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Abstract
In this work we analyse quantitatively the inter-
play between the loss landscape and performance
of descent algorithms in a prototypical inference
problem, the spiked matrix-tensor model. We
study a loss function that is the negative log-
likelihood of the model. We analyse the number
of local minima at a fixed distance from the sig-
nal/spike with the Kac-Rice formula, and locate
trivialization of the landscape at large signal-to-
noise ratios. We evaluate in a closed form the
performance of a gradient flow algorithm using
integro-differential PDEs as developed in physics
of disordered systems for the Langevin dynam-
ics. We analyze the performance of an approxi-
mate message passing algorithm estimating the
maximum likelihood configuration via its state
evolution. We conclude by comparing the above
results: while we observe a drastic slow down
of the gradient flow dynamics even in the region
where the landscape is trivial, both the analyzed
algorithms are shown to perform well even in the
part of the region of parameters where spurious
local minima are present.

1. Introduction
A central question in computational sciences is the algo-
rithmic feasibility of optimization in high-dimensional non-
convex landscapes. This question is particularly important
in learning and inference problems where the value of the
optimized function is not the ultimate criterium for quality
of the result, instead the generalization error or the closeness
to a ground-truth signal is more relevant.
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Recent years brought a popular line of research into this
question where various works show for a variety of systems
that spurious local minima are not present in certain regimes
of parameters and conclude that consequently optimization
algorithms shall succeed, without the aim of being exhaus-
tive these include (Kawaguchi, 2016; Soudry & Carmon,
2016; Ge et al., 2016; Freeman & Bruna, 2016; Bhojanapalli
et al., 2016; Park et al., 2017; Du et al., 2017; Ge et al., 2017;
Du et al., 2017; Lu & Kawaguchi, 2017). The spuriosity of
a minima is in some works defined by their distance from
the global minimum, in other works as local minimizers that
lead to bad generalization or bad accuracy in reconstruction
of the ground truth signal. These two notions are not always
equivalent, and certainly the later is more relevant and will
be used in the present work.

Many of the existing works stop at the statement that ab-
sence of spurious local minimizers leads to algorithmic fea-
sibility and the presence of such spurious local minima leads
to algorithmic difficulty, at least as far as gradient-descent-
based algorithms are concerned. At the same time, even
gradient-descent-based algorithms may be able to perform
well even when spurious local minima are present. This
is because the basins of attraction of the spurious minimas
may be small and the dynamics might be able to avoid them.
In the other direction, even if spurious local minima are
absent, algorithms might take long time to find a minimizer
for entropic reasons that in high-dimensional problems may
play a crucial role.

Main Results: We study the spiked matrix-tensor model,
introduced and motivated in (Sarao Mannelli et al., 2018a).
We view this model as a prototypical solvable example of
a high-dimensional non-convex optimization problem, and
anticipate that the results observed here will have a broader
relevance. Our main contributions are:

• Using the Kac-Rice formula (Fyodorov, 2004;
Ben Arous et al., 2017) we rigorously derive the ex-
pected number of local minimizers of the associated
likelihood at a given correlation with the ground truth
signal.

• We extend the recently introduced Langevin-state-
evolution (Sarao Mannelli et al., 2018a) to the gradient
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Figure 1. The figure summarizes the main results of this paper for the spiked matrix-tensor model with p = 3 (left) and p = 4 (right). As
a function of the tensor-noise parameter ∆p on the x-axes, we plot the values of 1/∆2 above which the following happens (from above):
Above ∆triv

2 (the dashed purple line) the landscape of the problem becomes trivial in the sense that all spurious local minima disappear.
Above ∆GF

2 (the dotted blue line) and ∆ML−AMP
2 (the full cyan line), Eq. (32), the gradient flow and the ML-AMP algorithm, respectively,

converge close to the ground truth signal in time linear in the input size. While the results for Kac-Rice and ML-AMP are given in a
closed form, the ones for GF are obtained by extrapolating a convergence time obtained by numerical solution of integro-differential
equations that describe large size behaviour of the GF. We note that all the three lines ∆triv

