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Abstract
Boosting algorithms iteratively produce linear
combinations of more and more base hypotheses
and it has been observed experimentally that the
generalization error keeps improving even after
achieving zero training error. One popular expla-
nation attributes this to improvements in margins.
A common goal in a long line of research, is to
maximize the smallest margin using as few base
hypotheses as possible, culminating with the Ad-
aBoostV algorithm by (Rätsch & Warmuth, 2005).
The AdaBoostV algorithm was later conjectured
to yield an optimal trade-off between number of
hypotheses trained and the minimal margin over
all training points (Nie et al., 2013). Our main
contribution is a new algorithm refuting this con-
jecture. Furthermore, we prove a lower bound
which implies that our new algorithm is optimal.

1. Introduction
Boosting is one of the most famous and succesful ideas
in learning. Boosting algorithms are meta algorithms
that produce highly accurate predictors by combining al-
ready existing less accurate predictors. Probably the most
famous boosting algorithm is AdaBoost by Freund and
Schapire (Freund & Schapire, 1995), who won the 2003
Gödel Prize for their work.

AdaBoost was designed for binary classification and works
by combining base hypotheses learned by a given base
learning algorithm into a weighted sum that represents
the final classifier. This weighed set of base hypotheses
is constructed iteratively in rounds, each round construct-
ing a new base hypothesis that focuses on the training
data misclassified by the previous base hypotheses con-
structed. More precisely, AdaBoost takes training data
D = {(xi, yi) | xi ∈ Rd, yi ∈ {−1,+1}}ni=1 and con-
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structs a linear combination classifier sign(
∑T
t=1 αtht(x)),

where ht is the base hypothesis learned in the t’th iteration
and αt is the corresponding weight.

It has been proven that AdaBoost decreases the training error
exponentially fast if each base hypothesis is slightly better
than random guessing on the weighed data set it is trained on
(Freund et al., 1999). Concretely, if εt is the error of ht on
the weighed data set used to learn ht then the linear combina-
tion has training error at most exp(−2

∑T
t=1 (1/2− εt)2).

If each εt is at most a half minus a fixed constant, then
the training error is less than 1/n after O(lg n) rounds
which means the all training points are classified correctly.
Quite surprisingly, experiments show that continuing the
AdaBoost algorithm even after the training data is perfectly
classified, making the model more and more complex, con-
tinues to improve generalization (Schapire et al., 1998).

The most prominent approach to explaining this generaliza-
tion phenomenon considers margins (Schapire et al., 1998).
The margin of a point xi is

margin(xi) =
yi
∑T
t=1 αtht(xi)∑T
t=1|αt|

.

For binary classification, if each ht(x) ∈ [−1,+1], then the
margin of a point is a number between -1 and +1. Notice that
a point has positive margin if it is classified correctly and
negative margin if it is classified incorrectly. It has been ob-
served experimentally that the margins of the training points
usually increase when training, even after perfectly classi-
fying the training data. This has inspired several bounds
on generalization error that depend on the distribution of
margins (Schapire et al., 1998; Breiman, 1999; Koltchinskii
et al., 2001; Wang et al., 2008; Gao & Zhou, 2013). The
conceptually simplest of these bounds depend only on the
minimal margin, which is the margin of the point xi with
minimal margin. The point xi with minimal margin can be
interpreted as the point the classifier struggles the most with.
This has inspired a series of algorithms with guarantees on
the minimal margin (Breiman, 1999; Grove & Schuurmans,
1998; Bennett et al., 2000; Rätsch & Warmuth, 2002; 2005).

These algorithms have the following goal: Let H be the
(possibly infinite) set of all base hypotheses that may be
returned by the base learning algorithm. Suppose the best
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possible minimal margin on some training data for any linear
combination of h ∈ H is ρ∗, i.e.

ρ∗ = max
α6=0

(
min
i

∑
h∈H

yi
∑
h∈H αhh(xi)∑
h∈H |αh|

)
.

Given some precision parameter v, the goal is to construct a
linear combination with minimal margin at least ρ = ρ∗− v
using as few hypotheses as possible. In this case we say
that the linear combination has a gap of v. The current
state of the art is AdaBoostV (Rätsch & Warmuth, 2005).
It guarantees a gap of v using O(lg(n)/v2) hypotheses.
It was later conjectured that there exists data sets D and
a corresponding set of base hypotheses H, such that any
linear combination of base hypotheses from H must use
at least Ω(lg(n)/v2) hypotheses to achieve a gap of v for
any

√
lg n/n ≤ v ≤ a1 for some constant a1 > 0. This

would imply optimality of AdaBoostV. This conjecture was
published as an open problem in the Journal of Machine
Learning Research (Nie et al., 2013).

