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Abstract
“Composable core-sets” are an efficient frame-
work for solving optimization problems in mas-
sive data models. In this work, we consider effi-
cient construction of composable core-sets for the
determinant maximization problem. This can also
be cast as the MAP inference task for determi-
nantal point processes, that have recently gained
a lot of interest for modeling diversity and fair-
ness. The problem was recently studied in (Indyk
et al., 2018), where they designed composable
core-sets with the optimal approximation bound
of Õ(k)k. On the other hand, the more practi-
cal Greedy algorithm has been previously used in
similar contexts. In this work, first we provide
a theoretical approximation guarantee of O(Ck

2

)
for the Greedy algorithm in the context of com-
posable core-sets; Further, we propose to use a
Local Search based algorithm that while being
still practical, achieves a nearly optimal approxi-
mation bound of O(k)2k; Finally, we implement
all three algorithms and show the effectiveness of
our proposed algorithm on standard data sets.

1. Introduction
Given a set of vectors P ⊂ Rd and an integer 1 ≤ k ≤ d,
the goal of the determinant maximization problem is to find
a subset S = {v1, . . . , vk} of P such that the determinant of
the Gram matrix of the vectors in S is maximized. Geomet-
rically, this determinant is equal to the volume squared of
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the parallelepiped spanned by the points in S. This problem
and its variants have been studied extensively over the last
decade. To this date, the best approximation factor is due to
a work of Nikolov (Nikolov, 2015) which gives a factor of
ek, and it is known that the exponential dependence on k is
unavoidable (Civril & Magdon-Ismail, 2013).

The determinant of a subset of points is used as a measure
of diversity in many applications where a small but diverse
subset of objects must be selected as a representative of a
larger population (Mirzasoleiman et al., 2017; Gong et al.,
2014; Kulesza et al., 2012; Chao et al., 2015; Kulesza &
Taskar, 2011; Yao et al., 2016; Lee et al., 2016); recently,
this has been further applied to model fairness (Celis et al.,
2016). The determinant maximization problem can also be
rephrased as the maximum a posteriori probability (MAP)
estimator for determinantal point processes (DPPs). DPPs
are probabilistic models of diversity in which every subset
of k objects is assigned a probability proportional to the
determinant of its corresponding Gram matrix. DPPs have
found several applications in machine learning over the last
few years (Kulesza et al., 2012; Mirzasoleiman et al., 2017;
Gong et al., 2014; Yao et al., 2016). In this context, the
determinant maximization problem corresponds to the task
of finding the most diverse subset of items.

Many of these applications need to handle large amounts of
data and consequently the problem has been considered in
massive data models of computation (Mirzasoleiman et al.,
2017; Wei et al., 2014; Pan et al., 2014; Mirzasoleiman et al.,
2013; 2015; Mirrokni & Zadimoghaddam, 2015; Barbosa
et al., 2015). One strong such model that we consider in this
work, is composable core-set (Indyk et al., 2014) which is
an efficient summary of a data set with the composability
property: union of summaries of multiple data sets should
provably result in a good summary for the union of the
data sets. More precisely, in the context of the determinant
maximization, a mapping function c that maps any point set
to one of its subsets is called an α-composable core-set if it
satisfies the following condition: given any integer m and
any collection of point sets P1, · · · , Pm ⊂ Rd,

MAXDETk(

m⋃
i=1

c(Pi)) ≥
1

α
·MAXDETk(

m⋃
i=1

Pi)
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where we use MAXDETk to denote the optimum of the
determinant maximization problem for parameter k. We also
say c is a core-set of size t if for any P ⊂ Rd, |c(P )| ≤ t. If
designed for a task, composable core-sets will further imply
efficient streaming and distributed algorithms for the same
task. This has lead to recent interest in composable core-sets
model since its introduction (Mirrokni & Zadimoghaddam,
2015; Assadi & Khanna, 2017; Indyk et al., 2018).

An almost optimal approximate composable core-set. In
(Indyk et al., 2018), the authors designed composable core-
sets of size O(k log k) with approximation guarantee of
Õ(k)k for the determinant maximization problem. More-
over, they showed that the best approximation one can
achieve is Ω(kk−o(k)) for any polynomial size core-sets,
proving that their algorithm is almost optimal. However,
its complexity makes it less appealing in practice. First of
all, the algorithm requires an explicit representation of the
point set, which is not present for many DPP applications; a
common case is that the DPP kernel is given by an oracle
which returns the inner product between the points; in this
setting, the algorithm needs to construct the associated gram
matrix, and use SVD decomposition to recover the point set,
making the time and memory quadratic in the size of the
point-set. Secondly, even in the point set setting, the algo-
rithm is not efficient for large inputs as it requires solving
O(kn) linear programs, where n is size of the point set.

In this paper, we focus on two simple to implement algo-
rithms which are typically exploited in practice, namely
the Greedy and the Local-Search algorithms. We study
these algorithms from theoretical and experimental points
of view for the composable core-set problem with respect
to the determinant maximization objective, and we compare
their performance with the algorithm of (Indyk et al., 2018),
which we refer to as the LP-based algorithm.

