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Abstract

Random Matrix Theory (RMT) is applied to an-
alyze the weight matrices of Deep Neural Net-
works (DNNs), including both production quality,
pre-trained models such as AlexNet and Incep-
tion, and smaller models trained from scratch,
such as LeNet5 and a miniature-AlexNet. Empir-
ical and theoretical results clearly indicate that
the empirical spectral density (ESD) of DNN
layer matrices displays signatures of traditionally-
regularized statistical models, even in the ab-
sence of exogenously specifying traditional forms
of regularization, such as Dropout or Weight
Norm constraints. Building on recent results in
RMT, most notably its extension to Universality
classes of Heavy-Tailed matrices, we develop a
theory to identify 5+1 Phases of Training, corre-
sponding to increasing amounts of Implicit Self-
Regularization. For smaller and/or older DNNs,
this Implicit Self-Regularization is like traditional
Tikhonov regularization, in that there is a “size
scale” separating signal from noise. For state-
of-the-art DNNs, however, we identify a novel
form of Heavy-Tailed Self-Regularization, simi-
lar to the self-organization seen in the statistical
physics of disordered systems. This implicit Self-
Regularization can depend strongly on the many
knobs of the training process. We demonstrate
that we can cause a small model to exhibit all 5+1
phases simply by changing the batch size.

1. Introduction
The inability of optimization and learning theory to explain
and predict the properties of NNs is not a new phenomenon.
From the earliest days of DNNs, it was suspected that VC
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theory did not apply to these systems (Vapnik et al., 1994). It
was originally assumed that local minima in the energy/loss
surface were responsible for the inability of VC theory to
describe NNs (Vapnik et al., 1994), and that the mechanism
for this was that getting trapped in local minima during
training limited the number of possible functions realizable
by the network. However, it was very soon realized that the
presence of local minima in the energy function was not a
problem in practice (LeCun et al., 1998; Duda et al., 2001).
Thus, another reason for the inapplicability of VC theory
was needed. At the time, there did exist other theories of
generalization based on statistical mechanics (Seung et al.,
1992; Watkin et al., 1993; Haussler et al., 1996; Engel & den
Broeck, 2001), but for various technical and nontechnical
reasons these fell out of favor in the ML/NN communities.
Instead, VC theory and related techniques continued to
remain popular, in spite of their obvious problems.

More recently, theoretical results of Choromanska et
al. (Choromanska et al., 2014) (which are related to (Se-
ung et al., 1992; Watkin et al., 1993; Haussler et al.,
1996; Engel & den Broeck, 2001)) suggested that the En-
ergy/optimization Landscape of modern DNNs resembles
the Energy Landscape of a zero-temperature Gaussian Spin
Glass; and empirical results of Zhang et al. (Zhang et al.,
2016) have again pointed out that VC theory does not de-
scribe the properties of DNNs. Martin and Mahoney then
suggested that the Spin Glass analogy may be useful to un-
derstand severe overtraining versus the inability to overtrain
in modern DNNs (Martin & Mahoney, 2017).

Motivated by this, we are interested here in two questions.
• Theoretical Question. Why is regularization in deep
learning seemingly quite different than regularization in
other areas on ML; and what is the right theoretical frame-
work with which to investigate regularization for DNNs?
• Practical Question. How can one control and adjust, in
a theoretically-principled way, the many knobs and switches
that exist in modern DNN systems, e.g., to train these mod-
els efficiently and effectively, to monitor their effects on the
global Energy Landscape, etc.?
That is, we seek a Practical Theory of Deep Learning,
one that is prescriptive and not just descriptive. This (phe-
nomenological) theory would provide useful tools for prac-
titioners wanting to know How to characterize and control
the Energy Landscape to engineer larger and betters DNNs;
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and it would also provide theoretical answers to broad open
questions as Why Deep Learning even works.

Main Empirical Results. Our main empirical results con-
sist in evaluating empirically the ESDs (and related RMT-
based statistics) for weight matrices for a suite of DNN mod-
els, thereby probing the Energy Landscapes of these DNNs.
For older and/or smaller models, these results are consistent
with implicit Self-Regularization that is Tikhonov-like; and
for modern state-of-the-art models, these results suggest
novel forms of Heavy-Tailed Self-Regularization.

• Self-Regularization in old/small models. The ESDs of
older/smaller DNN models (like LeNet5 and a toy MLP3
model) exhibit weak Self-Regularization, well-modeled by
a perturbative variant of Marchenko-Pastur (MP) theory, the
Spiked-Covariance model. Here, a small number of eigen-
values pull out from the random bulk, and thus the MP Soft
Rank (defined in Section 4) and Stable Rank both decrease.
This weak form of Self-Regularization is like Tikhonov
regularization, in that there is a “size scale” that cleanly sep-
arates “signal” from “noise,” but it is different than explicit
Tikhonov regularization in that it arises implicitly due to the
DNN training process itself.
• Heavy-Tailed Self-Regularization. The ESDs of larger,
modern DNN models (including AlexNet and Inception and
nearly every other large-scale model we have examined) de-
viate strongly from the common Gaussian-based MP model.
Instead, they appear to lie in one of the very different Uni-
versality classes of Heavy-Tailed random matrix models.
We call this Heavy-Tailed Self-Regularization. The ESD
appears Heavy-Tailed, but with finite support. In this case,
there is not a “size scale” (even in the theory) that cleanly
separates “signal” from “noise.”
Main Theoretical Results. Our main theoretical results
consist in an phenomenological theory for DNN Self-
Regularization. Our theory uses ideas from RMT—both
vanilla MP-based RMT as well as extensions to other Uni-
versality classes based on Heavy-Tailed distributions—to
provide a visual taxonomy for 5 + 1 Phases of Training,
corresponding to increasing amounts of Self-Regularization.