2 , ∆GF
2 , and ∆ML−AMP

2 converge to 1 as
∆p → ∞, consistently with the spiked matrix model. These three lines, related to minimization of the landscape, and their mutual
positions, are the main result of this paper. The colors in the background, separated by the black dashed-dotted lines, show for comparison
the phase diagram for the Bayes-optimal inference, related to the ability to approximate the marginals of the corresponding posterior
probability distribution, and are taken from (Sarao Mannelli et al., 2018a). In the red region obtaining a positive correlation with the
signal in information-theoretically impossible. In the green region it is possible to obtain optimal correlation with the signal using the
Bayes-optimal AMP (BO-AMP). And in the orange the region the BO-AMP is not able to reach the Bayes-optimal performance. The
insets show that in the limit ∆p →∞ all the described thresholds converge to the well-known BBP phase transition at ∆BPP

2 = 1 (Baik
et al., 2005).

flow (GF) algorithm, obtaining a closed-form formula
for the obtained accuracy in the limit of large system
sizes. This formula is conjectured exact, and could
likely be established by extending (Ben Arous et al.,
2006).

• We derive and analyze the state evolution that rig-
orously describes the performance of the maximum-
likelihood version of the approximate message passing
algorithm (ML-AMP) for the present model.

We show that the above two algorithms (GF and ML-AMP)
achieve the same error in the regime where they succeed.
That same value of the error is also deduced from the po-
sition of all the minima strongly correlated with the signal
as obtained from the Kac-Rice approach (precise statement
below). We quantify the region of parameters in which the
two above algorithms succeed and show that the ML-AMP
is strictly better than GF. Remarkably, we show that the
algorithmic performance is not driven by the absence of
spurious local minima. These results are summarized in
Fig. 1 and show that, in order to obtain a complete picture
for settings beyond the present model, the precise interplay
between absence of spurious local minima and algorithmic

performance remains to be further investigated.

2. Problem Definition
In this paper we consider the spiked matrix-tensor model as
studied in (Sarao Mannelli et al., 2018a). This is a statistical
inference problem where the ground truth signal x∗ ∈ RN

is sampled uniformly on the N − 1-dimensional sphere,
SN−1(

√
N). We then obtain two types of observations

about the signal, a symmetric matrix Y , and an order p
symmetric tensor T , that given the signal x∗ are obtained as

Yij =
x∗i x

∗
j√
N

+ ξij , (1)

Ti1,...,ip =

√
(p− 1)!

N (p−1)/2
x∗i1 . . . x

∗
ip + ξi1,...,ip (2)

for 1 ≤ i < j ≤ N and 1 ≤ i1 < · · · < ip ≤ N , using the
symmetries to obtain the other non-diagonal components.
Here ξij and ξi1,...,ip are for each i < j and each i1 < · · · <
ip independent Gaussian random numbers of zero mean and
variance ∆2 and ∆p, respectively.

The goal in this spiked matrix-tensor inference problem is
to estimate the signal x∗ from the knowledge of the matrix
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Y and tensor T . If only the matrix was present, this model
reduces to well known model of low-rank perturbation of
a random symmetric matrix, closely related to the spiked
covariance model (Johnstone, 2001). If on the contrary only
the tensor is observed then the above model reduces to the
spiked tensor model as introduced in (Richard & Montanari,
2014) and studied in a range of subsequent papers.

In this paper we study the matrix-tensor model where the
two observations are combined. Our motivation is simi-
lar to the one exposed in (Sarao Mannelli et al., 2018a),
that is, we aim to access a regime in which it is algorith-
mically tractable to obtain good performance with corre-
sponding message passing algorithms yet it is challenging
(e.g. leading to non-convex optimization) with sampling or
gradient descent based algorithms, this happens when both
∆2 = Θ(1) and ∆p = Θ(1), while N → ∞ (Sarao Man-
nelli et al., 2018a).

In this paper we focus on algorithms that aim to find the
maximum likelihood estimator. The negative log-likelihood
(Hamiltonian in physics, or loss function in machine learn-
ing) of the spiked matrix-tensor reads

L =
∑
i<j

1

2∆2

(
Yij −

xixj√
N

)2

+
∑

i1<···<ip

1

2∆p

(
Ti1...ip −

√
(p− 1)!

N (p−1)/2
xi1 . . . xip

)2

,

(3)

where x ∈ SN−1(
√
N) is constrained to the sphere.