1.1. Our Contributions

Greedy algorithm. The greedy algorithm for determinant
maximization proceeds in k iterations and at each iteration
it picks the point that maximizes the volume of the paral-
lelepiped formed by the set of points picked so far. (Çivril
& Magdon-Ismail, 2009) has studied the approximation of
the greedy algorithm in the standard setting. In the context
of submodular maximization over large data sets, variants
of this algorithm have been studied (Mirzasoleiman et al.,
2013). One can view the greedy algorithm as a heuristic
for constructing a core-set of size k. To the best of our
knowledge, the previous analysis of this algorithm does not
provide any multiplicative approximation guarantee in the
context of composable core-sets.1

Our first result shows the first multiplicative approximation

1For more details, see related work.

factor for composable core-sets on the determinant maxi-
mization objective achieved by the Greedy algorithm.

Theorem 1.1. Given a set of points P ⊂ Rd, the Greedy
algorithm achieves a O(Ck

2

)-composable core-set of size
k for the determinant maximization problem, where C is a
constant.

The Local Search algorithm. Our main contribution is to
propose to use the Local Search algorithm for constructing
a composable core-set for the task of determinant maximiza-
tion. The algorithm starts with the solution of the Greedy
algorithm and at each iteration, swaps in a point that is not
in the core-set with a point that is already in the core-set,
as long as this operation increases the volume of the set of
picked points. While still being simple, as we show, this
algorithm achieves a near-optimal approximation guarantee.

Theorem 1.2. Given a set of points P ⊂ Rd, the Local
Search algorithm achieves an O(k)2k-composable core-set
of size k for the determinant maximization problem.

Directional height. Both of our theoretical results use a
modular framework: In Section 3, we introduce a new ge-
ometric notion defined for a point set called directional
height, which is closely related to the width of a point set
defined in (Agarwal et al., 2005). We show that core-sets
for preserving the directional height of a point set in fact
provide core-sets for the determinant maximization problem.
Finally, we show that running either the Greedy (Section 5)
or Local Search (Section 4) algorithms on a point set obtain
composable core-sets for its directional height. We believe
that this new notion might find applications elsewhere.

Experimental resutls. Finally, we implement all three al-
gorithms and compare their performances on two real data
sets: MNIST(LeCun et al., 1998) data set and GENES data
set, previously used in (Batmanghelich et al., 2014; Li et al.,
2015) in the context of DPPs. Our empirical results show
that in more than 87% percent of the cases, the solution
reported by the Local Search algorithm improves over the
Greedy algorithm. The average improvement varies from
1% to up to 23% depending on the data set and the set-
tings of other parameters such as k. We further show that
although Local Search picks fewer points than the tight ap-
proximation algorithm of (Indyk et al., 2018) (k vs. upto
O(k log k)), its performance is better and it runs faster.

1.2. Related Work

In a broader scope, determinant maximization is an instance
of the (non-monotone) submodular maximization where the
logarithm of the determinant is the submodular objective
function. There is a long line of work on distributed submod-
ular optimization and its variants (Chierichetti et al., 2010;
Badanidiyuru et al., 2014; Mirzasoleiman et al., 2016b;
Kumar et al., 2015). In particular, there has been several
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efforts to design composable core-sets in various settings of
the problem (Mirzasoleiman et al., 2013; Mirrokni & Zadi-
moghaddam, 2015; Barbosa et al., 2015); In (Mirzasoleiman
et al., 2013), authors study the problem for monotone func-
tions, and show the greedy algorithm offers a min(m, k)-
composable core-set for the problem wherem is the number
of parts. On the other hand, (Indyk et al., 2014) shows
that it is impossible to go beyond an approximation fac-
tor of Ω(

√
k

log k ) with polynomial size core-sets. Moreover,
(Mirrokni & Zadimoghaddam, 2015; Barbosa et al., 2015)
consider a variant of the problem where the data is randomly
distributed, and show the greedy algorithm achieves con-
stant factor “randomized” composable core-sets for both
monotone and non-monotone functions. However, one can
notice that these results can not be directly compared to the
current work, as a multiplicative approximation for determi-
nant converts to an additive guarantee for the corresponding
submodular function.

As discussed before, the determinant is one way to mea-
sure the diversity of a set of items. Diversity maximization
with respect to other measures has been also extensively
studied in the literature, (Hassin et al., 1997; Gollapudi &
Sharma, 2009; Borodin et al., 2012; Bhaskara et al., 2016).
More recently, the problem has received more attention in
distributed models of computation, and for several diversity
measures constant factor approximation algorithms have
been devised (Zadeh et al., 2017; Indyk et al., 2014; Cec-
carello et al., 2017). However, these notions are typically
defined by considering only the pairwise dissimilarities be-
tween the items; for example, the summation of the dis-
similarities over all pairs of items in a set can define its
diversity.

One can also go further, and study the problem under addi-
tional constraints, such as matroid and knapsack constraints.
This has been an active line of research in the past few years,
and several centralized and distributed algorithms have been
designed in this context for submodular optimization (Mirza-
soleiman et al., 2016a; Lee et al., 2009; 2010; Chekuri et al.,
2015) and in particular determinant maximization (Ebrahimi
et al., 2017; Nikolov & Singh, 2016).

2. Preliminaries
Throughout the paper, we fix d as the dimension of the
ambient space and k(k ≤ d) as the size parameter of the
determinant maximization problem. We call a subset of Rd
a point set, and use the term point or vector to refer to an
element of a point set. For a set of points S ⊂ Rd and a
point p ∈ Rd, we write S+ p to denote the set S ∪{p}, and
for a point s ∈ S, we write S − p to denote the set S \ {s}.