• Modeling Noise and Signal. We assume that a weight
matrix W can be modeled as W 'Wrand + ∆sig, where
Wrand is “noise” and where ∆sig is “signal.” For small
to medium sized signal, W is well-approximated by an
MP distribution—with elements drawn from the Gaussian
Universality class—perhaps after removing a few eigenvec-
tors. For large and strongly-correlated signal, Wrand gets
progressively smaller, but we can model the non-random
strongly-correlated signal ∆sig by a Heavy-Tailed random
matrix, i.e., a random matrix with elements drawn from a
Heavy-Tailed (rather than Gaussian) Universality class.
• 5+1 Phases of Regularization. Based on this, we
construct a practical, visual taxonomy for 5+1 Phases
of Training. Each phase is characterized by stronger,

visually distinct signatures in the ESD of DNN weight
matrices, and successive phases correspond to decreas-
ing MP Soft Rank and increasing amounts of Self-
Regularization. The 5+1 phases are: RANDOM-LIKE,
BLEEDING-OUT, BULK+SPIKES, BULK-DECAY, HEAVY-
TAILED, and RANK-COLLAPSE.
Based on these results, we speculate that all well optimized,
large DNNs will display Heavy-Tailed Self-Regularization.

Evaluating the Theory. We also provide a detailed evalua-
tion of our theory using a smaller MiniAlexNew model.

• Effect of Explicit Regularization. We analyze ESDs
of MiniAlexNet by removing all explicit regularization
(Dropout, Weight Norm constraints, Batch Normalization,
etc.) and characterizing how the ESD of weight matrices
behave during and at the end of Backprop training, as we
systematically add back in different forms of explicit regu-
larization.
• Exhibiting the 5+1 Phases. We demonstrate that we can
exhibit all 5+1 phases by appropriate modification of the
various knobs of the training process. In particular, by de-
creasing the batch size from 500 to 2, we can make the ESDs
of the fully-connected layers of MiniAlexNet vary contin-
uously from RANDOM-LIKE to HEAVY-TAILED, while in-
creasing generalization accuracy along the way. These re-
sults illustrate the Generalization Gap pheneomena (Hoffer
et al., 2017; Keskar et al., 2016; Goyal et al., 2017), and
they explain that pheneomena as being caused by the im-
plicit Self-Regularization associated with models trained
with smaller and smaller batch sizes.
We should note that since the initial dissemination of these
results, our theory has been used to develop a Universal
capacity control metric to predict trends in test accuracies for
large-scale pre-trained DNNs (Martin & Mahoney, 2019).
A longer and more detailed version of this paper is available
in technical report form (Martin & Mahoney, 2018).

2. Basic Random Matrix Theory (RMT)
In this section, we summarize results from RMT that we use.

2.1. Marchenko-Pastur (MP) theory
MP theory considers the density of singular values ρ(νi)
of random rectangular matrices W. This is equivalent to
considering the density of eigenvalues ρ(λi), i.e., the ESD,
of matrices of the form X = 1

NWTW. MP theory then
makes strong statements about such quantities as the shape
of the distribution in the infinite limit, it’s bounds, expected
finite-size effects, such as fluctuations near the edge, and
rates of convergence.

To apply RMT, we need only specify the number of rows and
columns of W and assume that the elementsWi,j are drawn
from a distribution that is a member of a certain Universality
class (there are different results for different Universality
classes). RMT then describes properties of the ESD, even at
finite size; and one can compare predictions of RMT with
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empirical results. Most well-known is the Universality class
of Gaussian distributions. This leads to the basic or vanilla
MP theory. More esoteric—but ultimately more useful for
us—are Universality classes of Heavy-Tailed distributions.

Gaussian Universality class. We start by modeling W as
an N ×M random matrix, with elements from a Gaussian
distribution, such that: Wij ∼ N(0, σ2

mp). Then, MP theory
states that the ESD of the correlation matrix, X, has the
limiting density given by the MP distribution ρ(λ):

ρN (λ)
N→∞−−−−→
Q fixed

Q

2πσ2
mp

√
(λ+ − λ)(λ− λ−)

λ
, (1)

if λ ∈ [λ−, λ+], and 0 otherwise. Here, σ2
mp is the element-

wise variance of the original matrix, Q = N/M ≥ 1 is the
aspect ratio of the matrix, and the minimum and maximum
eigenvalues, λ±, are given by

λ± = σ2
mp

(
1± 1√

Q

)2

. (2)

Finite-size Fluctuations at the MP Edge. In the infinite
limit, all fluctuations in ρN (λ) concentrate very sharply
at the MP edge, λ±, and the distribution of the maximum
eigenvalues ρ∞(λmax) is governed by the Tracy Widom
(TW) Law. Even for a single finite-sized matrix, however,
MP theory states the upper edge of ρ(λ) is very sharp; and
even when the MP Law is violated, the TW Law, with finite-
size corrections, works very well at describing the edge
statistics. When these laws are violated, this is very strong
evidence for the onset of more regular non-random structure
in the DNN weight matrices, which we will interpret as
evidence of Self-Regularization.