In a high-dimensional, N → ∞, noisy regime the
maximum-likelihood estimator is not always optimal as
it provides in general larger error than the Bayes-optimal
estimator computing the marginals of the posterior, studied
in (Sarao Mannelli et al., 2018a). At the same time the
log-likelihood (3) can be seen as a loss function, that is non-
convex and high-dimensional. The tractability and proper-
ties of such minimization problems are the most questioned
in machine learning these days, and are worth detailed in-
vestigation in the present model.

3. Landscape Characterization
The first goal of this paper is to characterize the structure
of local minima of the loss function (equivalently local
maxima of the log-likelihood) eq. (3) as a function of the
noise parameters ∆2 and ∆p. We compute the average
number of local minimizers x having a given correlation
with the ground truth signal m = limN→∞ x · x∗/N . This
leads to a so-called complexity function Σ(m) defined as
the logarithm of the expected number of local minima at
correlation m with the ground truth.

A typical example of this function, resulting from our analy-
sis, is depicted in Fig. 2 for p = 4, ∆p = 4.0, and several
values of ∆2. We see from the figure that at large ∆2 lo-
cal minima appear only in a narrow range of values of m
close to zero, as ∆2 decreases the support of Σ(m) ≥ 0
widens. At yet smaller values of ∆2 the support Σ(m) ≥ 0
becomes disconnected so that it is supported on an interval
of value close to m = 0 and on two (one negative, one
positive) isolated points. For yet smaller ∆2 the complexity
for values of m close to zero becomes negative, signalling
what we call a trivialization of the landscape, where all
remaining local minima are (in the leading order in N ) as
correlated with the ground truth as the global minima. The
support of Σ(m) ≥ 0 in the trivialized regions consists of
two separated points. We call the value of ∆2 at which the
trivialization happens ∆triv

2 . In the phase diagram of Fig. 1
the trivialization of the energy landscape happens above the
purple dashed line.

We use the Kac-Rice formula to determine the complexity
Σ(m) (Adler & Taylor, 2009; Fyodorov, 2015). Given an
arbitrary continuous function, the Kac counting formula
allows to compute the number of points where the func-
tion crosses a given value. The number of minima can be
characterized using Kac’s formula on the gradient of the
loss (3), counting how many time the gradient crosses the
zero value, under the condition of having a positive definite
Hessian in order to count only local minima and not saddles.
Since the spiked matrix-tensor model is characterized by
a random landscape, due to the noise ξij and ξi1,...,ip , we
will consider the expected number of minima obtaining the
Kac-Rice formula (Adler & Taylor, 2009; Fyodorov, 2015).

For mathematical convenience we will consider the rescaled
configurations σ = x/

√
N ∈ SN−1(1), and rescaled signal

σ∗ = x∗/
√
N . Call φG,F2,Fp the joint probability density

of the gradient G of the loss, and of the F2 and Fp the
contributions of the matrix and tensor to the loss, respec-
tively. Given the value of the two contributions to the loss
F2 = ε2N and Fp = εpN , and the correlation between
the configuration and ground truth m ∈ [−1,+1] that we
impose using a Dirac’s delta, the averaged number of mini-
mizers is

N (m, ε2, εp; ∆2,∆p) = eΣ̃∆2,∆p (m,ε2,εp)

=

∫
SN−1

E

[
detH

∣∣G = 0,
F2

N
= ε2,

Fp
N

= εp, H � 0

]
× φG,F2,Fp(σ, 0, ε2, εp) δ(m− σ · σ∗) dσ .

(4)

Rewrite the loss Eq. (3) neglecting terms that are constant
with respect to the configuration and thus do not contribute
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Figure 2. The complexity Σ(m), Eq. (19), is shown for different values of parameter ∆2 at fixed ∆p = 4.0 in the case p = 4. As ∆2 is
decreased (the signal to noise ratio increases) the complexity allows to identify three main scenarios in the topology of the loss landscape.
In the first case (a) only a wide band of non-negative complexity around the point of zero correlation is present, in the second case (b)
minima with non-trivial correlation with the signal appear but the band around m = 0 is still present, finally (c) the signal dominates
over the noise and only minima with non-trivial correlation are present. The transition from case (b) to case (c), i.e. when the support of
Σ(m) ≥ 0 becomes two discontinuous points, as the bulk close to m = 0 becomes negative, is called the landscape trivialization. The
∆2 at which this occurs is denoted ∆triv

2 and depicted in dashed purple in Fig. 1.

to the complexity

L̂ =

√
N(p− 1)!

