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Abstract
Model inference, such as model comparison,
model checking, and model selection, is an impor-
tant part of model development. Leave-one-out
cross-validation (LOO-CV) is a general approach
for assessing the generalizability of a model, but
unfortunately, LOO-CV does not scale well to
large datasets. We propose a combination of using
approximate inference techniques and probability-
proportional-to-size-sampling (PPS) for fast LOO-
CV model evaluation for large data. We provide
both theoretical and empirical results showing
good properties for large data.

1. Introduction
Model inference, such as model comparison, checking, and
selection, is an integral part of developing new models.
From a Bayesian decision-theoretic point of view (see Veh-
tari & Ojanen, 2012) we want to make a choice a ∈ A, in
our case a model pM , that maximize our expected utility for
a utility function u(a, ·) as

ū(a) =

∫
u(a, ỹi)pt(ỹi)dỹi ,

where pt(ỹi) is the true probability distribution generating
observation ỹi.

A common scenario is to study how well a model general-
izes to unseen data (Box, 1976; Vehtari & Ojanen, 2012;
Vehtari et al., 2017). A popular utility function u with good
theoretical properties for probabilistic models is the log
score function (Bernardo, 1979; Robert, 1996; Vehtari &
Ojanen, 2012). The log score function give rise to using the
expected log predictive density (elpd) for model inference,
defined as

elpdM =

∫
log pM (ỹi|y)pt(ỹi)dỹi ,
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where log pM (ỹi|y) is the log predictive density for a new
observation for the model M .

Leave-one-out cross-validation (LOO-CV) is one approach
to estimate the elpd for a given model, and is the method
of focus in this paper (Bernardo & Smith, 1994; Vehtari &
Ojanen, 2012; Vehtari et al., 2017). Using LOO-CV we can
treat our observations as pseudo-Monte Carlo samples from
pt(ỹi) and estimate the elpdloo as

elpdloo =
1

n

n∑
i=1

log pM (yi|y−i) (1)

=
1

n

n∑
i=1

log

∫
pM (yi|θ)pM (θ|y−i)dθ

=
1

n
elpdloo ,

where n is the number of observations (that may be very
large), pM (yi|θ) is the likelihood, and pM (θ|y−i) is the
posterior for θ where we hold out observation i. This will
henceforth be called the leave-one-out (LOO) posterior and
pM (θ|y) will be referred to as the full posterior. In this
paper both elpdloo and elpdloo will be quantities of interest,
depending on the situation.

Bayesian LOO-CV has many appealing theoretical prop-
erties compared to other common model evaluation tech-
niques. The popular k-fold cross-validation is, in general, a
biased estimator of elpdM , since each model is only trained
using a subset of the full data (Vehtari & Ojanen, 2012).
The LOO-CV is, just as the Watanabe-Akaike Information
criteria (WAIC), a consistent estimate of the true elpdM for
regular and singular models (Watanabe, 2010). A model
is regular if the map taking the parameters to the proba-
bility distribution is one-to-one and the Fisher information
is positive-definitive. If a model is not regular, then the
model is singular (Watanabe, 2010). Since many models,
such as neural networks, normal mixture models, hidden
Markov models, and topic models, are singular, we need
consistent methods to estimate the elpd for singular models
(Watanabe, 2010). Although the WAIC and LOO-CV have
the same asymptotic properties, recent research has shown
that the LOO-CV is more robust than WAIC in the finite
data domain (Vehtari et al., 2017).

In addition to the theoretical properties, the LOO-CV also
gives an intuitive framework for evaluating models where
the user easily can use different utility functions of interest
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as well as easily taking hierarchical data structures into ac-
count by using leave-one-group-out or leave-one-cluster out
cross-validation (see Merkle et al., 2018). Taken together,
LOO-CV has many very good properties, both empirical
and theoretical. In this paper, we will focus on LOO-CV as
a way of evaluating models.

Modern probabilistic machine learning techniques need to
scale to massive data. In a data-rich regime, we often want
complex models, such as hierarchical and non-linear mod-
els. Model comparison and model evaluation are important
for model development, but little focus has been put into
finding ways of scaling LOO-CV to larger data. The main
problem is that a straight-forward implementation means
that n models need to be estimated. Even if this problem is
solved, for example using importance sampling (see below),
we still have two problems.