2.2. Heavy-Tailed extensions of MP theory
MP-based RMT is applicable to a wide range of matri-
ces; but it is not in general applicable when matrix ele-
ments are strongly-correlated. Strong correlations appear
to be the case for many well-trained, production-quality
DNNs. In statistical physics, it is common to model strongly-
correlated systems by Heavy-Tailed distributions (Sornette,
2006). The reason is that these models exhibit, more or
less, the same large-scale statistical behavior as natural phe-
nomena in which strong correlations exist (Sornette, 2006;
Bouchaud & Potters, 2011). Moreover, recent results from
MP/RMT have shown that new Universality classes exist for
matrices with elements drawn from certain Heavy-Tailed
distributions (Bouchaud & Potters, 2011).

We use these Heavy-Tailed extensions of basic MP/RMT to
build an operational and phenomenological theory of Regu-
larization in Deep Learning; and we use these extensions to
justify our analysis of both Self-Regularization and Heavy-
Tailed Self-Regularization. Briefly, our theory for simple
Self-Regularization is insipred by the Spiked-Covariance
model of Johnstone (Johnstone, 2001) and its interpretation
as a form of Self-Organization by Sornette (Malevergne

& Sornette, 2002); and our theory for more sophisticated
Heavy-Tailed Self-Regularization is inspired by the applica-
tion of MP/RMT tools in quantitative finance by Bouchuad,
Potters, and coworkers (Galluccio et al., 1998; Laloux et al.,
1999; 2005; Biroli et al., 2007b;a; Bouchaud & Potters,
2011; Bun et al., 2017), as well as the relation of Heavy-
Tailed phenomena more generally to Self-Organized Criti-
cality in Nature (Sornette, 2006).

Universality classes for modeling strongly correlated
matrices. Consider modeling W as an N ×M random
matrix, with elements drawn from a Heavy-Tailed—e.g., a
Pareto or Power Law (PL)—distribution:

Wij ∼ P (x) ∼ 1

x1+µ
, µ > 0. (3)

In these cases, if W is element-wise Heavy-Tailed, then
the ESD ρN (λ) exhibits Heavy-Tailed properties, either
globally for the entire ESD and/or locally at the bulk edge.

Table 1 summarizes these recent results, comparing basic
MP theory, the Spiked-Covariance model, and Heavy-Tailed
extensions of MP theory, including associated Universality
classes. To apply the MP theory, at finite sizes, to matrices
with elements drawn from a Heavy-Tailed distribution of
the form given in Eqn. (3), we have one of the following
three Universality classes.
• (Weakly) Heavy-Tailed, 4 < µ: Here, the ESD ρN (λ)
exhibits “vanilla” MP behavior in the infinite limit, and the
expected mean value of the bulk edge is λ+ ∼ M−2/3.
Unlike standard MP theory, which exhibits TW statistics
at the bulk edge, here the edge exhibits PL / Heavy-Tailed
fluctuations at finite N . These finite-size effects appear
in the edge / tail of the ESD, and they make it hard or
impossible to distinguish the edge versus the tail at finite N .
• (Moderately) Heavy-Tailed, 2 < µ < 4: Here, the ESD
ρN (λ) is Heavy-Tailed / PL in the infinite limit, approaching
ρ(λ) ∼ λ−1−µ/2. In this regime, there is no bulk edge. At
finite size, the global ESD can be modeled by ρN (λ) ∼
λ−(aµ+b), for all λ > λmin, but the slope a and intercept
b must be fit, as they display large finite-size effects. The
maximum eigenvalues follow Frechet (not TW) statistics,
with λmax ∼ M4/µ−1(1/Q)1−2/µ, and they have large
finite-size effects. Thus, at any finite N , ρN (λ) is Heavy-
Tailed, but the tail decays moderately quickly.
• (Very) Heavy-Tailed, 0 < µ < 2: Here, the ESD ρN (λ)
is Heavy-Tailed / PL for all finite N , and as N → ∞
it converges more quickly to a PL distribution with tails
ρ(λ) ∼ λ−1−µ/2. In this regime, there is no bulk edge, and
the maximum eigenvalues follow Frechet (not TW) statistics.
Finite-size effects exist, but they are are much smaller here
than in the 2 < µ < 4 regime of µ.
Fitting PL distributions to ESD plots. Once we have iden-
tified PL distributions visually, we can fit the ESD to a PL
in order to obtain the exponent α. We use the Clauset-
Shalizi-Newman (CSN) approach (Clauset et al., 2009),
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Generative Model
w/ elements from
Universality class

Finite-N
Global shape
ρN (λ)

Limiting
Global shape
ρ(λ), N →∞

Bulk edge
Local stats
λ ≈ λ+

(far) Tail
Local stats
λ ≈ λmax

Basic MP Gaussian MP, i.e.,
Eqn. (1) MP TW No tail.