Our main contribution is a refutal of this conjecture. We
refute the conjecture by introducing a new algorithm called
SparsiBoost, which guarantees a gap of v with just T =
O(lg(nv2)/v2) hypotheses. When v ≤ no(1)/

√
n, Sparsi-

Boost has T = O(lg(no(1))/v2) = o(lg(n)/v2), which is
asymptotically better than AdaBoostV’s T = O(lg(n)/v2)
guarantee. This refutes the conjectured lower bound. Our
algorithm involves a surprising excursion to the field of com-
binatorial discrepancy minimization. We also show that our
algorithm is the best possible. That is, there exists data sets
D and corresponding set of base hypotheses H, such that
any linear combination of base hypotheses from H with a
gap of v, must use at least T = Ω(lg(nv2)/v2) hypotheses.

This work thus provides the final answer to over a decade’s
research into understanding the trade-off between minimal
margin and the number of hypotheses: Given a gap v, the
optimal number of hypotheses is T = Θ(lg(nv2)/v2) for
any

√
1/n ≤ v ≤ a1 where a1 > 0 is a constant. Notice

that smaller values for v are irrelevant since it is always
possible to achieve a gap of zero using n+1 base hypotheses.
This follows from Carathéodory’s Theorem.

1.1. Previous Work on Minimal Margin

Upper Bounds. (Breiman, 1999) introduced Arc-GV,
which was the first algorithm that guaranteed to find a finite
number of hypotheses T < ∞ with gap zero (v = 0). As
pointed out by (Rätsch & Warmuth, 2005), one can think of
Arc-GV as a subtle variant of AdaBoost where the weights
αt of the hypotheses are slightly changed. If AdaBoost has
hypothesis weight αt, then Arc-GV chooses the hypothe-
sis weight α′t = αt + x for some x that depends on the
minimal margin of h1, . . . , ht. A few years later, (Grove &

Schuurmans, 1998) and (Bennett et al., 2000) introduced
DualLPBoost and LPBoost with similar guarantees.

(Rätsch & Warmuth, 2002) introduced AdaBoostρ, which
was the first algorithm to give a guarantee on the gap
achieved in terms of the number of hypotheses used. Their
algorithm takes a parameter ρ ≤ ρ∗ that serves as the tar-
get margin one would like to achieve. It then guarantees
a minimal margin of ρ − µ using T = O(lg(n)/µ2) hy-
potheses. One would thus like to choose ρ = ρ∗. If ρ∗ is
unknown, it can be found up to an additive approximation
of v by binary searching using AdaBoostρ. This requires
an additional O(lg 1/v) calls to AdaBoostρ, resulting in
O(lg(n)/v2) lg(1/v) iterations of training a base hypothesis
to find the desired linear combination of T = O(lg(n)/v2)
base hypotheses. Similar to Arc-GV, AdaBoostρ differs
from AdaBoost only in choosing the weights αt. Instead of
having the additional term depend on the minimal margin of
h1, . . . , ht, it depends only on the estimation parameter ρ.

A few years later, (Rätsch & Warmuth, 2005) introduced
AdaBoostV. It is a clever extension of AdaBoostρ that uses
an adaptive estimate of ρ∗ to remove the need to binary
search for it. It achieves a gap of v using T = O(lg(n)/v2)
base hypotheses and no extra iterations of training.

Lower Bounds. (Klein & Young, 1999) showed a lower
bound for a seemingly unrelated game theoretic problem. It
was later pointed out by (Nie et al., 2013) that their result im-
plies the following lower bound for boosting: there exists a
data set of n points and a corresponding set of base hypothe-
ses H, such that any linear combination of T ∈ [lg n;

√
n]

base hypotheses must have a gap of v = Ω(
√

lg(n)/T ).
Rewriting in terms of T we get T = Ω

(
lg(n)/v2

)
for√

lg(n)/n1/4 ≤ v ≤ a1 for some constant a1 > 0.

(Nie et al., 2013) conjectured that Klein and Young’s lower
bound of v = Ω(

√
lg(n)/T ) holds for all T ≤ a1 · n

for some constant a1 > 0. Rewriting in terms of T , they
conjecture that T = Ω(lg(n)/v2) holds for

√
a2/n ≤ v ≤

a3 where a2, a3 > 0 are some constants.