Let S be a point set of size k. We use VOL(S) to denote the
k-dimensional volume of the parallelepiped spanned by vec-

tors in S. Also, letMS denote a k×dmatrix where each row
represents a point of S. Then, the following relates volume
to the determinant det(MSM

ᵀ
S ) = VOL2(S). So the deter-

minant maximization problem can also be phrased as volume
maximization. We use the former, but because of the geo-
metric nature of the arguments, sometimes we switch to the
volume notation. For any point set P , we use MAXDETk
to denote the optimal of determinant maximization for P , i.e.
MAXDETk(P ) = maxS det(MSM

ᵀ
S ), where S ranges

over all subsets of size k. MAXVOLk is defined similarly.

For a point set P , we use 〈P 〉 to refer to the linear subspace
spanned by the vectors in P . We also denote the set of all
k-dimensional linear subspaces by Hk. For a point p and
a subspace H, we use dist(p,H) to show the Euclidean
distance of p fromH.

Greedy algorithm for volume maximization. As
pointed out before, a widely used algorithm for determinant
maximization in the offline setting is a greedy algorithm
which given a point set P and a parameter k as the input
does the following: start with an empty set C. For k itera-
tions, add argmaxp∈Pdist(p, 〈C〉) to C. The result would be
a subset of size k which has the following guarantee.
Theorem 2.1 ((Çivril & Magdon-Ismail, 2009)). Let P be
a point set and C be the output of the greedy algorithm on
P . Then VOL(C) ≥ MAXVOLk(P )

k! .

2.1. Core-sets

Core-set is a generic term used for a small subset of the
data that represents it very well. More formally, for a given
optimization task, a core-set is a mapping c from any data
set P into one of its subsets such that the solution of the
optimization over the core-set c(P ) approximates the solu-
tion of the optimization over the original data set P . The
notion was first introduced in (Agarwal et al., 2004) and
many variations of core-sets exist. In this work, we consider
the notion of composable core-sets defined in (Indyk et al.,
2014).
Definition 2.2 (α-Composable Core-sets). A function c(P )
that maps the input set P ⊂ Rd into one of its sub-
sets is called an α-composable core-set for a function
f : 2R

d → R if, for any collection of sets P1, · · · , Pn ⊂ Rd,
we have f(C) ≥ f(P )/α where P =

⋃
i≤n Pi and

C =
⋃
i≤n c(Pi).

For simplicity, we will often refer to the set c(P ) as the
core-set for P and use the term “core-set function” with
respect to c(·). The size of c(·) is defined as the smallest
number t such that c(P ) ≤ t for all sets P (assuming it
exists). Unless otherwise stated, we might use the term
“core-set” to refer to a composable core-set when clear from
the context. Our goal is to find composable core-sets for the
determinant maximization problem.
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3. k-Directional Height
As pointed out in the introduction, we introduce a new geo-
metric notion called directional height, and reduce the task
of finding composable core-sets for determinant maximiza-
tion to finding core-sets for this new notion.

Definition 3.1 (k-Directional Height). Let P ⊂ Rd be a
point set andH ∈ Hk−1 be a (k−1)-dimensional subspace.
We define the k-directional height of P with respect to H,
denoted by h(P,H), to be the distance of the farthest point
in P fromH, i.e., h(P,H) = maxp∈P dist(p,H).

The notion is an instance of an extent measure defined in
(Agarwal et al., 2005). It is also related to the notion of
directional width of a point set previously used in (Agarwal
et al., 2005), which for a direction vector v ∈ Rd is defined
to be maxp∈P 〈v · p〉 −minp∈P 〈v · p〉.

Next, we define core-sets with respect to this notion. It is
essentially a subset of the point set that approximately pre-
serves the k-directional height of the point set with respect
to any subspace inHk.

Definition 3.2 (α-Approximate Core-set for the
k-Directional Height). Given a point set P , a subsetC ⊆ P
is a α-approximate core-set for the k-directional height of
P , if for anyH ∈ Hk−1, we have h(C,H) ≥ h(P,H)/α.

We also say a mapping c(.) which maps any point set in Rd
to one of its subsets, is an α-approximate core-set for the
k-directional height problem, if the above relation holds for
any point set P and c(P ).

The above notion of core-sets for k-directional height is
similar to the notion of ε-kernels defined in (Agarwal et al.,
2005) for the directional width of a point set.

We connect it to composable core-sets for determinant max-
imization by the following lemma.

Lemma 3.3. Let P1, . . . , Pm ∈ Rd be an arbitrary col-
lection of point sets, and for any i, let c(Pi) be an α-
approximate core-set for the k-directional height for Pi.
Then

MAXDETk(

m⋃
i=1

Pi) ≤ α2k ·MAXDETk(

m⋃
i=1

c(Pi)).

Proof. Let W ⊂
⋃m
i=1 Pi be any subset of size k, and also

let w ∈W \
⋃m
i=1 c(Pi). We claim that there is a point q in

the union of the core-sets such that α ·VOL(W −w+ q) ≥
VOL(W ). Note that showing this claim is enough to prove
the lemma. Since, one can start from the optimum solution
which achieves the largest volume on

⋃m
i=1 Pi, and for at

most k iterations, replace a point outside
⋃m
i=1 c(Pi) by a

point inside, while decreasing the volume by a factor of at
most α.

