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Abstract
In this work, we demonstrate universal multi-
party poisoning attacks that adapt and apply to
any multi-party learning process with arbitrary
interaction pattern between the parties. More gen-
erally, we introduce and study (k, p)-poisoning
attacks in which an adversary controls k ∈ [m] of
the parties, and for each corrupted party Pi, the
adversary submits some poisoned data T ′i on be-
half of Pi that is still “(1−p)-close” to the correct
data Ti (e.g., 1− p fraction of T ′i is still honestly
generated). We prove that for any “bad” property
B of the final trained hypothesis h (e.g., h failing
on a particular test example or having “large” risk)
that has an arbitrarily small constant probability
of happening without the attack, there always is a
(k, p)-poisoning attack that increases the probabil-
ity ofB from µ to by µ1−p·k/m = µ+Ω(p·k/m).
Our attack only uses clean labels, and it is online,
as it only knows the the data shared so far.

1. Introduction
Learning from a set T = {d1 = (a1, b1), . . . , dn =
(an, bn)} of training examples in a way that the predictions
generalize to instances beyond T is a fundamental problem
in learning theory. The goal here is to produce a hypothesis
h in such a way that h(a), with high probability, predicts the
“correct” label b, where the pair (a, b) = d is sampled from
the target (test) distribution d. In the most natural setting,
the examples in the training data set T are also generated
from the same distribution d, however this is not always the
case (e.g., due to noise in the data).

Poisoning attacks. Many previous works studying noise
in the data allow it to be adversarial and maliciously cho-
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sen against the learner (Valiant, 1985; Kearns & Li, 1993;
Bshouty et al., 2002). A tightly related and more recent
approach to the problem of learning under adversarial noise
is the framework of so-called poisoning (aka causative) at-
tacks (Barreno et al., 2006; Biggio et al., 2012; Papernot
et al., 2016), in which the adversary’s goal is not necessarily
to completely prevent the learning, but perhaps it simply
wants to increase the risk of the hypothesis produced by the
learning process or make it more likely to fail on a partic-
ular test instance (i.e., getting a targeted poisoning attack
(Barreno et al., 2006; Shen et al., 2016)).

Multi-party poisoning. In the distributed setting (McMa-
han & Ramage, 2017; McMahan et al., 2016; Bonawitz
et al., 2017; Konečnỳ et al., 2016), the training data T might
be coming from various sources; e.g., it can be generated by
m data providers P1, . . . , Pm in an online way, while at the
end a fixed algorithm, called the aggregator G, generates
the hypothesis h based on T . The goal of P1, . . . , Pm is to
eventually help G construct a hypothesis h that does well
(e.g. in the case of classification) in predicting the label b
of a given instance a, where (a, b) ← d is sampled from
the final test distribution. The data provided by each party
Pi might even be of “different type”, so we cannot simply
assume that the data provided by Pi is necessarily sampled
from the same distribution d. To model this more general
setting, we let di model the distribution from which the
training data Ti (of Pi) is sampled. Poisoning attacks can
naturally be defined in the distributed setting as well (Fung
et al., 2018; Bagdasaryan et al., 2018; Blanchard et al., 2017;
Hayes & Ohrimenko, 2018) to model adversaries who par-
tially control the training data T . These works, however,
focus on attacking and defending specific learning tasks.
This leads us to the central question of this work.

What is the inherent provable power of poisoning
attacks in the multi-party setting?

Answering the above question is critical for understanding
the limits of provable security against multi-party poisoning.

1.1. Our Contribution

We first formalize a new general model multi-party poison-
ing. We then prove the existence of universal data poisoning
attacks in the multi-party setting that apply to any task.
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New attack model: (k, p)-poisoning attacks. our first con-
tribution of this work is to formalize a general notion that
covers multi-party poisoning attackers that corrupt k out of
m data provider parties and furthermore, for each message
sent by a corrupted party, the adversary still generates data
that is “close” to the honestly generated data. More formally,
a (k, p)-poisoning attacker Adv can first choose to corrupt
k of the parties. Then, if a corrupted P̃i is supposed to send
the next message, then the adversary will sample d ← d̃

for a maliciously chosen distribution d̃ that is guaranteed
to be p to the original distribution di in total variation dis-
tance. Our (k, p)-poisoning attacks include the so called
“p-tampering” attacks of (Mahloujifar et al., 2018a) as spe-
cial case by letting k = m (m is the number of parties).
Moreover, (k, p)-attacks also include the standard model
of k static corruption in secure multi-party computation (in
cryptography) letting p = 1. Our main result in this works
is to prove the universal power of (k, p)-poisoning as follow.
We show that in any m-party learning protocol, there exist a
(k, p)-poisoning adversary that increases probability of the
produced hypothesis h having a bad propertyB (e.g., failing
on a particular target instance known to the adversary).

(For the formal version of Theorem 1.1, see Theorem 2.4.)

Theorem 1.1 (Power of (k, p)-poisoning attacks–informal).
Let Π = (P1, . . . , Pm) be an m-party learning protocol
for an m-party learning problem. Also let B be a bad
property defined over the output of the protocol. There is
a polynomial time (k, p)-poisoning attack Adv such that,
given oracle access to the data distribution of the parties,
Adv can increase the probability of B from µ to µ1−kp/m.