Spiked-
Covariance

Gaussian,
+ low-rank

perturbations

MP +
Gaussian

spikes
MP TW Gaussian

Heavy tail,
4 < µ

(Weakly)
Heavy-Tailed

MP +
PL tail MP Heavy-Tailed∗ Heavy-Tailed∗

Heavy tail,
2 < µ < 4

(Moderately)
Heavy-Tailed

(or “fat tailed”)

PL∗∗

∼ λ−(aµ+b)

PL
∼ λ−( 1

2
µ+1) No edge. Frechet

Heavy tail,
0 < µ < 2

(Very)
Heavy-Tailed

PL∗∗

∼ λ−( 1
2
µ+1)

PL
∼ λ−( 1

2
µ+1) No edge. Frechet

Table 1. Basic MP theory, and the spiked and Heavy-Tailed extensions we use, including known, empirically-observed, and conjectured
relations between them. Boxes marked “∗” are best described as following “TW with large finite size corrections” that are likely
Heavy-Tailed (Biroli et al., 2007b), leading to bulk edge statistics and far tail statistics that are indistinguishable. Boxes marked “∗∗” are
phenomenological fits, describing large (2 < µ < 4) or small (0 < µ < 2) finite-size corrections on N →∞ behavior. See (Davis et al.,
2014; Biroli et al., 2007b;a; Péché; Auffinger et al., 2009; Edelman et al., 2016; Auffinger & Tang, 2016; Burda & Jurkiewicz, 2009;
Bouchaud & Potters, 2011; Bouchaud & Mézard, 1997) for additional details.

as implemented in the python PowerLaw package (Alstott
et al., 2014)

Identifying the Universality class. Given α, we identify
the corresponding µ and thus which of the three Heavy-
Tailed Universality classes (0 < µ < 2 or 2 < µ < 4 or
4 < µ, as described in Table 1) is appropriate to describe
the system. The following are particularly important points.
First, observing a Heavy-Tailed ESD may indicate the pres-
ence of a scale-free DNN. This suggests that the underlying
DNN is strongly-correlated, and that we need more than
just a few separated spikes, plus some random-like bulk
structure, to model the DNN and to understand DNN regu-
larization. Second, this does not necessarily imply that the
matrix elements of Wl form a Heavy-Tailed distribution.
Rather, the Heavy-Tailed distribution arises since we posit
it as a model of the strongly correlated, highly non-random
matrix Wl. Third, we conjecture that this is more general,
and that very well-trained DNNs will exhibit Heavy-Tailed
behavior in their ESD for many the weight matrices.

3. Empirical Results: ESDs for Existing,
Pretrained DNNs

Early on, we observed that small DNNs and large DNNs
have very different ESDs. For smaller models, ESDs tend to
fit the MP theory well, with well-understood deviations, e.g.,
low-rank perturbations. For larger models, the ESDs ρN (λ)
almost never fit the theoretical ρmp(λ), and they frequently
have a completely different form. We use RMT to compare
and contrast the ESDs of a smaller, older NN and many
larger, modern DNNs. For the small model, we retrain a
modern variant of one of the very early and well-known
Convolutional Nets—LeNet5. For the larger, modern mod-

els, we examine selected layers from AlexNet, InceptionV3,
and many other models (as distributed with pyTorch).

Example: LeNet5 (1998). LeNet5 is the prototype early
model for DNNs (LeCun et al., 1998). Since LeNet5 is
older, we actually recoded and retrained it. We used Keras
2.0, using 20 epochs of the AdaDelta optimizer, on the
MNIST data set. This model has 100.00% training accuracy,
and 99.25% test accuracy on the default MNIST split. We
analyze the ESD of the FC1 Layer. The FC1 matrix WFC1

is a 2450 × 500 matrix, with Q = 4.9, and thus it yields
500 eigenvalues.

Figures 1(a) and 1(b) present the ESD for FC1 of LeNet5,
with Figure 1(a) showing the full ESD and Figure 1(b)
zoomed-in along the X-axis. We show (red curve) our fit
to the MP distribution ρemp(λ). Several things are striking.
First, the bulk of the density ρemp(λ) has a large, MP-like
shape for eigenvalues λ < λ+ ≈ 3.5, and the MP distribu-
tion fits this part of the ESD very well, including the fact
that the ESD just below the best fit λ+ is concave. Second,
some eigenvalue mass is bleeding out from the MP bulk for
λ ∈ [3.5, 5], although it is quite small. Third, beyond the
MP bulk and this bleeding out region, are several clear out-
liers, or spikes, ranging from ≈ 5 to λmax . 25. Overall,
the shape of ρemp(λ), the quality of the global bulk fit, and
the statistics and crisp shape of the local bulk edge all agree
well with MP theory plus a low-rank perturbation.