So it remains to prove the claim. Let W = {w1, . . . , wk},
and let H = 〈w2, . . . , wk〉 ∈ Hk−1 be the plane spanned
by w2, . . . , wk. By definition, VOL(W ) = dist(w1, H) ·
VOL(W − w1). On the other hand, suppose that w1 ∈ Pi.
Then by our assumption, there exists q ∈ c(Pi) so that
dist(q,H) ≥ dist(w1,H)

α . Replacing w1 with q, we get

VOL(W − w1 + q) = dist(q,H) ·VOL(W − w1)

≥ dist(w1, H) ·VOL(W − w1)

α
=

VOL(W )

α

which completes the proof.

Corollary 3.4. Any mapping which is an α-approximate
core-set for k-directional height, is anα2k-composable core-
set for the determinant maximization.

We employ the above corollary to analyze both greedy and
local search algorithms in Sections 4 and 5.

4. The Local Search Algorithm
In this section, we describe and analyze the local search al-
gorithm and prove Theorem 1.2. The algorithm is described
in Algorithm 1.

To prove Theorem 1.2, we follow a two steps strategy. We
first analyze the algorithm for individual point sets, and
show that the output is a (2k)-approximate core-set for the
k-directional height problem, as follows.
Lemma 4.1. Let P be a set of points and c(P ) be the result
of running the local search algorithm on P . Then, for any
H ∈ Hk−1,

h(c(P ),H) ≥ h(P,H)

2k(1 + ε)
.

Next, we apply Corollary 3.4, which implies that local
search gives (2k(1 + ε))2k-composable core-sets for the
determinant maximization. Clearly this completes the proof
of the theorem by setting ε to a constant.

So proving Theorem 1.2 boils down to showing Lemma 4.1.
Before, getting into that, we analyze the running time, and
present some remarks about the implementation.

Running time. Let C0 be the output of the greedy. By
Theorem 2.1 VOL(C0)

MAXVOLk(P ) ≥
1
k! . The algorithm starts with

C0 and by definition, in any iteration increases the volume
by a factor of at least 1 + ε, hence the total number of itera-
tions is O( k log k

log(1+ε) ). Finally, each iteration can be naively
executed by iterating over all points in P , forming the cor-
responding k × k matrix, and computing the determinant in
total time O(|P | · kd · k3|P |).

We also remark that unlike the algorithm in (Indyk et al.,
2018), our method can also be executed without any changes
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Algorithm 1 Local Search Algorithm

Input: A point set P ⊂ Rd, integer k, and ε > 0.
Output: A set C ⊂ P of size k.
Initialize C = ∅.
for i = 1 to k do

Add argmaxp∈P\CVOL(C + p) to C.
end for
repeat

If there are points q ∈ P \ C and p ∈ C such that

VOL(C + q − p) ≥ (1 + ε)VOL(C)

replace p with q.
until No such pair exists.
Return C.

and additional complexity, when the point set P is not ex-
plicitly given in the input; instead, it is presented by an
oracle that given two points of P returns their inner product.
One can note that in this case the algorithm can be simulated
by querying this oracle for at most O(|P |k) times.

4.1. Proof of Lemma 4.1

With no loss of generality, suppose that ε = 0, the proof
automatically extends to ε 6= 0. Therefore, c(P ) has the
following property: for any v ∈ P \ c(P ) and u ∈ c(P ),
VOL(c(P )) ≥ VOL(c(P ) − u + v). Fix H ∈ Hk−1, and
let p = argmaxp∈Pdist(p,H). Our goal is to show there

exists q ∈ c(P ) so that dist(q,H) ≥ dist(p,H)
2k .

Let G = 〈c(P )〉 be the k-dimensional linear subspace
spanned by the set of points in the core-set, and let pG
be the projection of p onto this subspace. We proceed with
proof by contradiction. Set dist(p,H) = 2x, and suppose
to the contrary that for any q ∈ c(P ), dist(q,H) < x

k . With
this assumption, we prove the two following lemmas.
Lemma 4.2. dist(p, pG) < x.

Lemma 4.3. dist(pG ,H) < x.

One can note that, combining the above two lemmas
and applying the triangle inequality implies dist(p,H) ≤
dist(p, pG) + dist(pG ,H) < 2x, which contradicts the as-
sumption dist(p,H) = 2x and completes the proof.

Therefore, it only remains to prove the above lemmas. Let
us first fix some notation. Let c(P ) = {q1, . . . , qk} and
for any i, let Gī denote the (k − 1)-dimensional subspace
spanned by points in c(P ) \ {qi}.

Proof of Lemma 4.2. For 1 ≤ i ≤ k, let q′i be the projection
of qi onto H. We prove that there exists an index j ≤ k
such that we can write q′j =

∑
i 6=j αiq

′
i where every αi ≤ 1.

Let r be the rank, i.e., maximum number of independent

points of C′ = {q′i|i ≤ k} and clearly as H has dimension
k − 1, we have r ≤ k − 1. Take a subset S ⊂ C′ of
r independent points that have the maximum volume and
let q′j be a point in C′ \ S and note that this point should
exist as there are k points in the core-set. Thus we can
write q′j =

∑
i:q′i∈S

αiq
′
i. With an idea similar to the one

presented in (Çivril & Magdon-Ismail, 2009), we can prove
that the following claim holds.