Example. By corrupting half of the parties (i.e., p = 1, k =
m/2) the adversary can increase the probability of any bad
event B from 1/100 to 1/10.

Universal nature of our attack. Our attacks are univer-
sal in the sense that they could be applied to any learning
algorithm for any learning task, and they are dimension-
independent as they applied to any data distribution. On the
other hand, our universal attacks rely on an initial vulner-
ability of arbitrary small constant probability that is then
amplified through the poisoning attack. As a result, although
recent poisoning attacks (e.g., see (Koh et al., 2018)) obtain
stronger bounds in their attack against specific defenses, our
attacks apply to any algorithm with any built in defenses.

Deriving attacks on federated learning as special case.
Since we allow the distribution of each party in the multi-
party case to be completely dependent on that party, our
attacks cover the case of model poisoning in federated learn-
ing (Bagdasaryan et al., 2018; Bhagoji et al., 2018), in which
each party sends something other than their plain share of
data, as special case. In fact, multiple works have already
demonstrated the power of poisoning attacks and defences

in the federated learning setting (e.g., see (Fung et al., 2018;
Bhagoji et al., 2018; Chen et al., 2018; 2017; Guerraoui
et al., 2018; Yin et al., 2018; Tomsett et al., 2019; Cirin-
cione & Verma, 2019; Han & Zhang, 2019)). Some of these
attacks obtain stronger quantitative bounds in their attacks,
however this is anticipated as these works investigate at-
tacks on specific learners, while a crucial property of our
attack is that our attacks come with provable bounds and
are universal in that they apply to any learning task and any
hypothesis class (including neural nets as special case), if
there is an initial Ω(1) vulnerability (for some bad property)
over the generated hypothesis.

Note that, our attacks actually do not need the exact history
of examples that are used by parties, and only need to know
the updates sent by the parties during the course of protocol.
Suppose an uncorrected party randomizes its local model
(e.g., for differential privacy purposes) and shares an update
ui with the server. Knowledge of ui is enough for our
attacker. One might go even further and ask what if the
updates are sent in a secure/private way? Interestingly, our
attack work in that model too as it only needs to know the
effect of the updates on the central model at the end of
round i−1 (because all attack wants is to perform a random
continuation on the intermediate model).

It also worth mentioning that our attack requires sampling
oracles from distributions of all the parties. This might seem
that we are giving the adversary too much power. However,
we think the right way to define security of federated learn-
ing is by giving the adversary everything that hat might be
leaked to them. This way of defining security is inspired
by cryptography. For instance, when modeling the chosen
plaintext security of encryption schemes, adversary is given
access to an encryption oracle, while one might question
how realistic it is. Analogously, In federated learning, the
adversary can potentially gather some statistics about the
distribution of other parties and learn them over time. How-
ever, as mentioned above, we do not need to give adversary
access to the actual data of honest parties. Only the public
effect of them on the shared model is needed.

Further Related Work. Recent breakthroughs of Di-
akonikolas et al. (Diakonikolas et al., 2016) and Lai et
al. (Lai et al., 2016) demonstrated the surprising power of
algorithmic robust learning over poisoned training data with
limited risk that does not depend on the dimension of the dis-
tribution (but still depends on the fraction of poisoned data).
These works led to an active line of work (e.g., see (Charikar
et al., 2017; Diakonikolas et al., 2017; 2018b;a; Prasad et al.,
2018; Diakonikolas et al., 2018c; Steinhardt et al., 2017) and
references therein) exploring the possibility of robust statis-
tics over poisoned data with algorithmic guarantees. The
works of (Charikar et al., 2017; Diakonikolas et al., 2018b),
followed by (Balcan et al., 2008), performed list-decodable
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learning, and (Balakrishnan et al., 2017; Diakonikolas et al.,
2018a; Prasad et al., 2018) studied supervised learning.

On the negative side, Mahloujifar, Mahmoody and Diochnos
(Mahloujifar & Mahmoody, 2017; Mahloujifar et al., 2018b)
studied (universal) poisoning attacks that apply to any learn-
ing task and any hypothesis class and showed that such
attacks can indeed increase the error of any classifiers for
any learning problem by a constant probability, so long
as there is an initial constant error probability. The attack
model used in (Mahloujifar & Mahmoody, 2017; Mahlouji-
far et al., 2018b), called p-tampering, was a generalization
of a similar model introduced in Austrin et al. (Austrin
et al., 2014) in the bitwise setting in a cryptographic context.
These attacks (like the ones in our work) were universal
in the sense that they could be applied to any learning al-
gorithm for any learning task, and dimension-independent
as they applied to any data distribution. On the other hand,
these universal attacks rely on an initial vulnerability of
arbitrary small constant probability that is then amplified
through the poisoning attack. That is why such universal
attacks (inclugin our attacks in the multi-party setting) are
not in contradiction with positive results mentioned above.