First, many posterior approximation techniques, such as
Markov Chain Monte Carlo (MCMC), does not scale well
for large n. Second, computing elpdloo still needs to be
computed over n observations. If it is costly to estimate
individual contributions (i.e. log pM (yi|y−i)), computing
the total elpdloo may be very costly for very large models.

1.1. Pareto-Smoothed Importance Sampling

If we would implement LOO-CV naively, inference needs
to be repeated n times for each model. Gelfand (1996) pro-
pose the use of importance sampling to solve this problem.
The idea is to estimate pM (yi|y−i) in Eq. (1) using the
importance sampling approximation

log p̂(yi|y−i) = log

(
1
S

∑S
s=1 pM (yi|θs)r(θs)
1
S

∑S
s=1 r(θs)

)
, (2)

where θs are s ∈ 1, ..., S draws from the full posterior
p(θ|y), and

r(θs) =
pM (θs|y−i)
pM (θs|y)

∝ 1

pM (yi|θs)
,

where the last step is a well-known result of Gelfand (1996).
In this way, only the full posterior is needed.1 The ratios
r(θs) can be unstable due to a long right tail, but this can
be resolved using Pareto-smoothed importance sampling
(PSIS) (Vehtari et al., 2015). When using PSIS to estimate
log p̂(yi|y−i) (PSIS-LOO) we fit a generalized Pareto dis-
tribution to the largest weights r(θs) and replace the largest
importance sample ratios with order statistics from the esti-
mated generalized Pareto distribution, decreasing the vari-
ance by introducing a small bias. PSIS also has the benefit

1For certain models we can do efficient computations of LOO
directly. See Vehtari et al. (2016) for an example using Gaussian
processes.

that we can use the estimated shape parameter k̂ from the
generalized Pareto distribution to determine the reliability
of the estimate. For data-points with k̂ > 0.7 the estimates
of log p(yi|y−i) can be unreliable and hence k̂ can be used
as a diagnostic (Vehtari et al., 2017).

However, PSIS-LOO has the same scaling problem as LOO-
CV in general since it requires (1) samples from the true
posterior (e.g. using MCMC) and (2) the estimation of the
elpdloo contributions from all observations (Gelfand, 1996;
Vehtari et al., 2017). Both of these requirements can be
costly in a data-rich regime and are the main problems we
address in this paper.

1.2. Contributions and Limitations

In this paper, we focus on the problems of LOO-CV for
large datasets and our contributions are three-fold. First, we
extend the method of Gelfand (1996) to posterior approxi-
mations by including a correction term to the importance
sampling weights. In this way, we only need to estimate the
posterior once to estimate the elpdloo using Laplace and vari-
ational inference. Second, we propose sampling individual
elpdloo components with probability-proportional-to-size
sampling (PPS) to estimate elpdloo. Third, we show theoreti-
cally that these contributions have very favorable asymptotic
properties as n→∞. We show that the proposed estimator
for elpdloo is consistent for any consistent posterior approxi-
mation q (such as Laplace approximations, mean-field, and
full-rank variational inference posterior approximations).
We also show that the variance due to subsampling will
decrease as the number of observations n grows. In the
limit, and given the assumptions in Section 2.3, we only
need one subsampled observation, and one draw from the
full posterior, to estimate elpdloo with zero variance. Taken
together this introduces a new, fast, and theoretically moti-
vated approach to model evaluation for large datasets.

The limitations of our approach are the same as using PSIS-
LOO (Vehtari et al., 2017) as well as the requirement that
the approximate posterior needs to be sufficiently close to
the true posterior (see Yao et al., 2018, for a discussion).

2. Bayesian Leave-One-Out Cross-Validation
for Large Data Sets

Leave-one-out cross-validation (LOO-CV) has very good
theoretical and practical properties. This makes it relevant to
develop tools to scale LOO-CV. We solve this problem using
scalable posterior approximations, such as Laplace and vari-
ational approximations and using probability-proportional-
to-log-predictive-density subsampling inspired by Hansen
& Hurwitz (1943).
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2.1. Estimating the elpdloo Using Posterior
Approximations

Laplace and variational posterior approximations are attrac-
tive for fast model comparisons due to their computational
scalability. Laplace (Lap) approximation approximates the
posterior distribution with a multivariate normal distribution
qLap(θ|y) with the mean being the mode of the posterior and
the covariance the inverse Hessian at the mode (Azevedo-
Filho & Shachter, 1994).