Example: AlexNet (2012). AlexNet was the first modern
DNN (Krizhevsky et al., 2012). AlexNet resembles a scaled-
up version of the LeNet5 architecture; it consists of 5 layers,
2 convolutional, followed by 3 FC layers (the last being a
softmax classifier). We refer to the last 2 layers before the
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(a) LeNet5,
full

(b) LeNet5,
zoomed-in

(c) AlexNet,
full

(d) AlexNet,
zoomed-in

Figure 1. Full and zoomed-in ESD for LeNet5 (Layer FC1) and
AlexNet (Layer FC2). Overlaid (in red) are fits of the MP distri-
bution (which fit the bulk very well for LeNet5 but not well for
AlexNet).

final softmax as layers FC1 and FC2, respectively. FC2 has
a 4096× 1000 matrix, with Q = 4.096.

Consider AlexNet FC2 (full in Figures 1(c), and zoomed-in
in 1(d)). This ESD differs even more profoundly from stan-
dard MP theory. Here, we could find no good MP fit. The
best MP fit (in red) does not fit the Bulk part of ρemp(λ)
well. The fit suggests there should be significantly more
bulk eigenvalue mass (i.e., larger empirical variance) than
actually observed. In addition, the bulk edge is indetermi-
nate by inspection. It is only defined by the crude fit we
present, and any edge statistics obviously do not exhibit TW
behavior. In contrast with MP curves, which are convex
near the bulk edge, the entire ESD is concave (nearly) ev-
erywhere. Here, a PL fit gives good fit α ≈ 2.25, indicating
a µ . 3. The shape of ρemp(λ), the quality of the global
bulk fit, and the statistics and shape of the local bulk edge
are poorly-described by standard MP theory.

Empirical results for other pre-trained DNNs. We have
also examined the properties of a wide range of other pre-
trained models, and we have observed similar Heavy-Tailed
properties to AlexNet in all of the larger, state-of-the-art
DNNs, including VGG16, VGG19, ResNet50, InceptionV3,
etc. Several observations can be made. First, all of our
fits, except for certain layers in InceptionV3, appear to be
in the range 1.5 < α . 3.5 (where the CSN method is
known to perform well). Second, we also check to see
whether PL is the best fit by comparing the distribution to
a Truncated Power Law (TPL), as well as an exponential,
stretch-exponential, and log normal distributions. In all
cases, we find either a PL or TPL fits best (with a p-value
≤ 0.05), with TPL being more common for smaller values
of α. Third, even when taking into account the large finite-
size effects in the range 2 < α < 4, nearly all of the ESDs
appear to fall into the 2 < µ < 4 Universality class.

Towards a Theory of Self-Regularization. For older
and/or smaller models, like LeNet5, the bulk of their ESDs
(ρN (λ); λ� λ+) can be well-fit to theoretical MP density
ρmp(λ), potentially with distinct, outlying spikes (λ > λ+).
This is consistent with the Spiked-Covariance model of John-
stone (Johnstone, 2001), a simple perturbative extension of

the standard MP theory. This is also reminiscent of tradi-
tional Tikhonov regularization, in that there is a “size scale”
(λ+) separating signal (spikes) from noise (bulk). This
demonstrates that the DNN training process itself engineers
a form of implicit Self-Regularization into the trained model.

For large, deep, state-of-the-art DNNs, our observations
suggest that there are profound deviations from tradi-
tional RMT. These networks are reminiscent of strongly-
correlated disordered-systems that exhibit Heavy-Tailed be-
havior. What is this regularization, and how is it related to
our observations of implicit Tikhonov-like regularization on
LeNet5?

To answer this, recall that similar behavior arises in
strongly-correlated physical systems, where it is known
that strongly-correlated systems can be modeled by random
matrices—with entries drawn from non-Gaussian Universal-
ity classes (Sornette, 2006), e.g., PL or other Heavy-Tailed
distributions. Thus, when we observe that ρN (λ) has Heavy-
Tailed properties, we can hypothesize that W is strongly-
correlated,1 and we can model it with a Heavy-Tailed distri-
bution. Then, upon closer inspection, we find that the ESDs
of large, modern DNNs behave as expected—when using
the lens of Heavy-Tailed variants of RMT. Importantly, un-
like the Spiked-Covariance case, which has a scale cut-off
(λ+), in these very strongly Heavy-Tailed cases, correla-
tions appear on every size scale, and we can not find a clean
separation between the MP bulk and the spikes. These ob-
servations demonstrate that modern, state-of-the-art DNNs
exhibit a new form of Heavy-Tailed Self-Regularization.

4. 5+1 Phases of Regularized Training
In this section, we develop an operational/phenomenological
theory for DNN Self-Regularization.

