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1. Proof of Proposition 1

A generic Bayesian model is considered; a sample
(Y1,%2,---,Yn), yi € Y C R, is drawn from a true den-
sity p; = p(+|6p) for some true parameter 6. The parameter
0 is assumed to be drawn from a prior p(6) on the parame-
ter space ©, which we assume to be an open and bounded
subset of R

A number of conditions are used. They are as follows.

(i) the likelihood p(y|0) satisfies that there is a function
C :Y — Ry, such that E,,,[C(y)?] < oo and
such that for all 0; and 65, |p(y|01) — p(ylf2)] <

Cy)p(yl62)[|01 — 02
(ii) p(y|6) > 0forall (y,0) € Y x O,

(iii) There is a constant M < oo such that p(y|0) < M for
al] (y’ 9),

(iv) all assumptions needed in the Bernstein-von Mises
(BvM) Theorem (Walker, 1969),

(v) forall 6, [},(—logp(y|0))p(y|#)dy < oo.
Remarks.

e There are alternatives or relaxations to (i) that also
work. One is to assume that there is an > 0
and C with E,[C(y)?] < oo such that |p(y|61) —
p(ylb2)] < Cly)p(ylh2)||01 — O2||*. There are many
examples when (i) holds, e.g. when y is normal,
Laplace distributed or Cauchy distributed with 6 as
a one-dimensional location parameter.

e The assumption that © is bounded will be used solely
to draw the conclusion that E,, ]|0 — 6g]] — 0 as n —
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00, where y is the sample and 6 is either distributed
according to the true posterior (which is consistent
by BvM) or according to a consistent approximate
posterior. The conclusion is valid by the definition
of consistency and the fact that the boundedness of ©
makes ||6 — 6y]| a bounded function of . If it can be
shown by other means for special cases that E,, ¢||60 —
0ol — 0 despite © being unbounded, then our results
also hold.

e We can (and will) without loss of generality assume
that M = 1/2 is sufficient in (iii), for if not then simply
transform data and consider z; = 2My; instead of ;.

The main quantity of interest is the mean expected log point-
wise predictive density, which we want to use for model
evaluation and comparison.

Definition 1 (elpd). The mean expected log pointwise pre-
dictive density for a model p is defined as

elpd = /pt(x) log p(z) dz

where pi(x) = p(x|6p) is the true density at a new unseen
observation x and log p(x) is the log predictive density for
observation x.

We estimate elpd using leave-one-out cross-validation (loo).

Definition 2 (Leave-one-out cross-validation). The loo esti-
mator elpd,,, is given by

_ 1 &
ezpdloo - E Zlogp(y7|y—z)a (1)
=1

where p(yily—i) = [ p(ys|0)p(0]y—:)db.
To estimate elpd,,, in turn, we use importance sampling and
the Hansen-Hurwitz estimator. Definitions follow.

Definition 3. The Hansen-Hurwitz estimator is given by

— 11g~1.
elpd,,,(m,q) = n Z = log p(y;ly-;)
j=1 "7



Bayesian LOO for Large Data - Supplementary material

where T; is the probability of subsampling observation 1,
log p(y;|y—;) is the (self-normalized) importance sampling
estimate of log p(y;|y—;) defined as

A i zs_lmyz-es)r(es))
lo iY—i) = lo g )
g D(yily—i) = log ( 135 1(6,)

where

and where q(0|y) is an approximation of the posterior dis-
tribution, 0, is a sample from the approximate posterior
distribution q(0|y) and S is the total posterior sample size.

Proposition 1. Let the subsampling size m and the number
of posterior draws S be fixed at arbitrary integer numbers,
let the sample size n grow, assume that (i)-(vi) hold and let
q = qn(+ly) be any consistent approximate posterior. Write
éq = argmax{q(0) : 0 € ©} and assume further that éq is
a consistent estimator of 6y. Then

|mloo(m7 Q) - elpdloo‘ —0

in probability as n — oo for any of the following choices of
7Ti,’i: 1,...,n.