In variational inference, we minimize the Kullback-Leibler
(KL) divergence between an approximate family Q of den-
sities and the true posterior p(θ|y) (Jordan et al., 1999; Blei
et al., 2017). Hence we find the approximation q that is
closest to the true posterior in a KL divergence sense. Here
we let Q be a family of multivariate normal distributions
with a diagonal covariance structure (mean-field) or a full
covariance structure (full-rank). Hence we will work with a
mean-field (MF) variational approximation qMF (θ|y) and a
full-rank (FR) variational approximation qFR(θ|y).

Although, all these posterior approximations,
qLap(θ|y), qMF (θ|y), and qFR(θ|y), will, in general,
be different than the true posterior distribution. Although,
we can use them as a proposal distribution in an importance
sampling scheme. In this scheme we use a posterior
approximation qM (θ|y) for a model M as the proposal
distribution and pM (θ|y−i), the LOO posterior, as our
target distribution. The expectation of interest is the same
as in the standard PSIS-LOO given by Eq. (2), but we also
propose to correct for the posterior approximation error.
Hence we change r(θ) to

r(θs) =
pM (θs|y−i)
qM (θs|y)

=
pM (θs|y−i)
pM (θs|y)

pM (θs|y)

qM (θs|y)
(3)

∝ 1

pM (yi|θs)
pM (θs|y)

qM (θs|y)
.

The factorization in Eq. (3) shows that the importance
correction contains two parts, the correction from the full
posterior to the LOO posterior and the correction from the
full approximate distribution to the full posterior. Both com-
ponents often have lighter tailed proposal distribution than
the corresponding target distribution which can increase
the variance of the importance sampling estimate (Geweke,
1989; Gelfand, 1996).

Pareto-smoothed importance sampling can be used to both
stabilize the weights in estimating the contributions to the
elpdloo and in evaluating variational inference approxima-
tions using k̂ as a diagnostic (Vehtari et al., 2015; Yao et al.,
2018). Hence we use PSIS to stabilize the weights with the
added benefit that we can use k̂, the shape parameter in the

generalized Pareto distribution, to diagnose how well the
approximation is working (Vehtari et al., 2015). Together
this gives us a tool for evaluating models using LOO-CV
posterior but with the need of only computing one posterior
approximation.

2.2. Probability-Proportional-to-Size Subsampling and
Hansen-Hurwitz Estimation

Using PSIS we can estimate each log p̂(yi|y−i) term
and sum them to estimate elpdloo. Estimating every
log p̂(yi|y−i) can be costly, especially as n grows. In some
situations using PSIS-LOO, estimating elpdloo can take even
longer than computing the full posterior once, due to the
computational burden of computing log p̂(yi|y−i), estimat-
ing k̂ and using the generalized Pareto distribution to stabi-
lize the weights for each individual observation. To handle
this problem we suggest using a sample of the elpdloo com-
ponents to estimate elpdloo.

Estimating totals, such as elpdloo, has a long tradition in
sampling theory (see Cochran, 1977). If we have auxiliary
variables that are a good approximation of our variable of
interest, we can use a probability-proportional-to-size (PPS)
sampling scheme to reduce the sampling variance in the
estimate of elpdloo using the unbiased Hansen-Hurwitz (HH)
estimator (Hansen & Hurwitz, 1943). When evaluating
models, we can often easily compute log pM (yi|y), the full
posterior log predictive density, for all observations. We
then sample m < n observations proportional to π̃i ∝ πi =
− log pM (yi|y) = − log

∫
pM (yi|θ)pM (θ|y)dθ. We here

assume that all log pM (yi|y) < 0, but this assumption is
only for convenience.

In the case of regular models and large n, we can also
approximate log pM (yi|y) ≈ log pM (yi|θ̂) where θ̂ can be
a Laplace posterior mean estimate θ̂q or a VI mean estimate
Eθ∼q[θ]. In the case of VI and Laplace approximations, this
further speeds up the computation of the π̃is since we do
not need to integrate over θ for all n observations. Using a
sampling with probability-proportional-to-size scheme, the
estimator for elpdloo can be formulated as

êlpdloo,q =
1

n

1

m

m∑
i

1

π̃i
log p̂(yi|y−i) , (4)

where π̃i is the probability of subsampling observation i,
log p̂(yi|y−i) is the (self-normalized) importance sampling
estimate of log p(yi|y−i) given by Eq. (2) and (3), and m is
the subsample size. The variance estimator can be expressed
as (see Cochran, 1977, Theorem 9A.2.)
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v(êlpdloo,q) =