1.2. Technical Overview

Previous universal poisoning attacks of (Mahloujifar & Mah-
moody, 2017; Mahloujifar et al., 2018b) for the single party
case are designed in a setting in which each training exam-
ple is chosen by the adversary with independent probability
p. We first describe where exactly the ideas of these works
come short of extending to the multiparty case, and then we
explain how to borrow ideas from attacks on coin-tossing
protocols in cryptography (Ben-Or & Linial, 1989; Haitner
& Omri, 2014) and obtain the desired attacks of this work.

p-tampering attacks and their shortcoming. For starters,
let us assume that the adversary gets to corrupt and control
k randomly selected parties. In this case, it is easy to see
that, at the end every single message in the protocol Π
between the parties P1, . . . , Pm is controlled with exactly
probability p = k/m by the adversary Adv (even though
these probabilities are correlated). Thus, at a high level it
seems that we should be able to use the p-tampering attacks
of (Mahloujifar & Mahmoody, 2017; Mahloujifar et al.,
2018b) to degrade the quality of the produced hypothesis.
However, the catch is that the proof of p-tampering attacks
of (Mahloujifar & Mahmoody, 2017; Mahloujifar et al.,
2018b) (and the bitwise version of (Austrin et al., 2017))
crucially rely on the assumption that each message (which in
our context corresponds to a training example) is tamperable
with independent probability p, while corrupting k random
parties, leads to tamperable messages in a correlated way.

We prove our main results by first proving a general result
about the power of “biasing” adversaries whose goal is to

increase the expected value of a random process by control-
ling each incoming “segment” (aka block) of the random
process with probability q (think of q as ≈ p · k/m). These
segments/blocks correspond to single or multiple training ex-
amples shared during the learning. As these biasing attacks
generalize p-tampering attacks, we simply call them gen-
eralized p-tampering attacks. We now describe this attack
model and clarify how it can be used to obtain Theorem 1.1.

Generalized p-tampering: new model for biasing at-
tacks. In this work we introduce generalized p-tampering
(biasing) attacks that are defined for any random process
x ≡ (x1, . . . ,xn) and a function f(x) ∈ [0, 1] defined over
this process. In order to explain the attack model, first con-
sider the setting where there is no attacker. Now, given a
prefix x1, . . . , xi−1 of the blocks, the next block xi is sim-
ply sampled from its conditional probability distribution
(xi | x1, . . . , xi−1). (Looking ahead, think of xi as the i’th
training example provided by one of the parties in the inter-
active learning protocol.) Now, imagine an adversary who
enters the game and whose goal is to increase the expected
value of a function f(x1, . . . ,xn) defined over the random
process x by tampering with the block-by-block sampling
process of x described above. Before the attack starts, there
will be a a list S ⊆ [n] of “tamperable” blocks that is not
necessarily known to the Adv in advance, but will become
clear to him as the game goes on. Indeed, this set S itself
will be first sampled according to some fixed distribution S,
and the crucial condition we require is that Pr[i ∈ S] = p
holds for all i ∈ [n]. After S ← S is sampled, the sequence
of blocks (x1, . . . , xn) will be sampled block-by-block as
follows. Assuming (inductively) that x1, . . . , xi−1 are al-
ready sampled so far, if i ∈ S, then Adv gets to fully
control xi and determine its value, but if i 6∈ S, then xi is
simply sampled from its original conditional distribution
(xi | x1, . . . , xi−1). At the end, the function f is computed
over the (adversarially) sampled sequence.

We now explain the intuitive connection between general-
ized p-tampering attacks and (k, p)-poisoning attacks. The
main idea is that we will use a generalized q-tampering
attack for q = p · k/m over the random process that lists
the sequence of training data provided by the parties during
the protocol. Let S be the distribution over [n] that picks
its members through the following algorithm. First choose
a set of random parties {Q1, . . . , Qk} ⊆ {P1, . . . , Pm},
and then for each message xj that belongs to Qi, include
the corresponding index j in the final sampled S ← S
with independent probability p. It is easy to see that S
eventually picks every message with (marginal) probability
q = p · k/m, but it is also the case that these inclusions
are not independent events. Finally, to use the power of
generalized p-tampering attacks over the described S and
the random process of messages coming from the parties
to get the results of Theorem 1.1, roughly speaking, we
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let a function f model the loss function applied over the
produced hypothesis. Therefore, to prove Theorem 1.1 it is
sufficient to prove Theorem 1.2 below which focuses on the
power of generalized p-tampering biasing attacks.

Theorem 1.2 (Power of generalized p-tampering-informal).
Suppose x ≡ (x1, . . . ,xn) is a joint distribution such that,
given any prefix, the remaining blocks could be efficiently
sampled in polynomial time. Also let f : Supp(x) 7→ [0, 1].
Then, for any set distribution S for which Pr[i ∈ S] = p for
all i, there is a polynomial-time generalized p-tampering
attack (over tampered blocks in S) that increases the aver-
age of f over its input from µ to µ′ ≈ µ−p · E[f(x)1+p]. In
particular, if f is boolean function µ′ ≈ µ1−p.

(The formal statement of Theorem 1.2 above follows from
Theorem 3.5 and Lemma 3.6.)

