On the Universality of Invariant Networks: Supplementary Material

Haggai Maron ¹ Ethan Fetaya ² Nimrod Segol ¹ Yaron Lipman ¹

Lemma 2. There exists a G-invariant network in the sense of definition 3 that realizes the sum of G-invariant networks $F = \sum_{k=0}^{d} \sum_{j=1}^{n_k} \alpha_{kj} F^{kj}$.

Proof. We need to show that $F = \sum_{k=0}^{d} \sum_{j=1}^{n_k} \alpha_{kj} F^{kj}$ can indeed be realized as a *single, unified G*-invariant network. As we already saw, each network F^{kj} has the structure

$$\mathbb{R}^n \xrightarrow{L^{\tau}} \mathbb{R}^{n^k \times k} \xrightarrow{M^k} \mathbb{R}^{n^k} \xrightarrow{s} \mathbb{R},$$

with a suitable k-class τ . To create the unified G-invariant network we first lift each F^{kj} to the maximal dimension d. That is, \widetilde{F}^{kj} with the structure

$$\mathbb{R}^n \xrightarrow{\widetilde{L}^{kj}} \mathbb{R}^{n^d \times k} \xrightarrow{\widetilde{M}^k} \mathbb{R}^{n^d} \xrightarrow{s} \mathbb{R}.$$

This is done by composing each equivariant layer $L: \mathbb{R}^{n^k \times a} \to \mathbb{R}^{n^l \times b}$ with two linear equivariant operators $U^b: \mathbb{R}^{n^k \times b} \to \mathbb{R}^{n^d \times b}$ and $D^a: \mathbb{R}^{n^d \times a} \to \mathbb{R}^{n^k \times a}$,

$$U^b L D^a : \mathbb{R}^{n^d \times a} \to \mathbb{R}^{n^d \times b}, \tag{1}$$

where

$$U^b(x)_{i_1\dots i_d,j} = x_{i_1\dots i_k,j}$$

and

$$D^{a}(y)_{i_{1}...i_{k},j} = n^{k-d} \sum_{i_{k+1}...i_{d}=1}^{n} y_{i_{1}...i_{k}i_{k+1}...i_{d},j}.$$

Since U^b, D^a are equivariant, U^bLD^a in equation 1 is equivariant. Furthermore $D^a \circ \sigma \circ U^a = \sigma$, where σ is the pointwise activation function. Lastly, given two G-invariant networks with the same tensor order d they can be combined to a single G-invariant network by concatenating their features. That is, if $L_1: \mathbb{R}^{n^d \times a} \to \mathbb{R}^{n^d \times b}$, and $L_2: \mathbb{R}^{n^d \times a'} \to \mathbb{R}^{n^d \times b'}$, then their concatenation would yield $L_{1,2}: \mathbb{R}^{n^d \times (a+a')} \to \mathbb{R}^{n^d \times (b+b')}$. Applying this concatenation to all \widetilde{F}^{kj} we get our unified G-invariant network.

Proceedings of the 36th International Conference on Machine Learning, Long Beach, California, PMLR 97, 2019. Copyright 2019 by the author(s).

Fixed-point equation for equivariant layers. We have an affine operator $L: \mathbb{R}^{n^k \times a} \to \mathbb{R}^{n^l \times b}$ satisfying

$$g^{-1} \cdot L(g \cdot \mathbf{X}) = L(\mathbf{X}), \tag{2}$$

for all $g \in G$, $\mathbf{X} \in \mathbb{R}^{n^k \times a}$. The purely linear part of L can be written using a tensor $\mathbf{L} \in \mathbb{R}^{n^{k+l} \times a \times b}$: Write

$$L(\mathbf{X})_{j_1...j_l,j} = \sum_{i_1...i_k,i} \mathbf{L}_{j_1...j_l,i_1...i_k,i,j} \mathbf{X}_{i_1...i_k,i}.$$

Writing equation 2 using this notation gives:

$$\begin{split} & \sum_{i_1...i_k,i} \mathbf{L}_{g(j_1)...g(j_l),i_1...i_k,i,j} \mathbf{X}_{g^{-1}(i_1)...g^{-1}(i_k),i} \\ & = \sum_{i_1...i_k,i} \mathbf{L}_{g(j_1)...g(j_l),g(i_1)...g(i_k),i,j} \mathbf{X}_{i_1...i_k,i} \\ & = \sum_{i_1...i_k,i} \mathbf{L}_{j_1...j_l,i_1...i_k,i,j} \mathbf{X}_{i_1...i_k,i}, \end{split}$$

for all $g \in G$ and $\mathbf{X} \in \mathbb{R}^{n^k \times a}$. This implies equation 9, namely

$$q \cdot \mathbf{L} = \mathbf{L}, \ q \in G.$$

The constant part of L is done similarly.

¹Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel ²Department of Computer Science, University of Toronto, Toronto, Canada. Correspondence to: Haggai Maron haggai.maron@weizmann.ac.il>.