|Xa 0)||qg77(Ya f‘Xv m, IC)]
(D.1)

This is an example of KL divergence in function space
(i.e., the output f). Generally speaking, we may as-
sume that p(f) = [\ p(f[W)p(W)dW, and ¢(f) =
Jw p(£|W)q(W), where ¢(W) is weight-space variational
approximation. That is to say, both stochastic processes p
and ¢ can be generated by finite dimensional weight space
representation W. This can be seen as a one-step Markov
chain with preivious state s, = W, new state s;+1 = f, and
probability transition function 7 (s.y1|s¢) = p(f|W). Then,
by applying the second law of thermodynamics of Markov
chains(Cover & Thomas (2012)), we have:

D [p(£)|q(£)] < Dxr[p(W)|lg(W)] (D.2)

This shows that the KL divergence in function space forms
a tighter bound than the KL divergence on weight space,
which is one of the merits of function space inference.

E Further discussions on Bayesian neural
networks

We provide a comparison between our kernel in equation
(6), and the kernel proposed in Gal & Ghahramani (2016a).
Notably, consider the following Gaussian process:

y() ~ gP(O’ ICVDO('v ))a

,CVDO(Xla X2) =

/p(w)p(b)a(wal +b)o(w'xo + b)dwdb. (E.1)

Here o (-) is a non-linear activation function, w is a vector of
length D, b is the bias scaler, and p(w), p(b) the correspond-
ing prior distributions. Gal & Ghahramani (2016a) consid-
ered approximating this GP with a one-hidden layer BNN
9(-) = BNN(+, ) with @ collecting the weights and bias
vectors of the network. Denote the weight matrix of the first
layer as W € RP*K je. the network has K hidden units,
and the kth column of W as wy. Similarly the bias vector is
b = (b1,...,bk ). We further assume the prior distributions
of the first-layer parameters are p(W) = Hle p(wy) and
p(b) = Hle p(bk), and use mean-field Gaussian prior for
the output layer. Then this BNN constructs an approxima-
tion to the GP kernel as:

1

Kvpo(x1,%2) = ITe ; o(wj X1 + b)o (W) X2 + by,
wi ~p(w), b~ p(b).

This approximation is equivalent to the empirical estimation
(6), if S = K and the IP is defined by

go(x,2) = o(w'x + ),z = {w,b},p(z) = p(wW)p(b),
p(z), o () satisfy Ep,[o(w x +b)] = 0.

(E.2)
In such case, the output layer of that one-hidden layer BNN
corresponds to the Bayesian linear regression “layer” in
our final approximation. However, the two methods are
motivated in different ways. Gal & Ghahramani (2016a)
used this interpretation to approximate a GP with kernel
(E.1) using a one-hidden layer BNN, while our goal is to
approximate the IP E.2 by a GP (note that the IP is defined
as the output of the hidden layer, not the output of the BNN).
Also this coincidence only applies when the IP is defined by
a Bayesian logistic regression model, and our approximation
is applicable to BNN and beyond.

F Further experimental details

We provide further experimental details in this section. We
opensource the code of VIP for UCI experiments at ht tps:
//github.com/LaurantChao/VIP.

F.1 General settings for VIP

For small datasets we use the posterior GP equations for
prediction, otherwise we use the O(S?) approximation. We
use S = 20 for VIP unless noted otherwise. When the
VIP is equipped with a Bayesian NN/LSTM as prior over
functions (Example 3-4), the prior parameters over each
weight are untied, thus can be individually tuned. Empirical
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Bayesian estimates of the prior parameters are used in 4.3
and 4.4.

F.2 Further experimental details of synthetic example

The compositional kernel for GP is the summation of RBF
and Periodic kernels. In this toy experiment, both VDO
and VIP use a BNN as the underlying model. Note that
it appears that the GP slightly overfits. It is possible to
hand-pick the kernel parameters for a smoother fit of GP.
However, we have found that quantitatively this will result
in a decrease in test predictive likelihood and an increase of
RMSE. Therefore, we chose to optimize the kernel parame-
ters by maximizing the marginal likelihood.