(a) m = —logp(yily),

(b) m; = —Ey[log p(yily)],
(c) mi = —Egq[log p(y:l0)],
(d) m; = —log p(yi|Eo~ql0]),

(e) m; = —logp(yilby).

Remark. By the variational BvM Theorems of Wang and
Blei, (Wang & Blei, 2018), g can be taken to be either g4,
qMF Of qr R, 1.€. the approximate posteriors of the Laplace,
mean-field or full-rank variational families respectively in
Proposition 1, provided that one adopts the mild conditions
in their paper.

The proof of Proposition 1 will be focused on proving (a)
and then (b)-(e) will follow easily. We begin with the fol-
lowing key lemma.

Lemma 2. With all quantities as defined above,

Ey~p, |mi —log p(yi|bo)| — 0, (2)

with any of the definitions (a)-(e) of m; of Proposition 1.
Furthermore,

Eyp, | log p(yily—i) — log p(yi|6o)| — O, 3)
and
Eynp, | log p(yily) — log p(yilbo)| — 0. 4)

asn — oQ.

Proof. To avoid burdening the notation unnecessarily, we
write throughout the proof E,, for E,..,,,. For now, we also
write g as shorthand for Eg. .| Recall that x =
max(z,0) = ReLU(z).

Y—i)*

Hence

(- =g

w0 [C(y) 10 — Ooll]

Ey. [C(y:)*JEy.0 [10 — 60l|°])
— 0asn — oo.

1/2

IN

Here the first inequality follows from condition (i) and the
second inequality from the fact that log(1 + z) < =z for
2 > 0. The third inequality is Schwarz inequality. The limit
conclusion follows from the consistency of the posterior
p(+|y—;) and the definition of weak convergence, since ||6 —
fo||? is a continuous bounded function of @ (recall that © is
bounded) and that the first factor is finite by condition (i).

For the reverse inequality,

Ky <1°g m ) +
=E, (log Es {m} ) +

<E, {log (1 + Eg {

< (Eyz [C(yi)Q]Eyﬂ [HQ - GOHQ])
— 0asn — oo.

)
1/2

This proves (3) and an identical argument proves (2) for
mi = p(yily).
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For m; = —E, [log p(y;|y)], note first that

Ey [Eylog p(yily)] — Eylog p(yi|y-i)]|
= |Ey[log p(yily) — log p(yily—i)]|
< E, [logp(yily) — log p(yily—i)]|

which goes to 0 by (3) and (a). Hence we can replace

m; = —E[log p(ys|y)] with m; = —E[log p(y;|y—:)] when
proving (b). To that end, observe that

(Ey[log p(yily—i)] — log p(yil60)) ,
- (e[ oS )],

(log p(yi Iyi))
p(yilo) +
where the inequality is Jensen’s inequality used twice on the

convex function z — z. Now everything is identical to
the proof of (3) and the reverse inequality is analogous.

<E,

The other choices of 7; follow along very similar lines. For
7; = — log p(y;|0,), we have on mimicking the above that

<[22
P Yilbo +
. 1/2
< (Eu[C ()1, [18, — 001?))
and E,,[||6, — 6o]|2] = 0 as n — oo by the assumed consis-

tency of 6,. The reverse inequality is analogous and (2) for
m; = p(yi]0,) is established.

For the case 7; =

—log p(yi|Eg~q0), the analogous analy-
sis gives
P(%“EM@)
+

o [(log p(yil0)
<E,[C)7E,

[Eo~q8 — O0]%]-

Since # — ||z — 6p]|? is convex, the second factor on the

right hand side is bounded by E,, g4[||6 — 0o]|?] which goes
to 0 by the consistency of ¢ and the boundedness of ©. The
reverse inequality is again analogous.

—Eg~q[log p(yi|0)],

E, | (Eo~qllogp(yil0)] — logp(ildo))., |

(2o e ),

p(yil0)
SEyong Klog p(yil0o) ) +

< (Eyz [C(yi)Q]EyﬂNq[He - 90”2])

Finally for m; =

:Ey

1/2—>0

as n — oo by the consistency of q. Here the first inequality
is Jensen’s inequality applied to x — x4 and the second
inequality follows along the same lines as before.