Bitwise vs. blockwise attacks. It is easy to see that in the
definition of generalized p-tampering attacks, it does not
matter whether we define the attack bit-by-bit or block-by-
block. The reason is that, even if we break down each block
into smaller bits, then still each bit shall eventually fall into
the set of tamperable bits, and the model allows correla-
tion between the inclusion and exclusion of each block/bit
into the final tamperable set. This is in contrast to the p-
tampering model for which this equivalence is not true. In
fact, optimal bounds achievable by bitwise p-tampering as
proved in (Austrin et al., 2017) are impossible to achieve
in the blockwise p-tampering setting (Mahloujifar & Mah-
moody, 2017). Despite this simplification, we still prefer
to use a blockwise presentation of the random process, as
this way of modeling the problem allows better tracking
measures for the attacker’s sample complexity.

Ideas Behind the Tampering Attack of Theorem 1.2. To
prove Theorem 1.2 we use ideas from (Haitner & Omri,
2014; Ben-Or & Linial, 1989) in the context of coin-tossing
attacks and generalize them using new techniques to obtain
our generalized p-tampering attacks.

Rejection sampling attack. The simplified version of our
attack can be described as follows. Based on the nature of
this attack, we call it the “rejection sampling” (RS) attack.
For any prefix of already sampled blocks (x1, . . . , xi−1),
suppose the adversary is given the chance of controlling the
next i’th block. The RS tampering then works as follows:

1. Let x′i, . . . , x
′
n be a random continuation of the random

process, conditioned on (x1, . . . , xi−1).

2. If s = f(x1, . . . , xi−1, x
′
i, . . . , x

′
n), then if s = 1 out-

put yi, and otherwise (i.e., if s = 0) go to Step 1 and
repeat the sampling process.

The above attack is inspired by the two-party attack of (Hait-
ner & Omri, 2014). Our main contribution is to do the

following steps. (1) First, analyze this attack in the general-
ized tampering setting and show its power, which implies
the multiparty case as special case. This already gives an
alternative, and in our eyes simpler, proof of the classic
result of (Ben-Or & Linial, 1989) (2) We then extend this
attack and its analysis to the real-output setting. (3) Finally,
we show how to approximate this attack in polynomial time.

2. Multi-Party Poisoning Attacks: Definitions
and Main Results

Notation. We use bold font (e.g., x,S,α) to represent ran-
dom variables, and usually use same non-bold letters for
denoting samples from these distributions. We use d← d
to denote the process of sampling d from the random vari-
able d. By E[α] we mean the expected value of α over
the randomness of α, and by V[α] we denote the variance
of random variable α. We might use a “processed” ver-
sion of α, and use E[f(α)] and V[f(α)] to denote the ex-
pected value and variance, respectively, of f(α) over the
randomness of α. A learning problem (A,B,d,H) is spec-
ified by the following components. The set A is the set
of possible instances, B is the set of possible labels, d is
distribution over A × B.1 The set H ⊆ BA is called the
hypothesis space or hypothesis class. An example s is a pair
s = (a, b) where x ∈ A and y ∈ B. We consider loss func-
tions Loss : B × B 7→ R+ where Loss(b′, b) measures how
different the ‘prediction’ y′ (of some possible hypothesis
h(a) = y′) is from the true outcome y. We call a loss func-
tion bounded if it always takes values in [0, 1]. A natural
loss function for classification tasks is to use Loss(b′, b) = 0
if y = y′ and Loss(b′, b) = 1 otherwise. The risk of a
hypothesis h ∈ C is the expected loss of h with respect to
d, namely Risk(h) = E(a,b)←d[Loss(h(a), b)]. The aver-
age error which quantifies the total error of the protocol is
defined as Err(d) = Prh←Π,(a,b)←d[Loss(h(a), b)].

Definition 2.1 (Multi-party learning protocols). Anm-party
learning protocol Π for the m-party learning problem
(D,H) consists of an aggregator function G and m (in-
teractive) data providers P = {P1, . . . , Pm}. For each
data provider Pi, there is a distribution di ∈ D that models
the (honest) distribution of labeled samples generated by
Pi, and there is a final (test) distribution d that P, G want
to learn jointly. The protocol runs in r rounds and at each
round, based on the protocol Π, one particular data owner
Pi broadcasts a single labeled example (a, b)← di.2 In the
last round, the aggregator functionGmaps the the messages
to an output hypothesis h ∈ H.

1By using joint distributions over A× B, we jointly model a
set of distributions over A and a concept class mapping A to B
(perhaps with noise and uncertainty).

2We can directly model settings where more data is exchanged
in one round, however, we stick to the simpler definition w.l.o.g.
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Now, we define poisoning attackers that target multi-party
protocols. We formalize a more general notion that includes
p-tampering attacks and k-party corruption as special case.

