
Supplementary Material

A. Detail of the the GAN architecture
Table 2 presents the details of the convolutional architecture
used by TFGAN-M and TFGAN-MTF. Here B = 64 is the
batch size.

Operation Kernel Size Output Shape
Generator

Input z N (0, 1) (B, 100)
Dense (100, 256s) (B, 256s)
Reshape (B, 8, 4, 8s)
DeConv 2D (Stride 2) (12, 3, 8s, 8s) (B, 16, 8, 8s)
LReLu (α = 0.2) (B, 16, 8, 8s)
DeConv 2D (Stride 2) (12, 3, 8s, 4s) (B, 32s, 16, 4s)
LReLu (α = 0.2) (B, 32s, 16, 4s)
DeConv 2D (Stride 2) (12, 3, 4s, 2s) (B, 64, 32, 2s)
LReLu (α = 0.2) (B, 64, 32, 2s)
DeConv 2D (Stride 2) (12, 3, 2s, s) (B, 128, 64, s)
LReLu (α = 0.2) (B, 32, 32, 2d)
DeConv 2D (Stride 2) (12, 3, s, c) (B, 256, 128, c)

Discriminator
Input (B, 256, 128, c)
Conv 2D (Stride 2) (12, 3, c, s) (B, 128, 64, s)
LReLu (α = 0.2) (B, 128, 64, s)
Conv 2D (Stride 2) (12, 3, s, 2s) (B, 64, 32, 2s)
LReLu (α = 0.2) (B, 64, 32, 2s)
Conv 2D (Stride 2) (12, 3, 2s, 4s) (B, 32, 16, 4s)
LReLu (α = 0.2) (B, 32, 16, 4s)
Conv 2D (Stride 2) (12, 3, 4s, 8s) (B, 16, 8, 8s)
LReLu (α = 0.2) (B, 16, 8, 8s)
Conv 2D (Stride 2) (12, 3, 8s, 16s) (B, 8, 4, 16s)
LReLu (α = 0.2) (B, 8, 4, 16s)
Reshape (B, 512s)
Dense (512s, 1) (B, 1)

Table 2. Detailed architecture of the Generative adversarial net-
work. Scale s = 64. Channels c = 1 for the magnitude network
and c = 3 for the network that also outputs the derivatives.

B. Listening test location
Figures 8 and 9 show the physical setup of the listening test,
including the sound booth and additional equipment.

C. Comparison to GANSynth:
A direct comparison between the results of the very recent
GANSynth architecture (Engel et al., 2019), which ob-
tained unprecedented audio quality for adversarial audio
synthesis, and TFGAN is not straightforward, since GAN-
Synth considers semi-supervised generation conditioned on
pitch, while we considered unsupervised generation to facil-
itate the comparison with WaveGAN. Further, the network
architecture (Karras et al., 2018) on which GANSynth is
built is significantly larger and more sophisticated than our

Figure 8. Inside of the sound booth used to perform the listening
test.

Figure 9. Sound booth from the outside with equipment for exter-
nal monitoring of ongoing tests.

DCGAN-derived architecture. The adaptation of TFGAN
to a comparable architecture and its application to semi-
supervised generation generation is planned for future work.
For now, we can only observe that a key ingredient of GAN-
Synth is the usage of the time-direction phase derivative,
which in fact corroborates our claim that careful modeling
of the structure of the STFT is crucial for neural generation
of time-frequency features. As discussed in Section 2.3, the
PLR method employed in GANSynth can be unreliable and
synthesis quality can likely be further improved if a more
robust method for PLR is considered. Audio examples for
different PLR methods are provided in the supplementary
material.