For (4), write r'(6) = r(6s)/ Z ;=1 7(0;) for the random
weights given to the individual 6:s in the expression for

P(yily—;). Then we have, with 6 = (61,...,0s) chosen
according to q,
E, (log p(yi|y—i)>
p(wilbo) / 4
_ .
es [ (95
= E%g <10g Zs:l T(( |0)p)(y | ))
P YilVo +
<E 0 5 1T )|p(yl‘09)7p(yl‘60)|
- p(yilo)
s
éEy,e ( yi) Y (0)]10 M)]

S )

(yi Z 165 — 90“]
1/2

(Z Ie, —90||> ,

where the second inequality is condition (i) and the limit
conclusion follows from the consistency of g. For the re-
verse inequality to go through analogously, observe that

< Ey,@

<E[%

p(yilo) — >0, 7' (0s)p(yil6s)|
> (05)p(yilfs)

< 27 (05)p(yil6s) — p(yil6o)|

- >, 7 (05)p(yil6s)

St 0]
T 2 (0s)p(yilfs)

< max ||fs — 6|
<> 116: = ol

Equipped with this observation, mimic the above.

O

For convenience we will write é := é,, , = elpd,,,, which
for our purposes is more usefully expressed as

¢= ZZE;

11]1

logp (Yily—i),
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where I;; is the indicator that sample point y; is chosen in
draw j for the subsample used in é. Write also

n m

DM

lel

logp (Yily—i)-

In other words, e is the HH estimator with p replaced with
.
Lemma 3. With the notation as just defined and m; =
—log p(y:ly),

Elé—el —0

asn — oQ.

Proof. We have, with expectations with respect to all
sources of randomness involved in ¢ and e

]E|é — ¢

n m

1 A
< LSS e [e [y Litostuly-) —togptulo-olfy] o

11]1

n m

—E %% DD [ogh(yily—i) —

i=1 j=1

=E[log p(yi|y—s)

log p(yily—i)|

—log p(yily—i)l-

The result now follows from (3), (4) and the triangle inequal-
ity. O

Proof of Proposition 1. As stated before, we start with
a focus on (a), which means that for now we have m; =
—log p(y;ly) By Lemma 3, it suffices to prove that |e —
elpd,,,| — 0 in probability with 7; chosen according to any
of (a)-(e). The variance of a HH estimator is well known and
some easy manipulation then tells us that the conditional
variance of e given y is given by

1 1
V(e) = Var(ely) = (S So — 52)
where S, = > pi, S = Y. ,m and Sy =
S (p?/m;). We claim that for any § > 0, for n suffi-
ciently large, P, (V(e) < ) > 1 — 4. To this end, observe

first that

E,[—log p(yi|y)]
Ey[—logp(yi|o)] + Ey|log p(yily)
<Ey[—logp(yi|6o)] + 0 < o0

— log p(y:]00)]

for sufficiently large n, since the first term is finite by condi-
tion (v). Let A = A,, = E,[— log p(:|y)]-
] B

Now,

1
5 [ls,.] -

1 n n
n ;m—;pi

as n — oo by (2) and (3). Hence for arbitrary o > 0,
P,(|Sp — Sx| < @®n) > 1 — a for n large enough. Also

v; < (i + |pi — mil)*

< 7+ 4|7Ti — i

T T
(the last inequality using condition (iii): m; > —log(1/2) >
1/2), so n7'E,|Sr — S2| — 0 and so Py(|S, — So| <
a?n) > 1 — « for sufficiently large n. Hence with proba-
bility exceeding 1 — 2«, y will be such that for sufficiently
large n,

11
V(e) < ——((Sp +0a’n)* = 5)
11
= ﬁ—(Qa nS, + a*n?).
We had E, [S,] = An and Markov’s inequality thus entails

that P, (S, < An/a) > 1 — o. Adding this piece of
nformation to the above, we get that with probability larger
3a, y will for sufficiently large n be such that

V(e) < 2a+a*)n? < 3a.
For such y, Chebyshev’s inequality gives

P(le— E

The HH estimator is unbiased, so E[e|y] = elpd,,,. We
get for arbitrary € > 0 on taking « sufficiently small and n
correspondingly large, taking all randomness into account

1/2 1/2.