Definition 2.2 (Multi-party (k, p)-poisoning attacks). A
(k, p)-poisoning attack against an m-party learning pro-
tocol Π is defined by an adversary Adv who can control a
subset C ⊆ [m] of the parties where |C| = k. The attacker
Adv shall pick the set C at the beginning. At each round j of
the protocol, if a data provider Pi ∈ C is supposed to broad-
cast the next example from its distribution di, the adversary
can partially control this sample using the tampered distri-
bution d̃ such that |d̃− di| ≤ p in total variation distance.
Note that the distribution d̃ can depend on the history of
examples broadcast so far, but the requirement is that, con-
ditioned on this history, the malicious message of adversary
modeled by distribution d̃, is at most p-statistically far from
di. We use ΠAdv to denote the protocol in presence of Adv.
We also define the following notions. Adv is a plausible
adversary, if it always holds that Supp(d̃) ⊆ Supp(di).
Adv is efficient if it runs in polynomial time in the total
length of the messages exchanged during the protocol (from
the beginning till end).

Remark 2.3 (Static vs. adaptive corruption). Definition 2.2
focuses on corrupting k parties statically. A natural exten-
sion of this definition in which the set C is chosen adaptively
(Canetti et al., 1996) while the protocol is being executed
can also be defined naturally. In this work, however, we
focus on static corruption, and leave the possibility of im-
proving our results in the adaptive case for future work.

We now formally state our result about the power of (k, p)-
poisoning attacks.

Theorem 2.4 (Power of efficient multi-party poisoning). In
any m-party protocol Π for parties P = {P1, . . . , Pm}, for
any p ∈ [0, 1] and k ∈ [m], the following hold where M is
the total length of the messages exchanged.

1. For any bad property B : H → {0, 1}, there is a
plausible (k, p)-poisoning attack Adv that runs in time
poly(M/ε) and increases the probability of B from µ
(in the no-attack setting) to

µ′ ≥ µ1−p − ε.

2. If the (normalized) loss function is bounded (i.e., it
outputs in [0, 1]), then there is a plausible, (k, p)-
poisoning Adv that runs in time poly(M/ε) and in-
creases the average error of the protocol as

ErrAdv(d) ≥ Err(d)−p · E
h←Π

[Risk(h,d)1+p]

≥ Err(d) +
p · k
2m
· ν − ε

where ν = Vh←Π[Risk(h,d)] and V[·] is the variance.

Allowing different distributions in different rounds. In
Definition 2.2, we restrict the adversary to remain “close” to
di for each message sent out by one of the corrupted parties.
A natural question is: what happens if we allow the parties
distributions to be different in different rounds. For example,
in a round j, a party Pi might send multiple training exam-
ples D(j) =

(
d

(j)
1 , d

(j)
2 , . . . , d

(j)
k

)
, and we want to limit

the total statistical distance between the distribution of the
larger message D(j) from dki (i.e., k iid samples from di).3

We emphasize that, our results extend to this more general
setting as well. In particular, the proof of Theorem 2.4 di-
rectly extends to a more general setting where we can allow
the honest distribution di of each party i to also depend on
the round j in which these messages are sent. Thus, we can
use a round-specific distribution d

(j)
i to model the joint dis-

tribution of multiple samples D(j) =
(
d

(j)
1 , d

(j)
2 , . . . , d

(j)
k

)
that are sent out in the j’th round by the party Pi. This
way, we can obtain the stronger form of attacks that remain
statistically close to the joint (correct) distribution of the
(multi-sample) messages sent in a round. In fact, as we will
discuss shortly D(j) might be of completely different type.

Allowing randomized aggregation. The aggregator G is a
simple function that maps the transcript of the exchanged
messages to a hypothesis h. A natural question is: what
happens if we generalize this to the setting where G is
allowed to be randomized. We note that in Theorem 2.4,
Part 2 can allow G to be randomized, but Parts 1 and 3
need deterministic aggregation. The reason is that for those
parts, we need the transcript to determine the confidence
and average error functions. One general way to make up
for randomized aggregation is to allow the parties to inject
randomness into the transcript as they run the protocol by
sending messages that are not necessarily learning samples
from their distribution di. As described above, our attacks
extend to this more general setting as well. Otherwise, we
will need the adversary to be able to also depend on the
randomness of G, but that is also a reasonable assumption
if the aggregation is used using public beacon that could be
obtained by the adversary as well.

Before proving Theorem 2.4, we need to develop our main
result about the power of generalized p-tampering attacks.
In Section 3, we develop such tools, and then in Section 3.2
we prove Theorem 2.4.

3. Multi-Party Poisoning via Generalized
p-Tampering

To prove our Theorem 2.4 we interpret the multi-party learn-
ing protocol as a coin tossing protocol in which the final

3Note that, even if each block in
(
d
(j)
1 , d

(j)
2 , . . . , d

(j)
k

)
remains

p-close to di, their joint distribution could be quite far from dk
i .
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bit is 1 if h has the (bad) property B. We define a corre-
sponding attack model in coin tossing protocols that can be
directly used to obtain the desired goal; this model is called
generalized p-tampering. Below, we formally state our main
result about the power of generalized p-tampering attacks.
We start by formalizing some notation and definitions.