Claim 4.4. For any i such that q′i ∈ S, we have |αi| ≤ 1.

Proof. We prove that if the claim is not true, then S \
{q′i}∪{q′j} has a larger volume than S which contradicts the
choice of S. Let F be the linear subspace passing through
S\{q′i}. It is easy to see that VOL(S)

VOL(S\{q′i}∪{q′j})
=

dist(q′i,F)
dist(q′j ,F) ,

meaning that dist(q′i,F) ≥ dist(q′j ,F). However, if
|αi| > 1 then since q′i is the only point in S which in not
in F , then dist(q′j ,F) ≥ dist(q′i,F) which is a contradic-
tion.

Finally, for any q′i /∈ S, set the corresponding coefficient
αi = 0. So we get that q′j =

∑
i6=j αiq

′
i where every

|αi| ≤ 1.

Now take the point q =
∑
i 6=j αiqi. Note that, q′j is in

fact the projection of q onto H. Therefore, using triangle
inequality, we have

dist(q′j , q) = dist(q,H) ≤
∑
i6=j

|αi|dist(qi,H) ≤ (k − 1)x

k

(1)
Then we get that

dist(p, pG) = dist(p,G)

≤ dist(p,Gj̄) as Gj̄ ⊂ G
≤ dist(qj ,Gj̄) by the local search property
≤ dist(qj , q) as q ∈ Gj̄
≤ dist(qj , q

′
j) + dist(q′j , q) by triangle inequality

< x/k + (k − 1)x/k by our assumption and Equation 1
= x

Proof of Lemma 4.3. Again we prove that we can write
pG =

∑k
i=1 αiqi where all |αi| ≤ 1. We assume that the set

of points qi are linearly independent, otherwise the points in
P have rank less than k and thus the volume is 0. Therefore,
we can write pG =

∑k
i=1 αiqi. Note that for any i, we have

dist(pG ,Gī) ≤ dist(p,Gī)
≤ dist(qi,Gī) by the local search property

where the first inequality follows since Gī is a subspace of
G and pG is the projection of p onto G. Again, similar to
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the proof of Claim 4.4, this means that |αi| ≤ 1. Therefore,
using triangle inequality

dist(pG ,H) = dist(

k∑
i=1

αiqi,H) ≤
k∑
i=1

|αi|dist(qi,H)

< k × x/k = x.

5. The Greedy Algorithm
In this section we analyze the performance of the greedy
algorithm (see section 2) as a composable core-set function
for the determinant maximization and prove Theorem 1.1.
Our proof plan is similar to the to the analysis of the local
search. We analyze the guarantee of the greedy as a core-set
mapping for k-directional height, and combining that with
Corollary 3.4 we achieve the result. We prove the following.
Lemma 5.1. Let P be an arbitrary point set and c(P ) de-
note the output of running greedy on P . Then, c(P ) is a
(2k) · 3k-approximate core-set for the k-directional height
of P , i.e. for anyH ∈ Hk−1 we have

h(c(P ),H) ≥ 1

2k · 3k
· h(P,H)

So the greedy is a (2k · 3k)-approximate core-set for k-
directional height problem. Combining with Corollary 3.4,
we conclude it is also a (2k · 3k)2k composable core-set for
the determinant maximization which proves Theorem 1.1.

5.1. Proof of Lemma 5.1

The proof is similar to the proof of Lemma 4.1. Let
G = 〈c(P )〉 be the k-dimensional subspace spanned by
the output of greedy. Also for a point p ∈ P , define pG to be
its projection onto G. Fix H ∈ Hk−1, let h(c(P ),H) = x

k
for some number x, which in particular implies that for
any q ∈ c(P ), dist(q,H) ≤ x

k . Then, our goal is to prove
h(P,H) ≤ 2 ·3k ·x. We show that by proving the following
two lemmas.
Lemma 5.2. For any p ∈ P , dist(pG ,H) ≤ 2k−1x.
Lemma 5.3. For any p ∈ P , dist(p, pG) ≤ 3kx.

Clearly, combining them with triangle inequality, we get
that for any p ∈ P , dist(p,H) < 2 · 3kx, which implies
h(P,H) ≤ 2 · 3k · x and completes the proof. So it remains
to prove the lemmas. Let the output of the greedy c(P ) be
q1, . . . , qk with this order, i.e. q1 is the first vector selected
by the algorithm.

Proof of Lemma 5.2. Recall that q1, . . . , qk is the output
of greedy. For any p ∈ P and for any 1 ≤ t ≤ k, let
Gt = 〈q1, . . . , qt〉 and define pt to be the projection of p
onto Gt. We show the lemma using the following claim.

Claim 5.4. For any p ∈ P and any 1 ≤ t ≤ k, we can
write pt =

∑t
i=1 αiqi so that for each i, |αi| ≤ 2t−1.

Let us first show how the above claim implies the lemma.
It follows that we can write pG = pk =

∑k
i=1 αiqi

where all |αi| ≤ 2k−1. Now since for each i ≤
k, dist(qi,H) ≤ x/k by assumption, we have that
dist(pG ,H) ≤

∑
αidist(qi,H) ≤ 2k−1x. Therefore, it

suffices to prove the claim.