MP Soft Rank. We first define the MP Soft Rank (Rmp),
that is designed to capture the “size scale” of the noise
part of Wl, relative to the largest eigenvalue of WT

l Wl.
Assume that MP theory fits at least a bulk of ρN (λ). Then,
we can identify a bulk edge λ+ and a bulk variance σ2

bulk,
and define the MP Soft Rank as the ratio of λ+ and λmax:
Rmp(W) := λ+/λmax. Clearly, Rmp ∈ [0, 1]; Rmp = 1
for a purely random matrix; and for a matrix with an ESD
with outlying spikes, λmax > λ+, andRmp < 1. If there is
no good MP fit because the entire ESD is well-approximated
by a Heavy-Tailed distribution, then we can define λ+ = 0,
in which caseRmp = 0.

Visual Taxonomy. We characterize implicit Self-
Regularization, both for DNNs during SGD training as
well as for pre-trained DNNs, as a visual taxonomy of
5+1 Phases of Training (RANDOM-LIKE, BLEEDING-

1For DNNs, these correlations arise in the weight matrices
during Backprop training. That is, the weight matrices “learn” the
correlations in the data.
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Operational
Definition

Informal
Description
via Eqn. (4)

Edge/tail
Fluctuation
Comments

Illustration
and

Description

RANDOM-LIKE
ESD well-fit by MP
with appropriate λ+

Wrand random;
‖∆sig‖ zero or small

λmax ≈ λ+ is
sharp, with

TW statistics
Fig. 2(a)

BLEEDING-OUT
ESD RANDOM-LIKE,
excluding eigenmass

just above λ+

W has eigenmass at
bulk edge as

spikes “pull out”;
‖∆sig‖ medium

BPP transition,
λmax and
λ+ separate

Fig. 2(b)

BULK+SPIKES
ESD RANDOM-LIKE

plus ≥ 1 spikes
well above λ+

Wrand well-separated
from low-rank ∆sig;
‖∆sig‖ larger

λ+ is TW,
λmax is
Gaussian

Fig. 2(c)

BULK-DECAY
ESD less RANDOM-LIKE;
Heavy-Tailed eigenmass
above λ+; some spikes

Complex ∆sig with
correlations that

don’t fully enter spike

Edge above λ+

is not concave Fig. 2(d)

HEAVY-TAILED
ESD better-described

by Heavy-Tailed RMT
than Gaussian RMT

Wrand is small;
∆sig is large and

strongly-correlated

No good λ+;
λmax � λ+ Fig. 2(e)

RANK-COLLAPSE
ESD has large-mass

spike at λ = 0
W very rank-deficient;

over-regularization — Fig. 2(f)

Table 2. The 5+1 phases of learning we identified in DNN training. We observed BULK+SPIKES and HEAVY-TAILED in existing trained
models (LeNet5 and AlexNet/InceptionV3, respectively; see Section 3); and we exhibited all 5+1 phases in a simple model (MiniAlexNet;
see Section 6).

OUT, BULK+SPIKES, BULK-DECAY, HEAVY-TAILED, and
RANK-COLLAPSE). See Table 2 for a summary. The 5+1
phases can be ordered, with each successive phase corre-
sponding to a smaller Stable Rank / MP Soft Rank and
to progressively more Self-Regularization than previous
phases. Figure 2 depicts typical ESDs for each phase, with
the MP fits (in red). Earlier phases of training correspond to
the final state of older and/or smaller models like LeNet5
and MLP3. Later phases correspond to the final state of
more modern models like AlexNet, Inception, etc. While
we can describe this in terms of SGD training, this taxonomy
allows us to compare different architectures and/or amounts
of regularization in a trained—or even pre-trained—DNN.

Each phase is visually distinct, and each has a natural inter-
pretation in terms of RMT. One consideration is the global
properties of the ESD: how well all or part of the ESD is fit
by an MP distriution, for some value of λ+, or how well all
or part of the ESD is fit by a Heavy-Tailed or PL distribution,
for some value of a PL parameter. A second consideration
is local properties of the ESD: the form of fluctuations, in
particular around the edge λ+ or around the largest eigen-
value λmax. For example, the shape of the ESD near to and
immediately above λ+ is very different in Figure 2(a) and
Figure 2(c) (where there is a crisp edge) versus Figure 2(b)
(where the ESD is concave) versus Figure 2(d) (where the
ESD is convex).

Theory of Each Phase. RMT provides more than simple
visual insights, and we can use RMT to differentiate be-
tween the 5+1 Phases of Training using simple models that

qualitatively describe the shape of each ESD. We model
the weight matrices W as “noise plus signal,” where the
“noise” is modeled by a random matrix Wrand, with entries
drawn from the Gaussian Universality class (well-described
by traditional MP theory) and the “signal” is a (small or
large) correction ∆sig:

W 'Wrand + ∆sig. (4)

Table 2 summarizes the theoretical model for each phase.
Each model uses RMT to describe the global shape of
ρN (λ), the local shape of the fluctuations at the bulk edge,
and the statistics and information in the outlying spikes,
including possible Heavy-Tailed behaviors.