[elyll > a7 ly) < 3a

P(le —elpd;,,| >€) <1—¢

which entails that |e — elpd,;,,| — 0 in probability. As
observed above, this proves (a).

For the remaining parts, write e, when taking m; in e
according to statement (p) in the proposition. By (2),
Ele, — eq| = 0forp =b,¢,d, e and we are done.

O
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2. Unbiasness of Using the Hansen-Hurwitz
Estimator

2.1. On the Hansen-Hurwitz Estimator

Let Y = {y1,y2,...,yn } be a set of non-negative observa-
tions, y; > 0 and let 7 = {7y, 72, ..., 7N} be a probability
vector s.t. ) w; = 1. Furthermore, let a, € {1,2,..., N}
be i.i.d. samples from a multinomial distribution with prob-

_ . jid L
abilities 7, i.e. a, ~ Multinomial (7).

We want to estimate the total
N
T=Y (5)
n=1
using the Hansen-Hurwitz estimator given by
1 Lo
A m
DI (6)
M mzzl Pm

where Z,, = Y4, » Dm = Ta,,, and a,, ~ Multinomial (7).

We can decompose x,,, and p,, as follows

N

Tm = Yap, = Y _am = jly; )
j=1
N

Pm = Da,, :Zﬂ[am :]] Uy (8)
j=1

2.2. The Hansen-Hurwitz Estimator is Unbiased

First, we will show that the HH estimator, 7, is unbiased.
‘We have,

E[%}:%ZE

N
Ly S Yy, (10)

since 7 = P [an, = j] = E [[[a, = j]].

Now it follows that

2.3. An Unbiased Estimator of o7,

We also want to estimate the variance of the population ),
ie.

1 N
=52 =0, (12)

n=1

where § = % > .

First, we decompose the above as follows

N
Z (13)

2 \

We will consider estimators for the two terms, % 227:1 y2
(1) and 9% (2), separately. First, we will show that the
following is an unbiased estimate of the first term,

1 X2
NM Z - (14)
We have

E[Tl]:ElNlM Z ]

Z]E{ ’"} (15)

Again, we use the representations in eq. (7) and (8) to get

E b S T _LiE Zj‘ilﬂ[am:ﬂy?
NM —1 Pm N = N I[am = j]

1

N

7’71,

Zj:l

1 N
=Y (16)

This completes the proof of for the first term.
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For the second term, we use the estimator 75 given by

1 M M 2
T —— —
=i 2 | % e v
o 2
1 Tk ‘|
= . (17)
[quMpk
‘We have

k=1
2
NPM(M —1) 2« p2, ~ N*M(M —1) |2y

We consider now the expectation of the first term in the
equation above

N yjz
:sz (19)

and the second term

Mo 2 MM
ol -eyy s
k=1pk kel jm 1 Pk Pj
M M
=SS E [
h=1j=1 Pk Pj
M Tapa M x?
=3 E ]+ Se ]
= leep] =R
M -1' 2 M N y2
N W
, | Pk Py i1
j#k k=1 j=1
M —x 2 N yz
=> e[| ]y
, | Pk pj el
Jj#k j=1
N y2
=MM-1)7"+M> . (20
j=1"J

Substituting back, we get

1 M x 1 M T ’ 1 M T
m k k
s 0 e | - Y]

k=1 k=1
IS SR S
N2M(M — 1) <7
1 Yy
_ J
NTROT—T) [M(M )7 +Mj§::17rj}
NQ(M—l)jzlﬂ'j
N 2
1 2 Y;
] G
_ 1 2
NQ(Mfl)(M D7
-
—2
=7 Q1)

Combining the two estimators 7 and T we have:

E(Ty + T3)

1L,
NZ%—
j=1

2
Yy

ag

Hence, we have shown that the estimator of 05 is unbiased
using the sum of the estimators 7} in Eq. 14 and 75 in Eq.
18.
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3. Hierarchical Models for the Radon Dataset