D. Short-time Fourier phase conventions
In Section 2.2, we introduced the STFT in the so-called
frequency-invariant convention. This is the convention pre-
ferred in the mathematical community. It arises from the
formulation of the discrete STFT as a sliding window DFT.
There are various other conventions, depending on how the
STFT is derived and implemented. Usually, the chosen con-
vention does not affect the magnitude, but only the phase
of the STFT. When phase information is processed, it is
crucial to be aware of the convention in which the STFT
is computed, and adapt the processing scheme accordingly.
Usually, the conversion between conventions amounts to
the point-wise multiplication of the STFT with a predeter-
mined matrix of phase factors. Common phase conventions
and the conversion between them are discussed in (Dolson,
1986; Arfib et al., 2011). The 3 most wide-spread conven-
tions, the last of which is rarely described, but frequently
implemented in software frameworks, are presented here:

Frequency-invariant STFT: The m-th channel of the
frequency-invariant STFT can be interpreted as demod-
ulating the signal s with the pure frequency e−2πiml/M ,
before applying a low-pass filter with impulse response
g[−·]. Therefore, the phase is expected to change slowly
in the time-direction, it is already demodulated. The time-
direction phase derivative indicates the distance of the cur-
rent position to the local instantaneous frequency. On the
other hand, the evolution of the phase in frequency-direction
depends on the time position. Hence, the frequency-
direction derivative indicates the (absolute) local group de-
lay, sometimes called the instantaneous time.

Time-invariant STFT: Given by

STFTti
g(s)[m,n]

=

dLg/2e−1∑
l=−bLg/2c

s[l + na]g[l]e−2πiml/M ,

(12)

the time-invariant STFT can be interpreted as filtering the
signal s with the band-pass filters g[−·]e2πim(·)/M . Hence,
the phase is expected to revolve at roughly the channel cen-
ter frequency in the time-direction and the time-direction
phase derivative points to the (absolute) local instantaneous
frequency. In the frequency direction, however, the phase
in the frequency-direction changes slowly, i.e. it is demod-
ulated in the frequency-direction. The frequency-direction
phase derivative indicates the distance to the local instan-
taneous time. In each, the frequency- and time-invariant
STFT, the phase is demodulated in one direction, but moves
quickly in the other. In Section 2.3, we propose to use the
derivative of the demodulated phase in both directions, such
that we must convert between the two conventions. This

conversion is achieved simply by pointwise multiplication
of the STFT matrix with a matrix of phase factors:

STFTg(s)[m,n] = e−2πimna/M STFTti
g(s)[m,n]

=W [m,n] STFTti
g(s)[m,n].

(13)

Equivalently, if φg = arg(STFTg(s)) is the phase of the
frequency-invariant STFT and φti

g = arg(STFTti
g(s)), then

φg[m,n] = φti
g[m,n]− 2πimna/M .

Simplified time-invariant STFT: In many common
frameworks, including SciPy and Tensorflow, the STFT
computation follows neither the frequency- nor time-
invariant conventions. Instead, the window g is stored
as a vector of length Lg with the peak not at g[0], but at
g[bLg/2c]. The STFT is then computed as

STFTsti
g (s)[m,n] =

Lg−1∑
l=0

s[l + na]g[l]e−2πiml/M . (14)

The above equation is slightly easier to implement,
compared to the frequency- or time-invariant STFT, if
M ≥ Lg, since in that case, g ∈ RLg can simply be
zero-extended to length M , after which the following
holds: STFTsti

g (s)[·, n] = DFTM (s(n))[m], with s(n) =

[s[na]g[0], . . . , s[na+M − 1]g[M − 1]]T ∈ RM . Compar-
ing (12) with (14), we can see that the latter introduces a
delay and a phase skew dependent on the (stored) window
length Lg . In general, we obtain the equality

STFTsti
g (s)[m,n]

= e−2πimbLg/2c/M STFTti
g(s[·+ bLg/2c])[m,n].

(15)

If the hop size a is a divisor of bLg/2c, then we can convert
into a time-invariant STFT:

STFTti
g(s)[m,n+ bLg/2c/a]

= e2πimbLg/2c/M STFTsti
g (s)[m,n],

(16)

or equivalently φg[m,n + bLg/2c/a] = φti
g[m,n +

bLg/2c/a] − 2πim(na + bLg/2c)/M = φsti
g [m,n] −

2πimna/M . Note that, additionally, SciPy and Tensor-
flow do not consider s circularly, but compute only those
time frames, for which the window does not overlap the
signal borders, i.e., n ∈ [0, . . . , b(L− Lg)/ac]. If an STFT
according to the convention (14), with N time frames and
aligned with the time-invariant STFT is desired, the signal s
can be extended to length L+ Lg by adding bLg/2c zeros
before s[0] and dLg/2e zeros after s[L− 1].