In the first phase (RANDOM-LIKE), the ESD is well-
described by traditional MP theory, in which a random
matrix has entries drawn from the Gaussian Universality
class. In the next phases (BLEEDING-OUT, BULK+SPIKES),
and/or for small networks such as LetNet5, ∆sig is a
relatively-small perturbative correction to Wrand, and
vanilla MP theory (as reviewed in Section 2.1) can be ap-
plied, as least to the bulk of the ESD. In these phases, we
will model the Wrand matrix by a vanilla Wmp matrix
(for appropriate parameters), and the MP Soft Rank is rela-
tively large (Rmp(W)� 0). In the BULK+SPIKES phase,
the model resembles a Spiked-Covariance model, and the
Self-Regularization resembles Tikhonov regularization.

In later phases (BULK-DECAY, HEAVY-TAILED), and/or
for modern DNNs such as AlexNet and InceptionV3, ∆sig

becomes more complex and increasingly dominates over
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(a) RANDOM-LIKE. (b) BLEEDING-OUT. (c) BULK+SPIKES. (d) BULK-DECAY. (e) HEAVY-TAILED. (f) RANKCOLLAPSE.

Figure 2. Taxonomy of trained models. Starting off with an initial random or RANDOM-LIKE model (2(a)), training can lead to a
BULK+SPIKES model (2(c)), with data-dependent spikes on top of a random-like bulk. Depending on the network size and architecture,
properties of training data, etc., additional training can lead to a HEAVY-TAILED model (2(e)), a high-quality model with long-range
correlations. An intermediate BLEEDING-OUT model (2(b)), where spikes start to pull out from the bulk, and an intermediate BULK-
DECAY model (2(d)), where correlations start to degrade the separation between the bulk and spikes, leading to a decay of the bulk, are
also possible. In extreme cases, a severely over-regularized model (2(f)) is possible.

Wrand. For these more strongly-correlated phases, Wrand

is relatively much weaker, and the MP Soft Rank decreases.
Vanilla MP theory is not appropriate, and instead the Self-
Regularization becomes Heavy-Tailed. We will treat the
noise term Wrand as small, and we will model the prop-
erties of ∆sig with Heavy-Tailed extensions of vanilla MP
theory (as reviewed in Section 2.2) to Heavy-Tailed non-
Gaussian universality classes that are more appropriate to
model strongly-correlated systems. In these phases, the
strongly-correlated model is still regularized, but in a very
non-traditional way. The final phase, the RANK-COLLAPSE
phase, is a degenerate case that is a prediction of the theory.

5. Empirical Results: Detailed Analysis on
Smaller Models

To validate and illustrate our theory, we analyzed
MiniAlexNet,2 a simpler version of AlexNet, similar to the
smaller models used in (Zhang et al., 2016), scaled down to
prevent overtraining, and trained on CIFAR10. The basic
architecture consists of two 2D Convolutional layers, each
with Max Pooling and Batch Normalization, giving 6 initial
layers; it then has two Fully Connected (FC), or Dense, lay-
ers with ReLU activations; and it then has a final FC layer
added, with 10 nodes and softmax activation. WFC1 is a
4096 × 384 matrix (Q ≈ 10.67); WFC2 is a 384 × 192
matrix (Q = 2); and WFC3 is a 192 × 10 matrix. All
models are trained using Keras 2.x, with TensorFlow as a
backend. We use SGD with momentum, with a learning
rate of 0.01, a momentum parameter of 0.9, and a baseline
batch size of 32; and we train up to 100 epochs. We save the
weight matrices at the end of every epoch, and we analyze
the empirical properties of the WFC1 and WFC2 matrices.

For each layer, the matrix Entropy (S(W)) gradually low-
ers; and the Stable Rank (Rs(W)) shrinks. These decreases
parallel the increase in training/test accuracies, and both

2https://github.com/deepmind/sonnet/blob/
master/sonnet/python/modules/nets/alexnet.
py

(a) Epoch 0 (b) Epoch 4 (c) Epoch 8 (d) Epoch 12

Figure 3. Baseline ESD for Layer FC1 of MiniAlexNet, during
training.

metrics level off as the training/test accuracies do. These
changes are seen in the ESD, e.g., see Figure 3. For layer
FC1, the initial weight matrix W0 looks very much like
an MP distribution (with Q ≈ 10.67), consistent with a
RANDOM-LIKE phase. Within a very few epochs, how-
ever, eigenvalue mass shifts to larger values, and the ESD
looks like the BULK+SPIKES phase. Once the Spike(s)
appear(s), substantial changes are hard to see visually, but
minor changes do continue in the ESD. Most notably, λmax

increases from roughly 3.0 to roughly 4.0 during train-
ing, indicating further Self-Regularization, even within the
BULK+SPIKES phase. Here, spike eigenvectors tend to be
more localized than bulk eigenvectors. If explicit regular-
ization (e.g., L2 norm weight regularization or Dropout)
is added, then we observe a greater decrease in the com-
plexity metrics (Entropies and Stable Ranks), consistent
with expectations, and this is casued by the eigenvalues in
the spike being pulled to much larger values in the ESD.
We also observe that eigenvector localization tends to be
more prominent, presumably since explicit regularization
can make spikes more well-separated from the bulk.