Proof of Claim 5.4. We use induction on t. To prove the base
case of induction, i.e., t = 1, note that q1 is the vector with
largest norm in P . Thus we have that ||p1|| ≤ ||q1|| and
therefore we can write p1 = α1q1 where |α1| ≤ 1. Now,
lets assume that the hypothesis holds for the first t points;
that is, the projection of any point p onto Gt can be written
as

∑
j≤t αjqj where |αj |’s are at most 2t−1.

Now, note that by the definition of the greedy algorithm,
qt+1 is the point with farthest distance from Gt. There-
fore, for any point p ∈ P \ {q1, · · · , qt+1}, we know that
dist(p,Gt) ≤ dist(qt+1,Gt), and thus, dist(pt+1,Gt) ≤
dist(qt+1,Gt). Therefore if we define qtt+1 to be the projec-
tion of qt+1 onto Gt, we can write

pt+1 = αt+1qt+1 − αt+1q
t
t+1 + pt where |αt+1| ≤ 1.

By the hypothesis, we can write pt =
∑
j≤t βjqj , and

qtt+1 =
∑
j≤t γjqj , where |βj | ≤ 2t−1, and |γj | ≤ 2t−1.

Since |αt+1| ≤ 1, we can write

pt+1 = αt+1qt+1 +
∑
j≤t

(βj − αt+1γj)qj =
∑
j≤t+1

αjqj

where |αj | ≤ 2t. This completes the proof.

Proof of Lemma 5.3. First, note that for any t, we have
dist(qt+1,Gt) ≥ dist(p,Gk−1). This is because the greedy
algorithm has chosen qk over p in its k-th round which
means that dist(p,Gk−1) ≤ dist(qk,Gk−1), and by def-
inition of the greedy algorithm for any i < j we have
dist(qi+1,Gi) ≥ dist(qj+1,Gj). So it is enough to prove

∃ 1 ≤ t ≤ k − 1 s.t. dist(qt+1,Gt) ≤ 3kx (2)

For 1 ≤ i ≤ k, let q′i be the projection of qi ontoH. Recall
that, we are assuming that for any i, dist(qi, q

′
i) < x/k. To

prove (2), we use proof by contradiction, so suppose that
for all t, dist(qt+1,Gt) > 3kx. We also define G′t to be the
projection of Gt on H, i.e., G′t = 〈q′1, . . . , q′t〉. Given these
assumptions, we prove the following claim.

Claim 5.5. For any 1 ≤ t ≤ k − 1, we can write
Π(G′t)(q′t+1) =

∑
i≤t αiq

′
i where |αi| ≤ 3t, where for a

point q and a subspace A, Π(A)(q) denotes projection of q
onto A.
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Intuitively, this is similar to Claim 5.4. However, instead
of looking at the execution of the algorithm on the points
q1, · · · , qk, we look at the execution of the algorithm on the
projected points q′1, · · · , q′k. Since all of these k points are
relatively close to the hyperplane H, the distances are not
distorted by much and therefore, we can get approximately
the same bounds. We include the formal proof in Appendix
A, in the supplementary file.

To finish the proof of the lemma, let us show how it follows
from the claim. First, note that q′1, . . . , q

′
k are k points in the

(k − 1)-dimensional space H, so for some t, q′t+1 should
lie inside G′t and we have Π(G′t)(q′t+1) = q′t+1. Fix such t.
Define the point qα =

∑
i≤t αiqi where |αi| ≤ 3k are taken

from the above claim which means q′t+1 =
∑
i≤t αiq

′
i.Note

that by definition q′t+1 = Π(H)(qα). Therefore,

dist(q′t+1, qα) = dist(qα,H) (3)

≤
∑
i≤t

αidist(qi,H) ≤ 3kt · x/k. (4)

Then we get that

dist(qt+1,Gt) ≤ dist(qt+1, qα) as qα ∈ Gt
≤ dist(qt+1, q

′
t+1) + dist(q′t+1, qα)

≤ x/k + 3kt · x/k ≤ 3kx

where the second inequality holds because of triangle in-
equality and the last one from (3) and the fact that t ≤ k−1.
This contradicts our assumption that dist(qt+1,Gt) > 3kx,
and proves the lemma.

6. Experiments
In this section, we evaluate the effectiveness of our proposed
Local Search algorithm empirically on real data sets. We
implement the following three algorithms.

• The Greedy algorithm of Section 5 (GD).
• The Local Search algorithm of Section 4 with accuracy

parameter ε = 10−5 (LS).
• The LP-based algorithm of (Indyk et al., 2018) which

has almost tight approximation guarantee theoreti-
cally (LP). Note that this algorithm might pick up to
O(k log k) points in the core-set.

Data sets. We use two data sets that were also used in (Li
et al., 2015) in the context of approximating DPPs over large
data sets.

• MNIST (LeCun et al., 1998): contains a set of 60000
images of hand-written digits, where each image is of
size 28 by 28.

• GENES (Batmanghelich et al., 2014): contains a set
of 10000 genes, where each entry is a feature vector

of a gene. The features correspond to shortest path
distances of 330 different hubs in the BioGRID gene
interaction network. This data set was initially used to
identify a diverse set of genes to predict a tumor. Here,
we slightly modify it and remove genes that have an
unknown value at any coordinate which gives us a data
set of size ∼ 8000.