1.2. Our Results on Minimal Margin

Our main result is a novel algorithm, called SparsiBoost,
which refutes the conjectured lower bound in (Nie et al.,
2013). Concretely, SparsiBoost guarantees a gap of v with
just T = O(lg(nv2)/v2) hypotheses. At a first glance
it might seem SparsiBoost violates the lower bound of
Klein and Young. Rewriting in terms of v, our upper
bound becomes v = O(

√
lg(n/T )/T ) (see appendix in

the full version of this paper (Grønlund et al., 2019) for
how to perform the rewriting). When T ≤

√
n (the range

of parameters where their lower bound applies), this be-
comes v = O(

√
lg(n)/T ) which does not violate Klein

and Young’s lower bound. Moreover, our upper bound ex-
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plains why both (Klein & Young, 1999) and (Nie et al.,
2013) were not able to generalize the lower bound to all
T = O(n): When T = n1−o(1), our algorithm achieves a
gap of v = O(

√
lg(no(1))/T ) = o(

√
lg(n)/T ).

The high level idea of SparsiBoost is as follows: Given a
desired gap v, we use AdaBoostV to find m = O(lg(n)/v2)
hypotheses h1, . . . , hm and weights w1, . . . , wm such that∑
i wihi achieves a gap of v/2. We then carefully “spar-

sify” the vector w = (w1, . . . , wm) to obtain another vector
w′ that has at most T = O(lg(nv2)/v2) non-zeroes. Our
sparsification is done such that the margin of every single
data point changes by at most v/2 when replacing

∑
i wihi

by
∑
i w
′
ihi. In particular, this implies that the minimum

margin, and hence gap, changes by at most v/2. We can
now safely ignore all hypotheses hi where w′i = 0 and we
have obtained the claimed gap of at most v/2 + v/2 = v
using T = O(lg(nv2)/v2) hypotheses.

Our algorithm for sparsifying w gives a general method
for sparsifying a vector while approximately preserving a
matrix-vector product. We believe this result may be of inde-
pendent interest and describe it in more detail here: The algo-
rithm is given as input a matrixU ∈ [−1,+1]n×m and a vec-
tor w ∈ Rm where ‖w‖1 = 1. It then finds a vector w′ such
that ‖Uw − Uw′‖∞ = O(lg(n/T )/T ), ‖w′‖0 ≤ T and
‖w′‖1 = 1. Here ‖x‖1 =

∑
i |xi|, ‖x‖∞ = maxi|xi| and

‖x‖0 denotes the number of non-zero entries of x. When
we use this result in SparsiBoost, we will define the matrix
U as the “margin matrix” that has uij = yihj(xi). Then
(Uw)i = margin(xi) and the guarantee ‖Uw − Uw′‖∞ =
O(lg(n/T )/T ) will ensure that the margin of every single
point changes by at most O(lg(n/T )/T ) if we replace the
weights w by w′. Our algorithm for finding w′ is based on a
novel connection to the celebrated but seemingly unrelated
“six standard devitations suffice” result by (Spencer, 1985)
from the field of combinatorial discrepancy minimization.

When used in SparsiBoost, the matrix U is defined from the
output of AdaBoostV, but the vector sparsification algorithm
could just as well be applied to the hypotheses output by any
boosting algorithm. Thus our results give a general method
for sparsifying a boosting classifier while approximately
preserving the margins of all points.

We complement our new upper bound with a matching lower
bound. More concretely, we prove that there exists data sets
D of n points and a corresponding set of base hypotheses
H, such that any linear combination of T base hypotheses
must have a gap of at least v = Ω(

√
lg(n/T )/T ) for any

lg n ≤ T ≤ a1n where a1 > 0 is a constant. Rewriting in
terms of T , one must use T = Ω(lg(nv2)/v2) hypotheses
fromH to achieve a gap of v. This holds for any v satisfying√
a2/n < v ≤ a3 for constants a2, a3 > 0 (see appendix in

full version (Grønlund et al., 2019) for how to perform the
rewriting). Interestingly, our lower bound proof also uses

the discrepancy minimization upper bound by (Spencer,
1985) in a highly non-trivial way. Our lower bound also
shows that our vector sparsification algorithm is optimal for
any T ≤ n/C for some universal constant C > 0.