1

n2m(m− 1)

m∑
i=1

(
log p̂(yi|y−i)

π̃i
− nêlpdloo

)2

. (5)

The benefits of the HH estimator are many. First, if the
probabilities are proportional to the variable of interest
(log p̂(yi|y−i) here), the variance in Eq. (5) will go to zero,
a property of use in the asymptotic analysis in Section 2.3.
Second, the estimator of elpdloo is not limited to posterior ap-
proximation methods, but can also be used with MCMC, but
without the importance sampling correction factor. Third,
PPS sampling has the benefit that we can use Walker-Alias
multinomial sampling (Walker, 1977). By building an Alias
table in O(n) time we can then sample a new observation
in O(1) time. This means that can continue to sample ob-
servations until we have sufficient precision in elpdloo for
our model comparison purposes, independent of the number
of observations n. Fourth, the estimator is unbiased for
all π̃i. So by using log p(yi|θ̂) instead of log p(yi|y) we
would expect a small increase in variance since, for finite n,
log p(yi|y) would be a better approximation of log p(yi|y−i)
than log p(yi|θ̂), but at a greater computational cost.

To compare models, we are often also interested in the
variance of elpdloo, or for the dataset, henceforth called
σ2

loo. To estimate σ2
loo we can use the same observations as

sampled previously, as

σ̂2
loo =

1

nm

m∑
i

p̂2i
π̃i

+

1

n2m(m− 1)

m∑
i

(
p̂i
π̃i
− 1

m

m∑
i

p̂i
π̃i

)2

−

(
1

nm

m∑
i

p̂i
π̃i

)2

(6)

where p̂i = log p̂(yi|y−i). For a proof of unbiasedness
of the σ̂2

loo estimator for σ2
loo in Eq. (6), see the supple-

mentary material. Also, note that here σ2
loo = 1

n

∑n
i (p̂2i −

( 1
n

∑n
i p̂

2
i )

2), which in itself is not an unbiased estimate for
the true σ2

loo (Bengio & Grandvalet, 2004).

Although the variance estimator is unbiased, it is not as
efficient as the estimator of elpdloo. This is partly due to
the fact that π̃i is not proportional to p̂2i in the first line in
Eq. (6). This can be solved by sampling in two steps both
proportional to p̂i and p̂2i .

2.3. Asymptotic Properties

For larger data sets the asymptotic properties of the method
are crucial and we derive asymptotic properties for the meth-
ods as follows. We consider a generic Bayesian model; a

sample (y1, y2, . . . , yn), yi ∈ Y ⊆ R, is drawn from a true
density pt = p(·|θ0) for some true parameter θ0. The pa-
rameter θ0 is assumed to be drawn from a prior p(θ) on the
parameter space Θ, which we assume to be an open and
bounded subset of Rd. A number of conditions are used.
They are as follows.

(i) the likelihood p(y|θ) satisfies that there is a function
C : Y → R+, such that Ey∼pt [C(y)2] < ∞ and
such that for all θ1 and θ2, |p(y|θ1) − p(y|θ2)| ≤
C(y)p(y|θ2)‖θ1 − θ2‖.

(ii) p(y|θ) > 0 for all (y, θ) ∈ Y ×Θ,

(iii) There is a constant M <∞ such that p(y|θ) < M for
all (y, θ),

(iv) all assumptions needed in the Bernstein-von Mises
(BvM) Theorem (Walker, 1969),

(v) for all θ,
∫
Y(− log p(y|θ))p(y|θ)dy <∞.

Of these assumptions, (i) and (iv) are the most restrictive.
The assumption that the parameter space is bounded is not
very restrictive in practice since we can approximate any
proper prior arbitrarily well with a truncated approximation.

Proposition 1. Let the subsampling size m and the number
of posterior draws S be fixed at arbitrary integer numbers,
let the sample size n grow, assume that (i)-(v) hold and let
q = qn(·|y) be any consistent approximate posterior. Write
θ̂q = arg max{q(θ) : θ ∈ Θ} and assume further that θ̂q is
a consistent estimator of θ0. Then

|êlpdloo(m, q)− elpdloo| → 0

in probability as n→∞ for any of the following choices of
πi, i = 1, . . . , n.