∆p

∑
i1<···<ip

ξi1...ipσi1 . . . σip

− N(p− 1)!

∆p

∑
i1<···<ip

σ∗i1σi1 . . . σ
∗
ipσip

+

√
N

∆2

∑
i<j

ξijσiσj −
N

∆2

∑
i<j

σ∗i σiσ
∗
jσj .

(5)

In the following we will use small letters f2, fp, g, h to
characterize losses, gradient and Hessian constrained on
the sphere and capital letters for the same quantities uncon-
strained. Define Id the d-dimensional identity matrix. The
following lemma characterizes φG,F2,Fp .
Lemma 1. Given the loss function Eq. (5) and a con-
figuration x such that the correlation and the signal is
m, then there exists a reference frame such that the joint
probability distribution of f2, fp ∈ R, g ∈ RN−1 and
h ∈ R(N−1)×(N−1) is given by

fk
N
∼ − 1

k∆k
mk +

1√
k∆k

1√
N
Zk ; (6)

g

N
∼ −

(
1

∆p
mp−1 +

1

∆2
m

)√
1−m2e1

+

√
1

∆p
+

1

∆2

1√
N

Z̃ ;

(7)

h

N
∼ −

(
p− 1

∆p
mp−2 +

1

∆2

)
(1−m2)e1eT1

+

√
p− 1

∆p
+

1

∆2

√
N − 1

N
W− (pfp + 2f2)IN−1 ;

(8)

with Zk standard Gaussians and k ∈ {2, p}, Z̃ ∼
N (0, IN−1) a standard multivariate Gaussian and W ∼
GOE(N − 1) a random matrix from the Gaussian orthogo-
nal ensemble.

Proof sketch. Starting from Eq. (5), split the contributions
of the matrix and tensor in F2 and Fp, two Gaussian vari-
ables and impose the spherical constrain with a Lagrange
multiplier µ.

f2(σ) + fp(σ) = F2(σ) + Fp(σ)− µ

2

(∑
i

σ2
i − 1

)
,

(9)

gi(σ) = Gi(σ)− µσi , (10)
hij(σ) = Hij(σ)− µ . (11)

The expression for µ in a critical point can be derived
as follows. Given gi(σ) ≡ 0, multiply Eq. (10) by σi,
sum over the indices and obtain: µ =

∑
iGi(σ)σi =

2f2(σ) + pfp(σ). We now restrict our study to the un-
constrained random variables and substitute µ. Since the
quantities f2, fp, g, h, µ are linear functionals of Gaus-
sians they will be distributed as Gaussian random variables
and therefore can be characterized by computing expected
values and covariances. Starting from the losses coming
from the matrix and the tensor in Eq. (5), F2(σ) and Fp(σ),
respectively, consider the moments with respect to the re-
alization of the noise, ξi1...ip , ξij . For k ∈ {2, p} the first
moment leads to

E[Fk(σ)] = − N

k∆k
(σ · σ∗)k +O(1) . (12)

Let’s consider the second moment but having two different
configurations σ and τ ,

E
[
Fk(σ)Fk(τ)

]
=

N

k∆k
(σ · τ)k +O(1) . (13)
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Using standard results for derivatives of Gaussians (see e.g.
(Adler & Taylor, 2009) Eq. 5.5.4) we can obtain means and
covariances of the random variables taking derivatives with
respect to σ and τ . Then set τ = σ, imposing the spherical
constrain and using σ · σ∗ = m.

The last step is the definition of a convenient reference
frame {ej}j=1,...,N . Align the configuration along the last
coordinate eN = σ and the signal with a combination of the
first and last coordinates σ∗ =

√
1−m2e1 +meN . Finally,

project on the sphere by discarding the last coordinate.