F.3 Further implementation details for multivariate
regression experiments

e Variational Gaussian inference for BNN (VI-BNN):
we implement VI for BNN using the Bayesian deep
learning library, ZhuSuan (Shi et al., 2017). VI-BNN
employs a mean-field Gaussian variational approxima-
tion but evaluates the variational free energy using the
reparameterisation trick (Kingma & Welling, 2013).
We use a diagonal Gaussian prior for the weights and
fix the prior variance to 1. The noise variance of the
Gaussian noise model is optimized together with the
means and variances of the variational approximation
using the variational free energy.

e Variational implicit process-Neural Sampler regressor
(VIP-NS): we use neural sampler with two hidden lay-
ers of 10 hidden units. The input noise dimension is
10 or 50, which is determined using validation set.

e Variational dropout (VDO) for BNN: similar to Gal &
Ghahramani (2016a), we fix the length scale parameter
0.5 % [? = 10e~5. Since the network size is relatively
small, dropout probability is set as 0.005 or 0.0005.
We use 2000 forward passes to evaluate posterior like-
lihood.

e «-dropout inference for BNN: suggested by Li & Gal
(2017), we fix a = 0.5 which often gives high quality
uncertainty estimations, possibility due to it is able to
achieve a balance between reducing training error and
improving predictive likelihood. We use K = 10 for
MC sampling.

e Variational sparse GPs and exact GPs: we implement
the GP-related algorithms using GPflow (Matthews
et al., 2017). variational sparse GPs uses 50 inducing
points. Both GP models use the RBF kernel.

e About noise variance parameter grid search for VIPs
(VIP-BNN and VIP-NS), VDOs and a-dropout: we

start with random noise variance parameter, run opti-
mization on the model parameters, and then perform
a (thick) grid search over noise variance parameter on
validation set. Then, we train the model on the entire
training set using this noise variance parameter value.
This coordinate ascent like procedure does not require
training the model for multiple times as in Bayesian
optimization, therefore can speed up the learning pro-
cess. The same procedure is used to search for optimal
hyperparameter 1) of the inverse-Wishart process of
VIPs.

F.4 Additional implementation details for ABC
experiment

Following the experimental setting of Papamakarios & Mur-
ray (2016), we set the ground truth L-V model parameter to
be 81 = 0.01,65 = 0.5,605 = 1.0,604 = 0.01. We simulate
population data in the range of [0, 30] with step size 0.05,
which result in 600 gathered measurements. We use the
first 500 measurements as training data, and the remaining
as test set. For MCMC-ABC and SMC-ABC setup, we
also follow the implementation of Papamakarios & Murray
(2016).> MCMC-ABC is ran for 10000 samples with toler-
ance € set to be 2.0 which is manually tuned to give the best
performance. In MCMC-ABC, last 100 samples are taken
as samples. Likewise SMC-ABC uses 100 particles. Model
likelihood is calculated based on Gaussian fit. VIP (o = 0)
is trained for 10000 iterations with Adam optimizer using
0.001 learning rate.

F.5 Additional implementation details for predicting
power conversion efficiency of organic
photovoltaics molecules

For Bayesian LSTMs, we put Gaussian prior distributions
over LSTM weights. The output prediction is defined as
the final output at the last time step of the input sequence.
We use S = 10 for VIP. All methods use Adam with a
learning rate of 0.001 for stochastic optimization. Noise
variance parameter are not optimized, but set to suggested
value according to Herndndez-Lobato et al. (2016).To match
the run time of the fingerprint-based methods, all LSTM
methods are trained for only 100 epochs with a batch size
of 250. Among different models in the last few iterations
of optimization, we choose the one with the best training
likelihood for testing. Note that in the original paper of vari-
ational dropout and a-dropout inference, K sample paths
(K =1 for VDO and K = 10 for a-dropout) are created
for each training data, which is too prohibitive for memory
storage. Therefore, in our implementation, we enforce all
training data to share K sample paths. This approximation

*https://github.com/gpapamak/epsilon_
free_inference


https://github.com/gpapamak/epsilon_free_inference
https://github.com/gpapamak/epsilon_free_inference

Variational Implicit Processes

is accurate since we use a small dropout rate, which is 0.005.

F.6 Additional Tables

Table 4: Interpolation performance on toy dataset.

Method VIP VDO GP
Test NLL -0.60+0.01 —0.07+0.01 —0.270.00
Test RMSE 0.140-£0.00 0.16140.00 0.15240.00

Table 5: Interpolation performance on solar irradiance.

Method VIP VDO SVGP GP
Test NLL 0.08-+0.02 0.21+0.04 0.56+0.23 0.832+0.00
Test RMSE 0.28+0.00 0.29+0.01 0.55+0.08 0.650+0.0

Table 6: Performance on clean energy dataset
Metric VIP _ VDO-LSTM o-LSTM__ BB-a__ VI-BNN__FITC-GP__EP-DGP
TestNLL  0.6520.01 1.24£001  2.06£0.02 0.74£001 1371002 1.25£0.00 0.98+0.00
Test RMSE 0.88+0.02 0.93+£0.01  1.38:£0.02 1.08::0.01 1.07+0.01 1.35+0.00 1.17£0.00