(a) πi = − log p(yi|y),

(b) πi = −Ey[log p(yi|y)],

(c) πi = −Eθ∼q[log p(yi|θ)],

(d) πi = − log p(yi|Eθ∼q[θ]),

(e) πi = − log p(yi|θ̂q).

Proof. See the supplementary material.

This proposition has three main points. First, the estima-

tor of the êlpdloo is consistent for any consistent posterior
approximation. In the limit, the mean-field variational ap-
proximation will also estimate the true elpdloo. Second, the
estimator is also consistent irrespective of the sub-sampling
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size m and the number of draws, S, from the posterior. This
is a very good scaling characteristic. Third, the estimator is
consistent also if we approximate π̃i with log p(yi|θ̂q). This
means that for larger data we can plug in point estimates to
quickly compute π̃i and still have the consistency property.

The main limitations with Proposition 1 are that it is based
on the consistency of the posterior approximations and the
proposition does only hold for regular models for which q
are consistent. This is mainly due to the fact that Laplace
and variational inference are not, in general, consistent for
singular models.

2.4. Computational Complexity

In the large n domain it is also of interest to study the
computational complexity of our approach. Assuming that
the additional cost of computing p(yi|y−i) compared to the
point log predictive density (lpd) at θ̂, log p(yi|θ̂), is O(S),
where S is the number of samples from the full posterior.
Then the cost of computing the full elpdloo is

O(nS) .

If we instead use our proposed method we would have the
complexity

O(n+mS) ,

where m is the subsampling size. Using the proposed ap-
proach, we get an unbiased estimate of elpdloo together with
the variance v(êlpdloo) of that estimate, giving us informa-
tion on the precision of the method for a given m.

Finally, we could, for large n just use the same lpd as an
approximation with complexity

O(n) .

This estimate is though biased for all finite n, and we have
no diagnostic indicating how good or bad the approximation
is.

This shows the large-scale characteristic of our proposed
approach. By adding a small cost, mS, we will have a good
estimate of the true elpdloo at the same cost as computing
just the lpd. If using the point lpd is a good approximation
we would need less m. On the other hand, if the point lpd
would be a bad approximation, we would need a larger m.
The variance estimator in Eq. (5) would in these situations
serve as an indicator, with a higher variance estimate.

2.5. Method Summary

We have presented a method for estimating the elpd effi-
ciently using posterior approximation and PPS subsampling.
One of the attractive properties of the method is that we can
diagnose if the method is working. Using PSIS-LOO we
can diagnose the estimation of each individual log p̂(yi|y−i)

as well as the overall posterior approximation using the k̂
diagnostic. Then the variance of the HH estimator in Eq. (5)
captures the effect of the subsampling in the finite n case.
Our approach for large-scale LOO-CV can be summarized
in the following steps.

1. Estimate the models of interest using any consistent
posterior approximation technique.

2. Compute the k̂ diagnostic for the posterior to asses the
general overall posterior approximation (see Yao et al.,
2018).

3. Compute π̃i ∝ − log p(yi|y) for all n observations.
For regular models this can be approximated with π̃i ∝
− log p(yi|θ̂) for large data.

4. Sample m observations using PPS sampling and com-
pute log p̂(yi|y−i) using Eq. (2) and (3). Use k̂ to di-
agnose the estimation of each individual log p̂(yi|y−i).

5. Estimate êlpdloo, v(êlpdloo), and σ̂2
loo using Eq. (4), (5),

and (6) to compare model predictive performance.

6. Repeat step 3 and 4 until sufficient precision is reached.

The downside is that the k̂ diagnostic can be too conserva-
tive for our purpose. In the case of a correlated posterior
and mean-field variational inference, k̂ may indicate a poor
approximation even though the estimation of elpdloo is still
consistent and may work well. In this situation, we would
get a result indicating that all log p̂(yi|y−i) are problematic,
even though the estimation actually work well, something
we will see in the experiments. Also note that setting m too
small and then repeating step 3 and 4 multiple times may
create a multiple comparison problem.

3. Experiments
To study the characteristic of the proposed approach we
study multiple models and datasets. We use simulated
datasets used to fit a Bayesian linear regression model with
D variables and N observations. The data is generated such
that so we get either a correlated (c) or an independent (i)
posterior for the regression parameters by construction. This
will enable us to study the effect of the mean-field assump-
tions in variational posterior approximations. In addition,
we use data from the radon example of Lin et al. (1999) to
show performance on a larger dataset with multiple models.