We can now rewrite the determinant of the conditioned
Hessian by grouping the multiplicative factor in front of the
GOE in Eq. (8)

deth =

(
p− 1

∆p
+

1

∆2

)N−1
2 (

N

N − 1

)−N−1
2

× det
[
W + tN IN−1 − θNe1eT1

] (14)

with tN and θN given by

tN → t = − pεp + 2ε2√
p−1
∆p

+ 1
∆2

, (15)

θN → θ =

p−1
∆p

mp−2 + 1
∆2√

p−1
∆p

+ 1
∆2

(1−m2) (16)

in the large N -limit. Therefore the Hessian behaves like a
GOE shifted by t with a rank one perturbation of strength
θ. This exact same problem has already been studied in
(Ben Arous et al., 2017) and we can thus deduce the expres-
sion for the complexity as

Σ̃∆2,∆p
(m, ε2, εp) =

1

2
log

p−1
∆p

+ 1
∆2

1
∆p

+ 1
∆2

+
1

2
log(1−m2)

− 1

2

(
mp−1

∆p
+ m

∆2

)2

1
∆p

+ 1
∆2

(1−m2)− p∆p

2

(
εp +

mp

p∆p

)2

−∆2

(
ε2 +

m2

2∆2

)2

+ Φ(t)− L(θ, t),

(17)

with

Φ(t) =
t2

4
+1|t|>2

log

(√
t2

4
− 1 +

|t|
2

)
− |t|

4

√
t2 − 4



L(θ, t) =



1

4

∫ t

θ+ 1
θ

√
y2 − 4dy − θ

2

(
t−
(
θ +

1

θ

))

+
t2 −

(
θ + 1

θ

)2
8

θ > 1, 2 ≤ t < θ2 + 1

θ
∞ t < 2

0 otherwise.

We note at this point that for the case of the pure spiked
tensor model ∆2 →∞ the above expression reduces exactly
to the complexity derived in (Ben Arous et al., 2017). The
following theorem states that to the leading order Eq. (17)
represents the complexity of our problem.

Theorem 1. Given ∆2 and ∆p, for any (ε2, εp) ∈ R2 and
m ∈ [−1,+1] it holds

lim
N→∞

1

N
log EN (m, ε2, εp; ∆2,∆p) =

= Σ̃∆2,∆p
(m, εp, ε2)

(18)

Proof sketch. The proof comes immediately from
(Ben Arous et al., 2017) Thm. 2, see also Sec. 4.1.

The quantity that we are interested in is the projection of
Eq. (17) to the maximizing values of ε2 and εp:

Σ(m) = max
ε2, εp

Σ̃∆2,∆p
(m, ε2, εp). (19)

Eq. (19) allows to understand if at a given correlation with
the signal, there are regions with an exponential expected
number of minima, see Fig. 2. Thus it allows to locate
parameters where the landscapes is trivial.

We computed the expected number of minima, i.e. the so-
called annealed average. The annealed average might be
dominated by rare samples, and in general provides only an
upper bound for typical samples. The quenched complexity,
i.e. the average of the logarithm of the number of minima,
is more involved. The quenched calculation was done in the
case of a the spiked tensor model (Ros et al., 2019). It is
interesting to notice that in (Ros et al., 2019) the authors
found that the annealed complexity does not differ from
the quenched complexity for m = 0. This combined with
analogous preliminary results for the spiked matrix-tensor
model, suggest that considering the quenched complexity
would not change the conclusions of this paper presented in
the phase diagrams Fig. 1.

4. Gradient Flow Analysis
In this section we analyze the performance of the gradient
flow descent in the loss function (3)

d

dt
xi(t) = −µ(t)xi(t)−

δL
δxi

(t) , (20)
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where the Lagrange parameter µ(t) is set in a way to ensure
the spherical constraint x ∈ SN−1(

√
N). Our aim is to

understand the final correlation between the ground truth
signal and the configuration reached by the gradient flow in
large but finite time, while N →∞.

The gradient flow (20) can be seen as a zero-temperature
limit of the Langevin algorithm where

d

dt
xi(t) = −µ(t)xi(t)−

δL
δxi

(t)− ηi(t) , (21)

with ηi(t) being the Langevin noise with zero mean and
covariance

〈
ηi(t)ηj(t

′)
〉

= 2Tδijδ(t− t′), where T has the
physical meaning of temperature, the notation 〈. . . 〉 stands
for the average over the noises ξij and ξi1,...,ip . As we take
the limit T → 0, the noise becomes peaked around zero,
effectively recovering the gradient flow.