1.3. Margin Bounds and Doubts on Margin Theory

The first margin bound on boosted classifiers was introduced
by (Schapire et al., 1998). Shortly after, (Breiman, 1999)
introduced a sharper minimal margin bound alongside Arc-
GV. Experimentally Breimann found that Arc-GV produced
better margins than AdaBoost on 98 percent of the training
data, however, AdaBoost still obtained a better test error.
This seemed to contradict margin theory: according to mar-
gin theory, better margins should imply better generalization.
This caused Breimann to doubt margin theory. It was later
discovered by (Reyzin & Schapire, 2006) that the compari-
son was unfair due to a difference in the complexity of the
base hypotheses used by AdaBoost and Arc-GV. (Reyzin
& Schapire, 2006) performed a variant of Breimann’s ex-
periments with decision stumps to control the hypotheses
complexity. They found that even though Arc-GV produced
a better minimal margin, AdaBoost produced a larger mar-
gin on almost all other points (Reyzin & Schapire, 2006)
and that AdaBoost generalized better.

A few years later, (Wang et al., 2008) introduced a sharper
margin bound than Breimann’s minimal margin bound. The
generalization bound depends on a term called the Equi-
librium Margin, which itself depends on the margin distri-
bution in a highly non-trivial way. This was followed by
the k-margin bound by (Gao & Zhou, 2013) that provide
generalization bounds based on the k’th smallest margin
for any k. The bound gets weaker with increasing k, but
stronger with increasing margin. In essence, this means that
we get stronger generalization bounds if the margins are
large for small values of k.

Recall from the discussion in Section 1.2 that our
sparsification algorithm preserves all margins to within
O(
√

lg(n/T )/T ) additive error. We combined this result
with AdaBoostV to get our algorithm SparsiBoost which
obtained an optimal trade-off between minimal margin and
number of hypotheses. While minimal margin might be
insufficient for predicting generalization performance, our
sparsification algorithm actually preserves the full distri-
bution of margins. Thus according to margin theory, the
sparsified classifier should approximately preserve the gen-
eralization performance of the full unsparsified classifier. To
demonstrate this experimentally, we sparsified a classifier
trained with LightGBM (Ke et al., 2017), a highly efficient
open-source implementation of Gradient Boosting (Mason
et al., 2000; Friedman, 2001). We compared the margin dis-
tribution and the test error of the sparsified classifier against
a LightGBM classifier trained directly to have the same
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number of hypotheses. Our results (see Section 4) show that
the sparsified classifier has a better margin distribution and
indeed generalize better than the LightGBM classifier.

1.4. Previous Work on Sparsification

Maintaining or improving the performance of a linear com-
bination of base learners, while minimizing the number of
base learners used, is known as ensemble pruning. The
idea was introduced in (Margineantu & Dietterich, 1997)
and many new methods and heuristics have been proposed
since then, most focusing on optimizing both objectives in
different ways. We refer to (Guo et al., 2018; Qian et al.,
2015) for a longer explanation of the history of ensemble
pruning, including a method that considers margins. We
note that none of the previous approaches provide provable
guarantees on the margin distribution.

2. SparsiBoost
In this section we introduce SparsiBoost. The algorithm
takes the following inputs: training data D, a target num-
ber of hypotheses T and a base learning algorithm A that
returns hypotheses from a classH of possible base hypothe-
ses. SparsiBoost initially trains c · T hypotheses for some
appropriate c, by running AdaBoostV with the base learning
algorithm A. It then removes the extra c · T − T hypothe-
ses while attempting to preserve the margins on all training
examples. See Algorithm 1 for pseudocode.

In more detail, let h1, ..., hcT ∈ H be the hypotheses re-
turned by AdaBoostV with weights w1, ..., wcT . Construct
a margin matrix U that contains the margin of every hypoth-
esis hj on every point xi such that uij = yihj(xi). Letw be
the vector of hypothesis weights, meaning that the j’th coor-
dinate of w has the weight wj of hypothesis hj . Normalize
w = w/‖w‖1 such that ‖w‖1 = 1. The product Uw is then
a vector that contains the margins of the linear combination
on all points: (Uw)i = yi

∑cT
j=1 wjhj(xi) = margin(xi).

Removing hypotheses while preserving the margins can
be formulated as sparsifying w to w′ while minimizing
‖Uw − Uw′‖∞ subject to ‖w′‖0 ≤ T and ‖w′‖1 = 1.

We still haven’t described how to find w′ with the guar-
antees shown in Algorithm 1 step 4., i.e. a w′ with
‖Uw − Uw′‖∞ = O(

√
lg(2 + n/T )/T ). It is not even

clear that such w′ exists, much less so that it can be found
efficiently. Before we dive into the details of how to find
w′, we briefly demonstrate that indeed such a w′ would be
sufficient to establish our main theorem:

Theorem 2.1. SparsiBoost is guaranteed to find a linear
combination w′ of at most T base hypotheses with gap
v = O(

√
lg(2 + n/T )/T ).