All posterior computations use Stan 2.18 (Carpenter et al.,
2017; Stan Development Team, 2018) and all models used
can be found in the supplementary material. The methods
have been implemented using the loo R package (Veh-
tari et al., 2018) framework for Stan and are available as
supplementary material. We use mean-field and full-rank
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Automatic Differentiation Variational Inference (ADVI, Ku-
cukelbir et al., 2017) and Laplace approximations as imple-
mented in Stan. ADVI automatically handles constrained
variables and uses stochastic variational inference. We used
100 000 iterations for ADVI and 1000 warmup iterations
and 2000 samples from 4 chains for the MCMC.

3.1. Estimating elpdloo Using Posterior Approximations
Table 1 contains the estimated values of elpdloo for different
posterior approximations. From the table, we can see that
using PSIS-LOO and posterior approximations to estimate
elpdloo works well or diagnostic correctly indicates the fail-
ure. As we would expect, the mean-field approximation for
the correlated posterior does not approximate the true poste-
rior very well when the posterior has correlated parameters
and the k̂ values are too high for all observations. In spite
of the high k̂ values, the estimate of the elpdloo is not very
far from the (gold-standard) MCMC estimate, showing the
consistency result in Prop. 1 for mean-field approximations
- even when the true posterior covariance structure is not in
the variational family.

The second result is that the full-rank VI approximation
has a poor fit for a large number of parameters (D = 100).
This comes from that the full rank ADVI needs to approx-
imate the full posterior covariance structure (with 5 000
parameters) based on stochastic gradients. The increased
perturbation in the estimate of the covariance matrix has
the effect of increasing the overall k̂, especially for larger
dimensions indicating a less good approximation of the
posterior.

3.2. Subsampling Using
Probability-Proportional-to-Size Sampling

Table 2 show empirical results on the effect of using sub-
sampling proportional to the predictive density compared to
simple random sampling (SRS). The results are much in line
with what we would expect from the theory presented in
Section 2.3. We can see that the proposed method, sampling
proportional to − log(p(yi|y)) (PPS(1)) and sampling pro-
portional to − log(p(yi|θ̂)) (PPS(2)) outperforms SRS with
orders of magnitude. Using just a sample size ofm = 10 ob-
servations using our proposed method is much more precise
than using m = 1000 observations with SRS, although we
can see that the estimate σ̂loo is less reliable for such small
sample sizes. This results can be explained by the sampling
probabilities used in the subsampling procedure. Figure
3.2 show the distribution of sampling probabilities where
we can see that the probabilities are highly skewed, indi-
cating the reason for the inefficiency of the SRS compared
to the HH approaches. Table 2 also show that sampling
with π̃ ∝ − log(p(yi|θ̂)) is marginally more accurate. In
many situations with larger data we also would expect that

using a point estimate, θ̂, of the parameters in computing
the likelihood values would be much faster than computing
− log(p(yi|y)).

Figure 1. Sampling probabilities (π̃) for the LR(cor) 100D data
and πi = − log p(yi|y). The results are very similar for the other
LR data and for πi = − log p(yi|θ̂).

Table 3 shows empirical results on the scaling characteristics
of the proposed method. We can see that for the PPS esti-
mator, as the size of the data, n, increases, the variance of
the estimator is more or less constant. Using a SRS scheme,
on the other hand, clearly show that to estimate the total
elpdloo, we would need to increase the sample size, m, as
the number of observations, n, increases.

3.3. Hierarchical Models for Radon Measurements

As an example of how the proposed method can be used,
we exemplify with the dataset of (Lin et al., 1999), used
as an example of hierarchical modeling by Gelman & Hill
(2006).2 The data make up a total of 12 573 home radon
measurements in a total of 386 counties with a different
number of observations per county. This example is enlight-
ening for a number of reasons. First, it is large enough to
actually take some computing time to analyze but is still
small enough so we can use MCMC to compute the full data
elpdloo as a gold standard. The models used here are also
both regular and singular, showing the usability in a broader
class of models. Finally, this example also shows how we
can mix different approximation techniques for different
models when doing model comparisons.