The performance of the Langevin algorithm was character-
ized recently in (Sarao Mannelli et al., 2018a) using equa-
tions developed in physics of disordered systems (Crisanti
et al., 1993; Cugliandolo & Kurchan, 1993). In (Sarao Man-
nelli et al., 2018a) this characterization was given for an
arbitrary temperature T and compared to the landscape of
the Bayes-optimal estimator (Antenucci et al., 2018). Here
we hence summarize and use the results of (Sarao Mannelli
et al., 2018a) corresponding to the limit T → 0.

The Langevin dynamics with generic temperature
is in the large size limit, N → ∞, charac-
terized by a set of PDEs for the self-correlation
C(t, t′) = limN→∞

〈
1
N

∑
xi(t)xi(t

′)
〉
, the response func-

tion R(t, t′) = limN→∞

〈
1
N

∑ δxi(t)
δηi(t′)

〉
, and the correla-

tion with the signal m(t) = limN→∞
〈

1
N

∑
xi(t)x

∗
i

〉
. Ref.

(Sarao Mannelli et al., 2018a) established that as the gradi-
ent flow evolves these quantities satisfy eqs. (74)-(76) in that
paper. Taking the zero-temperature limit in those equations
we obtain

∂

∂t
C(t, t′) = −µ̃(t)C(t, t′) +Q′(m(t))m(t′)

+

∫ t

0

dt′′R(t, t′′)Q′′(C(t, t′′))C(t′, t′′)

+

∫ t′

0

dt′′R(t′, t′′)Q′(C(t, t′′)) ,

(22)

∂

∂t
R(t, t′) = −µ̃(t)R(t, t′)

+

∫ t

t′
dt′′R(t, t′′)Q′′(C(t, t′′))R(t′′, t′) ,

(23)

∂

∂t
m(t) = −µ̃(t)m(t) +Q′(m(t))

+

∫ t

0

dt′′R(t, t′′)m(t′′)Q′′(C(t, t′′)) ,

(24)

with Q(f) = fp/(p∆p) + f2/(2∆2) and µ̃(t) =
limT→0 Tµ(t) the rescaled spherical constraint. Boundary
conditions for the equations are C(t, t) = 1 ∀t,R(t, t′) = 0
for all t < t′ and limt′→t− R(t, t′) = 1 ∀t. An addi-
tional equation for µ̃(t) is obtained by fixing C(t, t) = 1 in
Eq. (22). In the context of disordered systems those equa-
tions have been established rigorously for a related case of
the matrix-tensor model without the spike (Ben Arous et al.,
2006).
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Figure 3. Eq. (24) characterizes the evolution of the correlation
of the gradient flow with the ground truth signal, evaluated for
several values of ∆2, at ∆p = 4.0 starting from m(0) = 10−10.
The dynamics displays a fast increase of the convergence time
as ∆2 increases. At large times, the plateau we observe has the
same value of correlation m as the minima best correlated with the
signal, as predicted via Kac-Rice approach.

Eqs. (22-24) are integrated numerically showing the large-
size-limit performance of the gradient flow algorithm. Ex-
ample of this evolution is given in Fig. 3 for p = 3, ∆p = 4.
The code is available online (Sarao Mannelli et al., 2018b)
and linked to this paper. For consistency we confirm numer-
ically that at large times the gradient flow reaches values
of the correlation that correspond exactly to the value of
the correlation of the minima correlated to the signal as
obtained in the Kac-Rice approach.

As the variance ∆2 increases the time it takes to the gradient
flow to acquire good correlation with the signal increases.
We define the convergence time tc as the time it takes to
reach 1/2 of the final plateau. The dependence of tc on ∆2

is consistent with a power law divergence at ∆GF
2 . This is

illustrated in Fig. 4 where we plot the convergence time as a
function of ∆2 and show the power-law fit in the inset. The
points ∆GF

2 are collected and plotted in Fig. 1, dotted blue
line.