Moreover, we apply an RBF kernel on both of these data
sets using σ = 6 for MNIST and σ = 10 for GENES. These
are the same values used in the work of (Li et al., 2015).

6.1. Experiment Setup.

We partition the data sets uniformly at random into multiple
data sets P1, · · · , Pm. We use m = 10 for the smaller
GENES data set, and for the larger MNIST data set we use
m = 50 and also we use m = 10 (equal to the number of
digits in the data set). Moreover, since the partitions are
random, we repeat every experiment 10 times and take the
average in our reported results.

We then use a core-set construction algorithm ALGc to com-
pute core-sets of size k, i.e., S1 = ALGc(P1, k),· · · ,Sm =
ALGc(Pm, k), for ALGc ∈ {GD, LS, LP}. Recall that
GD, LS and LP correspond to the Greedy, Local Search and
LP-based algorithm of (Indyk et al., 2018) respectively.

Finally, we take the union of these core-sets UALGc
=

S1 ∪ · · · ∪ Sm and compute the solutions for UALGc
. Since

computing the optimal solution can take exponential time
(∼ nk), we will instead use an aggregation algorithm
ALGa (either GD, LS or LP). We will use the notation
ALGa/ALGc to refer to the constructed set of k points,
returned by ALGa(UALGc

, k). For example, GD/LS refers
to the set of k points returned by the Greedy algorithm on
the union of the core-sets, where each core-set is produced
using the Local Search algorithm.

Finally, we vary the value of k from 3 to 20.

6.2. Results

Local Search vs. Greedy as offline algorithms. Our first
set of experiments simply compares the quality of Greedy
and Local Search as centralized algorithms on whole data
sets. We perform this experiment to measure the improve-
ment of Local Search over Greedy in the offline setting. On
average over all values of k, Local Search improves over
Greedy by 13% for GENES data set and 5% for MNIST
data set. See Appendix B for the details of the results. In-
tuitively, this improvement upper bounds the improvement
one can expect in the core-set setting.

Local Search vs. Greedy as core-sets. In our second ex-
periment, we use Greedy algorithm for aggregation, i.e.,
ALGa = GD, and compare GD/LS with GD/GD. Figure



Composable Core-sets for Determinant Maximization

1 shows the improvement of local search over greedy as a
core-set construction algorithm. The graph is drawn as a
function of k, and for each k, the improvement ratio is an
average over all 10 runs, and shown for all data sets (includ-
ing GENES, MNIST with partition number m = 10, and
MNIST with m = 50).

On average this improvement is 9.6%, 2.5% and 1.9% for
GENES, MNIST10 and MNIST50 respectively. Moreover,
in 87% of all 180 runs of this experiment, Local Search
performed better than Greedy, and for some instances, this
improvement was up to 58%. Finally, this improvement
comes at a cost of increased running time. Figure 2 shows
average ratio of the time to construct core-sets using Local
Search vs. Greedy.

k GENES MNIST-10 MNIST-50
3 1.000194 1.003479 1.001885
4 1.005521 1.004642 1.00749
5 1.036231 1.0144 1.005689
6 1.032768 1.011723 1.008064
7 1.06398 1.014276 1.010439
8 1.09823 1.012169 1.01977
9 1.087714 1.01805 1.01114

10 1.067736 1.02087 1.013931
11 1.046544 1.035041 1.016783
12 1.102721 1.027204 1.019066
13 1.13496 1.020826 1.024314
14 1.173495 1.023743 1.027036
15 1.157351 1.03209 1.020481
16 1.130523 1.05138 1.031221
17 1.089536 1.027524 1.019298
18 1.18106 1.028207 1.03196
19 1.2357 1.04914 1.04261
20 1.089619 1.0476 1.024008
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Figure 1. Average improvement of Local Search core-set over
Greedy core-set as a function of k.

k GENES MNIST-10 MNIST-50
3 3.73747 4.38475 3.86649
4 3.84755 4.27594 3.92829
5 4.37303 4.62134 4.31193
6 4.38702 4.57284 4.4227
7 4.51448 4.69427 4.48828
8 4.6806 4.89812 4.62614
9 4.70881 4.93325 4.7406

10 4.75682 5.4794 4.93229
11 5.06356 5.28644 5.56463
12 5.49037 5.64965 5.85102
13 5.30494 5.81666 5.77457
14 5.74853 6.03808 5.9246
15 6.10616 6.21079 6.07948
16 7.28558 7.42259 8.8368
17 7.91365 7.66249 8.84374
18 7.7918 7.40373 8.35701
19 7.75119 8.23935 8.46941
20 7.33111 7.9146 8.07712
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Figure 2. Average ratio of the run time of Local Search over Greedy
as a function of k.

Local Search vs. Greedy - identical algorithms. We also
consider the setting where the core-set construction algo-
rithm is the same as the aggregation algorithm. This mimics
the approach of (Mirzasoleiman et al., 2013), who proposed
to use the greedy algorithm on each machine to achieve a
small solution; then each machine sends this solution to a
single machine that further runs the greedy algorithm on the
union of these solutions and reports the result.