We compare seven different linear models of predicting the
log radon levels in individual houses based on floor mea-
surements and county uranium levels. The seven models
are a pooled simple linear model (model 1), a non-pooled
model with one intercept estimated per county (model 2), a
partially pooled model with a hierarchical mean parameter
per county (model 3), a variable intercept model per county
(model 4), a variable slope model per county (model 5), a

2We base our example and data on the Stan case study
by Chris Fonnesbeck at https://mc-stan.org/users/
documentation/case-studies/radon.html

https://mc-stan.org/users/documentation/case-studies/radon.html
https://mc-stan.org/users/documentation/case-studies/radon.html
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Data ADVI(FR) ADVI(MF) Laplace MCMC

LR(c) 100D elpdloo -14249 -14267 -14247 -14247
k̂ > 0.7 (%) 100 100 0 0

LR(c) 10D elpdloo -14271 -14271 -14272 -14272
k̂ > 0.7 (%) 0 100 0 0

LR(i) 100D elpdloo -14193 -14239 -14238 -14239
k̂ > 0.7 (%) 100 0 0 0

LR(i) 10D elpdloo -14202 -14202 -14202 -14203
k̂ > 0.7 (%) 0 0 0 0

Table 1. Estimation of elpdloo using posterior approximations. For all models and posterior approximations, σLOO ≈ 70. No subsampling
is used and MCMC is gold standard.

Data m Method êlpdloo SE(êlpdloo) σ̂loo

LR(c) - True -14245 0 71
100D 10 PPS(1) -14231 21.6 46

PPS(2) -14236 9.1 63
SRS -14309 2316.1 73

100 PPS(1) -14240 7.1 67
PPS(2) -14242 2.3 76
SRS -14798 678.6 68

1000 PPS(1) -14245 2.4 72
PPS(2) -14246 0.7 72
SRS -13897 181.8 61

LR(c) - True -14272 0 71
10D 10 PPS(1) -14277 5.5 98

PPS(2) -14273 2.9 98
SRS -11437 775.3 25

100 PPS(1) -14272 1.0 69
PPS(2) -14272 0.5 71
SRS -14083 637.5 64

1000 PPS(1) -14271 0.3 69
PPS(2) -14272 0.2 69
SRS -14591 236.9 79

Table 2. Effect of subsampling proportional to log predictive den-
sity. The result are based on MCMC draws and θ̂ is the pos-
terior mean for the parameters. PPS(1) is subsampling propor-
tional to − log(p(yi|y)), PPS(2) is subsampling proportional to
− log(p(yi|θ̂)), and SRS is simple random sampling.

variable intercept and slope model (model 6), and finally
a model with a county level features and county level in-
tercepts using the log uranium level in the county. We use
vague priors based on the Stan prior choice recommenda-
tions3 with N(0, 10) priors on regression coefficients and
intercepts and half-N(0, 1) for variance parameters.

3See https://github.com/stan-dev/stan/
wiki/Prior-Choice-Recommendations

m n PPS SRS σloo

10 100 4.3 16 8
1000 2.3 360 22

10000 5.7 9351 72
100000 30 19715 225

100 100 1.3 9.7 8
1000 1.2 83.7 22

10000 2.2 1144 72
100000 11.3 5894 225

Table 3. Standard errors, SE(êlpdloo), for PPS and SRS subsam-
pling in relationship with σloo. The result are based on MCMC
draws and θ̂ is the posterior mean for the parameters. PPS is
subsampling proportional to − log(p(yi|θ̂)).

M Laplace ADVI(FR) ADVI(MF)

1 0.24 0.23 0.34
2 0.93 5.11 0.45
3 1.44 4.19 0.28
4 2.05 6.99 0.71
5 - 5.62 1.04
6 - 10.99 2.98
7 1.70 7.39 0.89

Table 4. Posterior k̂ values for the different radon models and ap-
proximations. Laplace was not possible for model 5 and 6.