From Fig. 4 we see that the gradient flow algorithm under-
goes a considerable slow-down even in the region where the
landscape is trivial, i.e. does not have spurious local min-
imizers. At the same time divergence of the convergence
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Figure 4. The convergence time the gradient flow takes to find
a configuration well correlated with the signal for ∆p = 4.0,
p = 3 as a function of ∆2, starting from m(0) = 10−10. The
points are fitted with a power law consistent with a divergence
point 1/∆GF

2 = 1.35 (vertical dotted line, log-log scale of the
fit shown in the inset) while landscape trivialization occurs at
1/∆triv

2 = 1.57 (vertical dashed line).

time happens only well inside the phase where spurious
local minimizers do exist.

5. Maximum-Likelihood Approximate
Message Passing

Approximate Message Passing (AMP) is a popular iterative
algorithm (Donoho et al., 2009) with a key advantage of be-
ing analyzable via a set of equations, called state evolution
equations, that have been proved rigorously to follow the
average evolution of the algorithm (Javanmard & Montanari,
2013). The maximum-likehood AMP (ML-AMP) algorithm
studied in this paper is a generalization of AMP for the pure
spiked tensor model from (Richard & Montanari, 2014)
to the spiked matrix-tensor model. We will show that its
fixed points correspond to stationary points of the loss func-
tion (3). This should be contrasted with the Bayes-optimal
AMP (BO-AMO) that was studied in (Sarao Mannelli et al.,
2018a) and aims to approximate the marginals of the corre-
sponding posterior probability distribution. The ML-AMP
instead aims to estimate the maximum-likelihood solution,
x̂. In information theory the BO-AMP would correspond
to the sum-product algorithm, while the present one to the
max-sum algorithm. In statistical physics language the BO-
AMP corresponds to temperature one, while the present
one to zero temperature. In the supporting information we
provide a schematic derivation of the ML-AMP as a zero-
temperature limit of the BO-AMP, using a scheme similar
to (Lesieur et al., 2017).
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Figure 5. We show the mean-squared error (MSE) as achieved by
the analyzed algorithms, for p = 3, ∆p = 1.0 as a function of the
signal-to-noise (snr) ratio 1/∆2. The full cyan line corresponds
to the error reached by the ML-AMP algorithm, it jumps discon-
tinuously at 1/∆ML−AMP

2 = 1.62. The blue points is the error
reached by the gradient flow in time t < 1000. The divergence of
the convergence time is extrapolated to occur at 1/∆GF

2 = 1.97,
blue dotted vertical line. The purple dotted line represents the
maximum having the largest m of the complexity function Σ(m),
Eq. (19). The vertical purple dashed line at 1/∆triv

2 = 2.57 corre-
sponds to the trivialization of the landscape, beyond which only
local minima well correlated with the signal remain. We note
that all these approaches agree on the value of the MSE. For the
sake of comparison we show (the dashed-dotted grey line) also the
minimal-MSE achieved in the Bayes-optimal setting.

The ML-AMP algorithm reads

Bti =

√
(p− 1)!

N (p−1)/2

∑
k2<···<kp

Tik2...kp

∆p
x̂tk2

. . . x̂tkp

+
1√
N

∑
k

Yik
∆2

x̂tk − rtx̂t−1
i ,

(25)

x̂t+1
i =

Bti
1√
N
||Bt||2

, (26)

σ̂t+1 =
1

1√
N
||Bt||2

(27)

with || · · · ||22 the `2-norm and rt the Onsager reaction term

rt =
1

∆2

1

N

∑
k

σ̂tk

+
p− 1

∆p

1

N

∑
k

σ̂tk

 1

N

∑
k

x̂tkx̂
t−1
k

p−2

.

(28)
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5.1. ML-AMP & Stationary Points of the Loss

Using an argument similar to Prop. 5.1 in (Montanari, 2012)
we can show that a fixed points found by ML-AMP corre-
sponds to finding a stationary point of the loss Eq. (3) with
a ridge regularizer.

Property 1. Given (x̂∗, σ∗) a fixed point of ML-AMP, then
x̂∗ satisfies the stationary condition of the loss.