6. Explaining the Generalization Gap by
Exhibiting the Phases

In this section, we demonstrate that we can exhibit all five
of the main phases of learning by changing a single knob of
the learning process. We consider the batch size since it is
not traditionally considered a regularization parameter and

https://github.com/deepmind/sonnet/blob/master/sonnet/python/modules/nets/alexnet.py
https://github.com/deepmind/sonnet/blob/master/sonnet/python/modules/nets/alexnet.py
https://github.com/deepmind/sonnet/blob/master/sonnet/python/modules/nets/alexnet.py
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due to its its implications for the generalization gap.

The Generalization Gap refers to the peculiar phenomena
that DNNs generalize significantly less well when trained
with larger mini-batches (on the order of 103 − 104) (Le-
Cun et al., 1988; Hoffer et al., 2017; Keskar et al., 2016;
Goyal et al., 2017). Practically, this is of interest since
smaller batch sizes makes training large DNNs on modern
GPUs much less efficient. Theoretically, this is of interest
since it contradicts simplistic stochastic optimization theory
for convex problems. Thus, there is interest in the ques-
tion: what is the mechanism responsible for the drop in
generalization in models trained with SGD methods in the
large-batch regime?

To address this question, we consider here using different
batch sizes in the DNN training algorithm. We trained
the MiniAlexNet model, just as in Section 5, except with
batch sizes ranging from moderately large to very small
(b ∈ {500, 250, 100, 50, 32, 16, 8, 4, 2}).

(a) Layer FC1. (b) Layer FC2. (c) Training, Test Ac-
curacies.

Figure 4. Varying Batch Size. Stable Rank and MP Softrank for
FC1 (4(a)) and FC2 (4(b)); and Training and Test Accuracies (4(c))
versus Batch Size for MiniAlexNet.

Stable Rank, MP Soft Rank, and Training/Test Perfor-
mance. Figure 4 shows the Stable Rank and MP Softrank
for FC1 (4(a)) and FC2 (4(b)) as well as the Training and
Test Accuracies (4(c)) as a function of Batch Size. The
MP Soft Rank (Rmp) and the Stable Rank (Rs) both track
each other, and both systematically decrease with decreas-
ing batch size, as the test accuracy increases. In addition,
both the training and test accuracy decrease for larger val-
ues of b: training accuracy is roughly flat until batch size
b ≈ 100, and then it begins to decrease; and test accuracy ac-
tually increases for extremely small b, and then it gradually
decreases as b increases.

ESDs: Comparisons with RMT. Figure 5 shows the final
ensemble ESD for each value of b for Layer FC1. We see
systematic changes in the ESD as batch size b decreases.
At batch size b = 250 (and larger), the ESD resembles a
pure MP distribution with no outliers/spikes; it is RANDOM-
LIKE. As b decreases, there starts to appear an outlier region.
For b = 100, the outlier region resembles BLEEDING-OUT.
For b = 32, these eigenvectors become well-separated from

(a) Batch Size 500. (b) Batch Size 100. (c) Batch Size 32.

(d) Batch Size 8. (e) Batch Size 4. (f) Batch Size 2.

Figure 5. Varying Batch Size. ESD for Layer FC1 of MiniAlexNet,
with MP fit (in red), for an ensemble of 10 runs, for Batch Size
ranging from 500 down to 2. Smaller batch size leads to more
implicitly self-regularized models. We exhibit all 5 of the main
phases of training by varying only the batch size.

the bulk, and the ESD resembles BULK+SPIKES. As batch
size continues to decrease, the spikes grow larger and spread
out more (observe the scale of the X-axis), and the ESD
exhibits BULK-DECAY. Finally, at b = 2, extra mass from
the main part of the ESD plot almost touches the spike, and
the curvature of the ESD changes, consistent with HEAVY-
TAILED. In addition, as b decreases, some of the extreme
eigenvectors associated with eigenvalues that are not in the
bulk tend to be more localized.

Implications for the generalization gap. Our results
here (both that training/test accuracies decrease for larger
batch sizes and that smaller batch sizes lead to more well-
regularized models) demonstrate that the generalization gap
phenomenon arises since, for smaller values of the batch
size b, the DNN training process itself implicitly leads to
stronger Self-Regularization. (This Self-Regularization can
be either the more traditional Tikhonov-like regularization
or the Heavy-Tailed Self-Regularization corresponding to
strongly-correlated models.) That is, training with smaller
batch sizes implicitly leads to more well-regularized models,
and it is this regularization that leads to improved results.
The obvious mechanism is that, by training with smaller
batches, the DNN training process is able to “squeeze out”
more and more finer-scale correlations from the data, lead-
ing to more strongly-correlated models. Large batches, in-
volving averages over many more data points, simply fail to
see this very fine-scale structure, and thus they are less able
to construct strongly-correlated models characteristic of the
HEAVY-TAILED phase.
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589–610, 2009.

Biroli, G., Bouchaud, J.-P., and Potters, M. Extreme value
problems in random matrix theory and other disordered
systems. J. Stat. Mech., 2007:07019, 2007a.

Biroli, G., Bouchaud, J.-P., and Potters, M. On the top eigen-
value of heavy-tailed random matrices. EPL (Europhysics
Letters), 78(1):10001, 2007b.
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