Notation. By x ≡ y we denote that the random variables
x and y have the same distributions. Unless stated other-
wise, by using a bar over a variable, we emphasize that it
is a vector. By x ≡ (x1,x2, . . . ,xn) we refer to a joint
distribution over vectors with n components. For a joint
distribution x ≡ (x1, . . . ,xn), we use x≤i to denote the
joint distribution of the first i variables x ≡ (x1, . . . ,xi).
Also, for a vector x = (x1 . . . xn) we use x≤i to denote
the prefix (x1, . . . , xi). For a randomized algorithm L(·),
by y ← L(x) we denote the randomized execution of L on
input x outputting y. For a distribution (x,y), by (x | y)
we denote the conditional distribution (x | y = y). By
Supp(d) = {d | Pr[d = d] > 0} we denote the support
set of d. By Td(·) we denote an algorithm T (·) with ora-
cle access to a sampler for d that upon every query returns
fresh samples from d. By dn we denote the distribution that
returns n iid samples from d.
Definition 3.1 (Valid prefixes). Let x ≡ (x1, . . . ,xn) be
an arbitrary joint distribution. We call x≤i = (x1, . . . , xi)
a valid prefix for x if there exist xi+1, . . . , xn such that
(x1, . . . , xn) ∈ Supp(x). ValPref(x) denotes the set of all
valid prefixes of x.
Definition 3.2 (Tampering with random processes). Let
x ≡ (x1, . . . ,xn) be an arbitrary joint distribution. We
call a (potentially randomized and possibly computationally
unbounded) algorithm T an (online) tampering algorithm
for x if given any prefix x≤i−1 ∈ ValPref(x), we have

Pr
xi←T(x≤i−1)

[x≤i ∈ ValPref(x)] = 1 .

Namely, T(x≤i−1) outputs xi such that x≤i is again a valid
prefix. We call T an efficient tampering algorithm for x if
it runs in time poly(N) where N is maximum bit length to
represent any x ∈ Supp(x).
Definition 3.3 (Online samplers). We call OnSam an on-
line sampler for x ≡ (x1, . . . ,xn) if for all x≤i−1 ∈
ValPref(x), OnSam(n, x≤i−1) ≡ xi. Moreover, we call
x ≡ (x1, . . . ,xn) online samplable if it has an online sam-
pler that runs in time poly(N) where N is maximum bit
length of any x ∈ Supp(x).

Notation for tampering distributions. Let x ≡
(x1, . . . ,xn) be an arbitrary joint distribution and T a tam-
pering algorithm for x. For any subset S ⊆ [n], we
define y ≡ 〈x ‖T, S〉 to be the joint distribution that
is the result of online tampering of T over set S, where
y ≡ (y1, . . . ,yn) is sampled inductively as follows. For ev-
ery i ∈ [n], suppose y≤i−1 is the previously sampled block.

If i ∈ S, then the ith block yi is generated by the tamper-
ing algorithm T(y≤i−1), and otherwise, yi is sampled from
(xi | xi−1 = y≤i−1). For any distribution S over subsets of
[n], by 〈x ‖T,S〉 we denote the random variable that can
be sampled by first sampling S ← S and then sampling
y ← 〈x ‖T, S〉.
Definition 3.4 (p-covering). Let S be a distribution over
the subsets of [n]. We call S a p-covering distribution on
[n] (or simply p-covering, when n is clear from the context),
if for all i ∈ [n],PrS←S[i ∈ S] = p.

The following theorem states the power of generalized p-
tampering attacks.

Theorem 3.5 (Biasing of bounded functions through gen-
eralizing p-tampering). Let S be a p-covering distribu-
tion on [n], x ≡ (x1, . . . ,xn) be a joint distribution,
f : Supp(x) 7→ [0, 1], and µ = E[f(x)]. Then, for any
ε ∈ [0, 1], there exists a tampering algorithm Tε that, given
oracle access to f and any online sampler OnSam for x, it
runs in time poly(N/ε), where N is the bit length of any
x← x, and for yε ≡ 〈x ‖Tf,OnSam

ε ,S〉, it holds that

E [f(yε)] ≥ µ−p · E
[
f(x)1+p

]
− ε .

Special case of Boolean functions. When the function f is
Boolean, we get µ−p ·E[f(x)1+p] = µ1−p ≥ µ(1+Ωµ(p)),
which matches the bound proved in (Ben-Or & Linial, 1989)
for the special case of p = k/n for integer k ∈ [n] and for
S that is uniformly random subset of [n] of size k. (The
same bound for the case of 2 parties was proved in (Haitner
& Omri, 2014) with extra properties). Even for this case,
compared to (Ben-Or & Linial, 1989; Haitner & Omri, 2014)
our result is more general, as we can allow S with arbitrary
p ∈ [0, 1] and achieve a polynomial time attack given oracle
access to an online sampler for x. The work of (Haitner
& Omri, 2014) also deals with polynomial time attackers
for the special case of 2 parties, but their efficient attackers
use a different oracle (i.e., OWF inverter), and it is not clear
whether or not their attack extend to the case of more then
2 parties. Finally, both (Ben-Or & Linial, 1989; Haitner &
Omri, 2014) prove their bound for the geometric mean of
the averages for different S ← S, while we do so for their
arithmetic mean, but we emphasize that this is enough for
all of our applications.