Table 4 show the k̂ values for different approximations for
the different models. We can see that for the simplest model
(1) we get a good posterior approximation with just Laplace
approximation, but as the models become more complex
(and singular) we need better approximation techniques such
as ADVI. We can see that ADVI(MF) in general perform
well and can be used for inference in many models, even
though more complex models (such as model 4-7) is not
approximated sufficiently well using the mean-field approx-

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations


Bayesian LOO-CV for Large Data

M Method êlpdloo SE elpdloo elpd10fcv

1 Laplace -18560 0.3 -18560 -18561
ADVI(FR) -18562 1.0 -18559 -18560
ADVI(MF) -18564 2.1 -18559 -18558
MCMC -18560 0.4 -18560 -18561

2 Laplace -17058 31.9 -17049 -17142
ADVI(MF) -17068 50.1 -17059 -17105
MCMC -17069 29.6 -17067 -17137

3 Laplace -17035 33.0 -17017 -17117
ADVI(MF) -17097 20.7 -17090 -17090
MCMC -17096 18.2 -17086 -17112

4 Laplace -17003 66.6 -16866 -17057
ADVI(MF) -16990 19.8 -17013 -17034
MCMC -17013 17.1 -17021 -17049

5 ADVI(MF) -18223 37.6 -18225 -18285
MCMC -18200 16.7 -18259 -18288

6 ADVI(MF) -16656 90.8 -16603 -16869
MCMC -16758 29.2 -16801 -16873

7 Laplace -17096 45.8 -17063 -17140
ADVI(MF) -16996 25.4 -16957 -17035
MCMC -17130 33.2 -17138 -17060

Table 5. The estimated êlpdloo using a subsample of size m = 500
and its standard error (SE). The full elpdloo based on all obser-
vations is also included as well as elpd10fcv, an estimation of the
elpd using 10-fold cross-validation. The σloo ≈ 90 for all ap-
proximations and models. Less than 1% of the observation have
problematic k̂ using MCMC, making it a good gold standard.

imation. ADVI(FR), again, have problems due to the larger
number of parameters in the more complex models.

Based on these approximate posteriors we can analyze the
elpdloo for the different models. Table 5 shows the elpdloo

and an estimate, êlpdloo, based on a subsample of size 500.
As a comparison we also compute elpd10fcv, computing an
estimate of elpd using a 10-fold cross-validation scheme,
without bias correction. For the simple baseline model 1, we
can use Laplace approximation and a subsample to estimate
the elpdloo in roughly 2 seconds with a sufficient precision
for most purposes. Using MCMC and computing the full
elpd take roughly 35 seconds for this medium-sized dataset.

Table 5 also shows that ADVI(MF) work well both for
regular and singular models. Using ADVI(MF) for the
singular models 3 and 4, where the k̂ values indicating a
good posterior approximation, the approach works really
well. We can also see that the k̂ diagnostic works well as an
indicator. The Laplace and ADVI(MF) approximations with
high k̂ values can be quite off, see model 7 for an example.

The results of Table 5 also give us an idea of how the subsam-
pling can be used. By comparing the SE of our estimates
with σloo, that is roughly 90 for all models, we see how
far a subsample with 500 observations takes us. For most
models, our SE is small enough to help us decide between
models, while for the more complex models. The precision
needed depends on the specific use case and if we need
better precision we can simply add more subsamples to get
the precision needed.

If we study Table 5 we see that using ADVI(MF), Laplace
and a subsample of size 500 we can get quite far comparing
these models. We could quickly rule out model 1 and 5, but
where we would need to use MCMC for model 5, due to the
high k̂ for the ADVI approximations. Model 4 and 6 are the
most promising but we need to estimate the models using
MCMC due to the high k̂ values for the ADVI approxima-
tions. Although, based on just the subsample, we can see
that model 6, the variable intercept and slope model, seem
to be the most promising model for this data. Comparing
the fully computed elpdloo for the different models we could
compute the difference in elpdloo between model 6 and 4
to 220 with a standard error of 26, clearly indicating that
model 6 is the one to prefer in this situation. Using 10-fold
cross-validation (10fcv, see elpd10fcv), we arrive at a similar
result, but at the cost of re-estimating the model 10 times.

4. Conclusions
In this work we solve the two major hurdles for using LOO-
CV for large data, namely using posterior approximations to
estimate the elpdloo for individual observations and efficient
subsampling. We prove the consistency in n and also show
that for regular models we have consistency also for com-
mon posterior approximations such as Laplace and ADVI,
even for mean-field ADVI in situations with correlated pos-
teriors, making the results promising for large-scale model
evaluations. Finally, our proposed method also comes with
diagnostics to assess if the quality of the subsampling and
posterior approximations. We can use the k̂ diagnostic to
asses the posterior approximations and v(êlpdloo), the vari-
ance of the HH estimator, to give us a good measure of the
uncertainty due to subsampling.
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