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Lemma 2. There exists a G-invariant network in the sense
of definition 3 that realizes the sum of G-invariant networks

F= ZZ:O Z?il arg F*.

Proof. We need to show that F' = Zk 0 2 gy g F

can indeed be realized as a single, unified G-invariant net-
work. As we already saw, each network F*J has the struc-
ture
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with a suitable k-class 7. To create the unified G-invariant

network we first lift each F*3 to the maximal dimension d.
That is, F*7 with the structure
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This is done by composing each equivariant layer L
k l . . . .

R™ *a 5 R™ *b with two linear equivariant operators

b - Rn ><b S Rn dxb and D¢ - Rndxa N Rnkxa

ULDY : R Xy XD (1)

where
b —
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Since U, D* are equivariant, U’ L D in equation 1 is equiv-
ariant. Furthermore D% o 0 o U* = o, where o is the
pointwise activation function. Lastly, given two G-invariant
networks with the same tensor order d they can be com-
bined to a single G-invariant network by concatenating

That is, if L; : R**¢ — R"*’ and
— R”de/, then their concatenation would
Rn‘x(a+a’) _y Rn'x(6+b) - Applying this

their features.
Ly : R™¢
yleld Ll’g :
concatenation to all F*/ we get our unified G-invariant
network. O
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Fixed-point equation for equivariant layers. We have

an affine operator L : R"" ¥@ — R"'*? satisfying

9" L(g- X) = L(X), )

forallge G, X € R"" %@ The purely linear part of L can
be written using a tensor L € R xaxb: Write

L(X)ji..jij = Z Ljiogiinein i Kirig i
7k7
Writing equation 2 using this notation gives:
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forallg € G and X € R""X@_ This implies equation 9,

namely
g-L=L, gedqG.

The constant part of L is done similarly.