The bounds of Theorem 3.5 for both cases rely on the quan-
tity µ′ = µ−p ·E[f(x)1+p]. A natural question is: how large
is µ′ compared to µ? As discussed above, for the case of
Boolean f , we already know that µ′ ≥ µ, but that argument
does not apply to the real-output f . A simple application of
Jensen’s inequality shows that µ ≤ µ′ in general, but that
still does not mean that µ′ � µ.

General case of real-output functions: relating the bias
to the variance. If V[f(x)] = 0, then no tampering attack
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can achieve any bias, so any gap achieved between µ′ and
µ shall somehow depend on the variance of f(x). In the
following, we show that this gap does exist and that µ′−µ ≥
Ω(p · V[f(x)]). similar results (relating the bias the the
variance of the original distribution) were previously proved
(Mahloujifar et al., 2018b; Mahloujifar & Mahmoody, 2017;
Austrin et al., 2014) for the special case of p-tampering
attacks (i.e., S chooses every i ∈ [n] independently with
probability p). Here we obtain a more general statement
that holds for any p-covering set structure S.

Using Lemma 3.6 below for α ≡ f(x), we immediately get
Ω(p · V[f(x)]) lower bounds for the bias achieved by (both
versions of) the attackers of Theorem 3.5 for the general
case of real-valued functions and arbitrary p-covering set
distribution S. See full version of paper for the proof.

Lemma 3.6. Let α be any real-valued random variable
over Supp(α) ⊆ [0, 1], and p ∈ [0, 1]. Let µ = E[α] be the
expected value of α, ν = V[α] be the variance of α. Then,
it holds that

µ−p · E[α1+p]− µ ≥ p · (p+ 1)

2 · µp
· ν ≥ p

2
· ν .

3.1. Proving Theorem 3.5 For Computationally
Unbounded Adversaries.

The construction below describes a computationally un-
bounded biasing algorithm that achieves the bounds of The-
orem 3.5. Please see the full version of paper for the proof
of computationally bounded setting where we carefully ap-
proximate the construction bellow by a computationally
bounded polynomial-time biasing adversary.

Construction 3.7 (Rejection-sampling tampering). Let
x ≡ (x1, . . . ,xn) and f : Supp(x) 7→ [0, 1]. The rejection
sampling tampering algorithm RejSamf works as follows.
Given the valid prefix y≤i−1 ∈ ValPref(x), the tampering
algorithm would do the following:

1. Sample y≥i ← (x≥i | y≤i−1) by using the online
sampler for f .

2. If s = f(y1, . . . , yn), then with probability s output yi,
otherwise go to Step 1 and repeat the process.

We will first prove a property of the rejection sampling
algorithm when applied on every block.

Definition 3.8 (Notation for partial expectations of func-
tions). Suppose f : Supp(x) 7→ R is defined over a joint
distribution x ≡ (x1, . . . ,xn), i ∈ [n], and x≤i ∈
ValPref(x). Then, using a small hat, we define the notation
f̂(x≤i) = Ex←(x|x≤i)[f(x)]. (In particular, for x = x[n],
we have f̂(x) = f(x).)

Claim 3.9. If 〈x ‖RejSamf , [n]〉 ≡ y[n] ≡ (y1, . . . ,yn).
Then, for every valid prefix y≤i ∈ ValPref[x],

Pr[y≤i = y≤i]

Pr[x≤i = y≤i]
=
f̂(y≤i)

µ
.

Proof. Based on the description of RejSamf , for any y≤i ∈
ValPref(x) the following equation holds for the probability
of sampling yi conditioned on prefix y≤i−1.

Pr[yi = yi | y≤i−1] = Pr[xi = yi | y≤i−1] · f̂(y≤i)

+ (1− f̂(y≤i−1)) · Pr[yi = yi | y≤i−1].

The first term in this equation corresponds to the probability
of selecting and accepting in the first round of sampling and
the second term corresponds to the probability of selecting
and accepting in any round except the first round. Therefore
we have

Pr[yi = yi | y≤i−1] =
f̂(y≤i)

f̂(y≤i−1)
· Pr[xi = yi | y≤i−1] ,

which implies that

Pr[y≤i = y≤i] =
∏
j∈[i]

(
f̂(y≤j)

f̂(y≤j−1)

)
· Pr[x≤i = y≤i]

=
f̂(y≤i)

µ
· Pr[x≤i = y≤i] .

Now, we prove two properties for any tampering algorithm
(not just rejection sampling) over a p-covering distribution.

Lemma 3.10. Let S be p-covering for [n] and y ∈ Supp(x).
For any S ∈ Supp(S) and an arbitrary tampering algo-
rithm T for x, let yS ≡ 〈x ‖T, S〉. Then,

∏
S∈2[n]

(
Pr[yS = y]

Pr[x = y]

)Pr[S=S]

=

(
Pr[y[n] = y]

Pr[x = y]

)p
.

Proof. For every y≤i ∈ ValPref(y[n]) ⊆ ValPref(x) de-
fine ρ[y≤i] as

ρ[y≤i] =
Pr[y

[n]
i = xi | y[n]

≤i−1 = y≤i−1]

Pr[xi = xi | x≤i−1 = y≤i−1]
.