We compare seven different models of predicting the radon
levels in individual houses (indexed by ¢) by county (indexed
by j). First we fit a pooled model (model 1)
yij = a+z0 + €
€i5 ~ N(O, Oy)
a, B ~ N(0,10)
Uy ~ NJF (Ov 1) ’
where y;; is the log radon level in house ¢ in county j, x;;
is the floor measurement and ¢€;; is N (0, 1) is a truncated
Normal distribution at the positive real line. We compare
this to a non-pooled model (model 2),
Yij = a5 + i + €5
€ij ™~ N(O, O'y)
o, ~ N(0,10)
oy ~ NT(0,1),
a partially pooled model (model 3),
Yij = Q5 + €
€ij ~ N(0,0y)
aj ~ N(pa,0a)
1o ~ N(0,10)
Oy, 00 ~ NT(0,1),
a variable intercept model (model 4),
Yij = a5 + 50 + €
€ij ~ N(0,0)
Qj ~ N(phe, 00)
Mavﬁ ~ N(O, 10)
0y, 00 ~ NT(0,1),
a variable slope model (model 5),
Yij = a+xij B + €5
€i5 ~ N(O, O'y)
Bj ~ N(up,08)
pg, e ~ N(0,10)
Oy, 0 ~ N+(07 1) )
a variable intercept and slope model (model 6),
Yij = o + i85 + €5
Qg ~ N(Ma,Ua)
Bj ~ N(us;0p)
fa, g ~ N(0,10)
Oys O, 08 ~ NT(0,1),

and finally a model with county level covariates and county
level intercepts

Yij = o + 24061 +ujfa + €5
Qg ~ N(Navaa)
B, e ~ N(0,10)
0y 00 ~ NT(0,1),

where u; is the log uranium level in the county. The Stan
code used can be found below.

4. Stan models

4.1. Linear Regression Model

data {
int <lower=0> N;
int <lower=0> D;
matrix [N,D] x ;
vector [N] vy;
}
parameters {
vector [D] b;
real <lower=0> sigma;
}
model {
target += normal_lpdf(y | x
target += normal_1lpdf(b | 0, 1);
}

generated quantities/{
real log_joint_density_unconstrained;
vector [N] log_lik;
// Compute the log likelihoods for loo
for (n in 1:N) {
log_lik[n] =
normal_lpdf (y[n] | x[n,]

+ b, sigma);
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4.2. Radon pooled model (1) 4.3. Radon pooled model (2)
data { data {
int<lower=0> N; int<lower=0> N;
vector [N] x; int<lower=0> J;
vector [N] vy; int<lower=1,upper=J> county[N];
int<lower=0,upper=1> holdout [N]; vector [N] x;
} vector [N] vy;
int<lower=0,upper=1> holdout [N];
parameters { }
vector[2] beta;
real<lower=0> sigma_y; parameters {
} vector[J] a;
real beta;
model { real<lower=0> sigma_y;
vector [N] mu; }
// priors model ({
sigma_y ~ normal(0,1); vector [N] mu;
beta ~ normal (0,10); // Prior
sigma_y ~ normal(0,1);
// likelihood a ~ normal(0,10);
mu = betal[l] + beta[2] * x;
for(n in 1:N) { // Likelihood
if (holdout[n] == 0) { for(n in 1:N) {
target += mu[n] = betaxx[n] + al[county[n]];
normal_1lpdf (y[n] |muln],sigma_y); if (holdout[n] == 0){
} target +=

} normal_1lpdf (y[n] |muln],sigma_y);
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4.4. Radon partially pooled model (3)

data {
int<lower=0> N;
int<lower=0> J;
int<lower=1,upper=J> county[N];
vector [N] vy;
int<lower=0,upper=1> holdout [N];
}
parameters {
vector[J] a;
real mu_a;
real<lower=0> sigma_a;
real<lower=0> sigma_y;

}

model {
vector [N] mu;
// priors
sigma_y ~ normal(0,1);
sigma_a ~ normal(0,1);

mu_a -~ normal (0,10);