In this paper show that if instead of Greedy, we use Lo-
cal Search in both steps, the solution will improve signifi-
cantly. Using our notation, here we are comparing LS/LS

vs. GD/GD. Figure 3 shows the improvement as a function
of k, taken average over all 10 runs.

On average the improvement is 23%, 5.5% and 6.0% for
GENES, MNIST10 and MNIST50 respectively. Moreover,
in only 1 out of 180 runs the Greedy perfomed better than
Local Search. The improvement could go as high as 67.7%.

k GENES MNIST-10 MNIST-50
3 1.00038 1.00679 1.004816
4 1.00825 1.01155 1.0139
5 1.06605 1.02156 1.01871
6 1.08368 1.02305 1.02654
7 1.0968 1.02702 1.03494
8 1.15284 1.03589 1.03807
9 1.17544 1.03784 1.04446

10 1.14347 1.04779 1.04836
11 1.19226 1.06291 1.04698
12 1.26892 1.05858 1.05559
13 1.32342 1.05628 1.06886
14 1.40534 1.06039 1.07202
15 1.31914 1.08091 1.07585
16 1.31383 1.08835 1.09425
17 1.3437 1.07632 1.08998
18 1.33159 1.09253 1.12321
19 1.49332 1.09935 1.11266
20 1.43793 1.11094 1.10643
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Figure 3. Average improvement of Local Search over Greedy as a
function of k, in the identical algorithms setting.

Comparing Local Search vs. the LP-based algorithm.
Here we compare the performance of the Local Search algo-
rithm and LP as algorithms for constructing core-sets. Our
experiments show that the proposed local search algorithm
performs better: while picking fewer points in the core-set,
in most cases local search finds a better solution and runs
faster. See Appendix C for the details.

7. Conclusion
In this work, we proposed to use the Local Search algorithm
to construct composable core-sets for the determinant maxi-
mization problem. From theoretical perspective, we showed
that it achieves a near-optimal approximation guarantee. We
further analyzed its performance on large real data sets, and
showed that most of the times, Local Search performs better
than both the almost optimal approximation algorithm, and
the widely-used Greedy algorithm. Generally, for larger
values of k, the percentage of this improvement has an in-
creasing pattern, however, the amount of this improvement
depends on the data set. We also note that here, we used the
naive implementation of the Local Search algorithm: one
could tune the value of ε to further improve the quality of the
solution. Finally, we provided a doubly exponential guar-
antee for the Greedy algorithm, however, our experiments
suggest that this bound might be open to improvement.
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Çivril, A. and Magdon-Ismail, M. On selecting a maxi-
mum volume sub-matrix of a matrix and related problems.
Theoretical Computer Science, 410(47-49):4801–4811,
2009.

Civril, A. and Magdon-Ismail, M. Exponential inapprox-
imability of selecting a maximum volume sub-matrix.
Algorithmica, 65(1):159–176, 2013.

Ebrahimi, J. B., Straszak, D., and Vishnoi, N. K. Subde-
terminant maximization via nonconvex relaxations and
anti-concentration. In Foundations of Computer Sci-
ence (FOCS), 2017 IEEE 58th Annual Symposium on,
pp. 1020–1031. Ieee, 2017.

Gollapudi, S. and Sharma, A. An axiomatic approach for
result diversification. In Proceedings of the 18th interna-
tional conference on World wide web, pp. 381–390. ACM,
2009.

Gong, B., Chao, W.-L., Grauman, K., and Sha, F. Diverse
sequential subset selection for supervised video summa-
rization. In Advances in Neural Information Processing
Systems, pp. 2069–2077, 2014.

Hassin, R., Rubinstein, S., and Tamir, A. Approximation
algorithms for maximum dispersion. Operations research
letters, 21(3):133–137, 1997.

Indyk, P., Mahabadi, S., Mahdian, M., and Mirrokni, V. S.
Composable core-sets for diversity and coverage maxi-
mization. In Proceedings of the 33rd ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database
systems, pp. 100–108. ACM, 2014.

Indyk, P., Mahabadi, S., Gharan, S. O., and Rezaei, A. Com-
posable core-sets for determinant maximization problems
via spectral spanners. arXiv preprint arXiv:1807.11648,
2018.

Kulesza, A. and Taskar, B. Learning determinantal point
processes. 2011.

Kulesza, A., Taskar, B., et al. Determinantal point pro-
cesses for machine learning. Foundations and Trends R©
in Machine Learning, 5(2–3):123–286, 2012.



Composable Core-sets for Determinant Maximization

Kumar, R., Moseley, B., Vassilvitskii, S., and Vattani, A.
Fast greedy algorithms in mapreduce and streaming. ACM
Transactions on Parallel Computing (TOPC), 2(3):14,
2015.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lee, D., Cha, G., Yang, M.-H., and Oh, S. Individualness
and determinantal point processes for pedestrian detec-
tion. In European Conference on Computer Vision, pp.
330–346. Springer, 2016.

Lee, J., Mirrokni, V. S., Nagarajan, V., and Sviridenko, M.
Non-monotone submodular maximization under matroid
and knapsack constraints. In Proceedings of the forty-
first annual ACM symposium on Theory of computing, pp.
323–332. ACM, 2009.

Lee, J., Sviridenko, M., and Vondrák, J. Submodular maxi-
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