Then, for all y ∈ ValPref(yS) ⊆ ValPref(x) we have

Pr[yS = y] = Pr[x = y] ·
∏
i∈S

ρ[y≤i] .
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Therefore we have

∏
S∈2[n]

(
Pr[yS = y]

Pr[x = y]

)Pr[S=S]

=

∏
i∈[n]

ρ[y≤i]

p

.

Claim 3.11. Suppose S is p-covering on [n], yS ≡
〈x ‖T, S〉 for any S ← S, and y ≡ 〈x ‖T,S〉 for an
arbitrary tampering algorithm T for x. Then, it holds that

E[f(y)] ≥
∑

y∈Supp(x)

Pr[x = y]·f(y)·

(
Pr[y[n] = y]

Pr[x = y]

)p
.

Proof. Let hS,y = Pr[yS=y]
Pr[x=y] . Also let Z ⊆ Supp(x). Note

that Supp(yS) ⊆ Z for any S ⊆ [n]. Therefore, we have
E[f(y)] = ES←S Ey←yS [f(y)] is equal to∑

S∈2[n]

Pr[S = S] ·
∑
y∈Z

Pr[yS = y] · f(y)

=
∑
S∈2[n]

Pr[S = S] ·
∑
y∈Z

hS,y · Pr[x = y] · f(y)

=
∑
y∈Z

Pr[x = y] · f(y) ·
∑
S∈2[n]

Pr[S = S] · hS,y

(by AM-GM inequality)

≥
∑
y∈Z

Pr[x = y] · f(y) ·
∏

S∈2[n]

h
Pr[S=S]
S,y

(by p-covering of S and Lemma 3.10)

=
∑
y∈Z

Pr[x = y] · f(y) ·

(
Pr[y[n] = y]

Pr[x = y]

)p
.

We now prove the main result using the one-rejection
sampling tampering algorithm and also relying on the
p-covering property of S. In particular, if y ≡
〈x ‖RejSamf ,S〉, then by Claims 3.11 and 3.9 we have

E[f(y)] ≥
∑

y∈Supp(x)

(
Pr[y[n] = y]

Pr[x = y]

)p
· Pr[x = y] · f(y)

(by Claim 3.9)

=
∑

y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)

= µ−p ·
∑

y∈Supp(x)

Pr[x = y] · f(y)1+p

= µ−p · E[f(x)1+p] .

3.2. Obtaining (k, p)-Poisoning Attacks: Proof of
Theorem 2.4 using Theorem 3.5

In this section, we formally prove Theorem 2.4 using Theo-
rems 3.5. We first prove the first part of theorem about the
boolean property.

Proof of Theorem 2.4 part 1. For a subset C ⊆ [m] let
PC = {Pi; i ∈ C} and RC be the subset of rounds where
one of the parties in PC sends an example. Also for a subset
S ⊆ [n], we define Bion(S, p) to be a distribution over all
the subsets of S, where each subset S′ ⊆ S hast the probabil-
ity p|S

′| ·(1−p)|S|−|S′|. Now, consider the covering S of the
set [n] which is distributed equivalent to the following pro-
cess. First sample a uniform subset C of [m] of size k. Then
sample and output a set S sampled from Bion(RC , p). S is
clearly a (p · km )-covering. We use this covering to prove the
theorem. For j ∈ [n] let w(j) be the index of the provider
at round j and let dw(j) be the designated distribution of the
jth round and let x = dw(1) × · · · × dw(n).

We define a function f : Supp(x) → {0, 1}, which is a
Boolean function and is 1 if the output of the protocol has
the property B, and otherwise it is 0. Now we use Theorem
3.5. We know that S is a (p · km )-covering for [n]. Therefore
of Theorem 3.5, there exist an poly(m/ε) time tampering al-
gorithm Tε that changes x to y ≡ 〈x ‖Tf,OnSam

ε ,S〉 where
E[f(y)] ≥ E[f(y)]1−pk/m − ε.

By an averaging argument, we can conclude that there
exist a set C ∈ [m] of size k for which the distri-
bution Bion(RC , p) produces average output at least
E[f(y)]1−pk/m − ε. Note that the measure of empty set
in Bion(RC , p) is exactly equal to 1 − p which means
with probability 1 − p the adversary will not tamper
with any of the blocks, therefore, the statistical distance
|x− 〈x ‖Tf,OnSam

ε ,Bion(RC , p)〉| is at most p. This con-
cludes the proof.

Now we prove the second part using Theorem 3.5 and
Lemma 3.6.

Proof of Theorem 2.4 part 2. Now we prove the second
part. The second part is very similar to first part except
that the function that we define here is a real valued func-
tion. Consider the function f2 : Supp(x) → [0, 1] which
is defined to be the risk of the output hypotheses. Now by
Theorem 3.5 and Lemma 3.6, we know that there is tamper-
ing algorithm Tε that changes x to y ≡ 〈x ‖Tf2,OnSam

ε ,S〉
such that

E[f2(y)] ≥ µ2 +
p · k
2m
· ν − ε.

By a similar averaging argument we can conclude the proof.
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