// likelihood

a ~ normal (mu_a, sigma_a);
for(n in 1:N) {
mul[n] = al[county[n]];
if (holdout[n] == 0) {
target +=

normal_lpdf (y[n] |mul[n],sigma_y);

4.5. Variable intercept model (4)

data {
int<lower=0> J;
int<lower=0> N;
int<lower=1,upper=J> county[N];
vector [N] x;
vector [N] vy;
int<lower=0,upper=1> holdout [N];
}
parameters {
vector[J] a;
real beta;
real mu_a;
real<lower=0> sigma_a;
real<lower=0> sigma_y;

}

model {
vector [N] mu;
// Prior
sigma_y ~ normal(0,1);
sigma_a ~ normal(0,1);
mu_a -~ normal (0,10);
beta ~ normal (0,10);

a ~ normal (mu_a, sigma_a);
for(n in 1:N) {
mul[n] = alcounty[n]] + xI[n]xbeta;
if (holdout[n] == 0) {
target +=

normal_1lpdf (y[n] |mul[n],sigma_y);
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4.6. Variable slope model (5)

data {
int<lower=0> J;
int<lower=0> N;
int<lower=1,upper=J> county[N];
vector [N] x;
vector [N] vy;
int<lower=0,upper=1> holdout [N];
}
parameters {
real 3a;
vector[J] beta;
real mu_beta;
real<lower=0> sigma_lbeta;
real<lower=0> sigma_y;

}

model {
vector [N] mu;
// Prior
a ~ normal (0,10);
sigma_y ~ normal(0,1);
sigma_beta ~ normal (0,1);
mu_beta ~ normal(0,10);

beta 7 normal (mu_beta, sigma_beta);
for(n in 1:N) {

mu[n] = a + x[n] x betalcounty[n]];
if (holdout[n] == 0) {
target +=

normal_1lpdf (y[n] |mul[n],sigma_y);

4.7. Variable intercept and slope model (6)

data {
int<lower=0> N;
int<lower=0> J;
vector [N] vy;
vector [N] x;
int county[N];
int<lower=0,upper=1> holdout [N];
}
parameters {
real<lower=0> sigma_y;
real<lower=0> sigma_a;
real<lower=0> sigma_beta;
vector[J] a;
vector[J] beta;
real mu_a;
real mu_beta;

}

model {
vector [N] mu;
// Prior
sigma_y ~ normal(0,1);
sigma_beta ~ normal (0,1);
sigma_a ~ normal(0,1);
mu_a -~ normal (0,10);
mu_beta ~ normal(0,10);

a ~ normal (mu_a, sigma_a);
beta 7 normal (mu_beta, sigma_beta);

for(n in 1:N) {
mul[n] = alcounty[n]]
if (holdout[n] == 0){

target +=
normal_1lpdf (y[n] |muln],sigma_y);

+ x[n]*betal[county([n]];
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4.8. Hierarchical intercept model (7)

data {
int<lower=0> J;
int<lower=0> N;
int<lower=1,upper=J> county[N];
vector [N] u;
vector [N] x;
vector [N] vy;
int<lower=0, upper=1> holdout [N];
}
parameters {
vector[J] a;
vector[2] beta;
real mu_a;
real<lower=0> sigma_a;
real<lower=0> sigma_y;
}
transformed parameters {

}

model {
vector [N] mu;
vector [N] m;

sigma_a ~ normal (0, 1);
sigma_y ~ normal (0, 1);
mu_a -~ normal (0, 10);
beta ~ normal (0, 10);

a ~ normal (mu_a, sigma_a);
for(n in 1:N) {
m[n] = al[county[n]] + ul[n] » betalll;
mu[n] = m[n] + x[n] * betal2];
if (holdout[n] == 0) {
target += normal_lpdf (y[n] | muln], sigma_y);
}
}
}
5. R package

The functions are implemented based upon
the loo  package structure as the func-
tions quick_loo(), approx_psis () and
psis_approximate_posterior (). An exam-
ple how to run the code can be found in the documentation
for quick_loo (). No changes to author lists, versions or
date has been changed to preserve anonymity. If accepted,
the code will be published open source.