Proof sketch. Let us denote B∗, r∗ the fixed point of
Eqs. (25) and (28). From Eq. (26) and Eq. (25) we have(

1√
N
||B∗||2 + r∗

)
x∗ =

1√
N

∑
k

Yik
∆2

x̂∗i

+

√
(p− 1)!

N (p−1)/2

∑
k2<···<kp

Tik2...kp

∆p
x̂∗k2

. . . x̂∗kp

(29)

which is exactly solution of the derivative of Eq. (3) with
respect to xi when the spherical constraint is enforced by a
Lagrange multiplier µ

0 = −µxi +
1√
N

∑
k

Yik
∆2

xi

+

√
(p− 1)!

N (p−1)/2

∑
k2<···<kp

Tik2...kp

∆p
xk2

. . . xkp .

Moreover ML-AMP by construction preserves the spherical
constrain at every time iteration.

5.2. State Evolution

The evolution of ML-AMP can be tracked through a set of
equations called state evolution (SE). The state evolution can
be characterized via an order parameter: mt = 1

N

∑
i x̂

t
ix
∗
i ,

the correlation of the ML-AMP-estimator with the ground
truth signal at time t. According to the SE, as derived in the
supporting information, and proven for a general class of
models in (Javanmard & Montanari, 2013), this parameter
evolves in the large N limit as

mt+1 =

mt

∆2
+ (mt)p−1

∆p√
1

∆2
+ 1

∆p
+
(
mt

∆2
+ (mt)p−1

∆p

)2
, (30)

and the mean square error correspondingly

MSEt = 2(1−mt). (31)

Analysis of the simple scalar SE, Eq. (30), allows to iden-
tify the error reached by the ML-AMP algorithm. We first
observe that m = 0 is always a fixed point. For the per-
formance of ML-AMP is the stability of this fixed point
that determines whether the ML-AMP will be able to find

a positive correlation with the signal or not. Analyzing
Eq. (30) we obtain that the m = 0 is a stable fixed point for
∆2 > ∆ML−AMP

2 where

∆ML−AMP
2 (∆p) =

−∆p +
√

∆2
p + 4∆p

2
. (32)

Consequently for ∆2 > ∆ML−AMP
2 the ML-AMP algo-

rithm converges to m = 0, i.e. zero correlation with the
signal. The line ∆ML−AMP

2 is the line plotted in Fig. 1. For
p = 3 and p = 4, we obtain that for ∆2 < ∆ML−AMP

2

the ML-AMP algorithm converges to a positive m∗ > 0
correlation with the signal, depicted in Fig. 5. In Fig. 5
we also observe that this correlation agrees with the po-
sition of the maximum having largest value of m in the
complexity function Σ(m). The trivialization of the land-
scape occurs at ∆triv

2 < ∆ML−AMP
2 , thus showing that for

∆triv
2 < ∆ < ∆ML−AMP

2 the ML-AMP algorithm is able
to ignore a good portion of the spurious local minima and to
converge to the local minima best correlated with the signal.

In Fig. 5 we also compared to the MSE obtained by the
Bayes-optimal AMP that provably minimizes the MSE in
the case depicted in the figure (Sarao Mannelli et al., 2018a).
We see that the gap between the Bayes-optimal error and
the one reached by the loss minimization approaches goes
rapidly to zero as ∆2 decreases.

6. Discussion
We analyzed the behavior of two algorithms for optimiz-
ing a rough high-dimensional loss landscape of the spiked
matrix-tensor model. We used the Kac-Rice formula to
count the average number of minima of the loss function
having a given correlation with the signal. Analyzing the
resulting formula we defined and located where the energy
landscape becomes trivial in the sence that spurious local
minima disappear. We analyzed the performance of gradient
flow via integro-differential state-evolution-like equations.
We delimited a region of parameters for which the gradient
flow is able to avoid the spurious minima and obtain a good
correlation with the signal in time linear in the input size.
We also analyzed the maximum-likelihood AMP algorithm,
located the region of parameters in which this algorithm
works, which is larger than the region for which the gradient
flow works. The relation between existence or absence of
spurious local minima in the loss landscapes of a generic
optimization problems and the actual performance of opti-
mization algorithm is yet to be understood. Our analysis of
the spiked matrix-tensor model brings a case-study where
we were able to specify this relation quantitatively.
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