Proof. We assume throughout the proof that a w′ with the

Algorithm 1 SparsiBoost
Input: Training data D = {(xi, yi)}ni=1 where xi ∈ X for
some input space X and yi ∈ {−1,+1}. Target number of
hypotheses T and base learning algorithm A.
Output: Hypotheses h1, . . . , hk and weights
w1, . . . , wk with k ≤ T , such that

∑
i wihi has gap

O(
√

lg(2 + n/T )/T ) on D.

1. Run AdaBoostV with base learning algorithm A on train-
ing data D to get cT hypotheses h1, . . . , hcT and weights
w1, . . . , wcT for the integer c = dlg(n)/ lg(2 + n/T )e.
2. Construct margin matrix U ∈ [−1,+1]n×cT where
uij = yihj(xi).
3. Form the vector w with i’th coordinate wi and normalize
w ← w/‖w‖1 so ‖w‖1 = 1.
4. Find w′ such that ‖w′‖0 ≤ T , ‖w′‖1 = 1 and
‖Uw − Uw′‖∞ = O(

√
lg(2 + n/T )/T ).

5. Let π(j) denote the index of the j’th non-zero entry of
w′.
6. Return hypotheses hπ(1), . . . , hπ(‖w′‖0) with weights
w′π(1), . . . , w

′
π(‖w′‖0).

guarantees claimed in Algorithm 1 can be found. Suppose
we run AdaBoostV to get cT base hypotheses h1, ..., hcT
with weights w1, ..., wcT . Let ρcT be the minimal margin of
the linear combination

∑
i wihi on the training data D, and

let ρ∗ be the optimal minimal margin over all linear combi-
nations of base hypotheses from H. As proved in (Rätsch
& Warmuth, 2005), AdaBoostV guarantees that the gap is
bounded by ρ∗−ρcT = O(

√
lg(n)/(cT )). Normalize w =

w/‖w‖1 and let U be the margin matrix uij = yihj(xi)
as in Algorithm 1. Then ρcT = mini(Uw)i. From our
assumption, we can efficiently find w′ such that ‖w′‖1 = 1,
‖w′‖0 ≤ T and ‖Uw − Uw′‖∞ = O(

√
lg(2 + n/T )/T ).

Consider the hypotheses that correspond to the non-zero
entries of w′. There are at most T . Let ρT be their mini-
mal margin when using the corresponding weights from
w′. Since w′ has unit `1-norm, it follows that ρT =
mini(Uw

′)i and thus |ρT−ρcT | ≤ maxi |(Uw)i−(Uw′)i|,
i.e. |ρcT −ρT | ≤ ‖Uw−Uw′‖∞ = O(

√
lg(2 + n/T )/T ).

We therefore have:

ρ∗ − ρT = (ρ∗ − ρcT ) + (ρcT − ρT ) ≤

O(
√

lg(n)/(cT )) +O(
√

lg(2 + n/T )/T ).

By choosing c = lg(n)/ lg(2 + n/T ) (as in Algorithm 1)
we get that ρ∗ − ρT = O(

√
lg(2 + n/T )/T ).

The core difficulty in our algorithm is thus finding an ap-
propriate w′ (step 4 in Algorithm 1) and this is the focus
of the remainder of this section. Our algorithm for finding
w′ gives a general method for sparsifying a vector w while
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approximately preserving every coordinate of the matrix-
vector product Uw for some input matrix U . The guarantees
we give are stated in the following theorem:

Theorem 2.2. (Sparsification Theorem) For all matri-
ces U ∈ [−1,+1]n×m, all w ∈ Rm with ‖w‖1 =
1 and all T ≤ m, there exists a vector w′ where
‖w′‖1 = 1 and ‖w′‖0 ≤ T , such that ‖Uw − Uw′‖∞ =
O(
√

lg(2 + n/T )/T ).

Theorem 2.2 is exactly what was needed in the proof of
Theorem 2.1. Our proof of Theorem 2.2 will be constructive
in that it gives an algorithm for finding w′. To keep the
proof simple, we will argue about running time at the end
of the section.

The first idea in our algorithm and proof of Theorem 2.2, is
to reduce the problem to a simpler task, where instead of
reducing the number of hypotheses directly to T , we only
halve the number of hypotheses:

Lemma 2.1. For all matrices U ∈ [−1,+1]n×m and
w ∈ Rm with ‖w‖1 = 1, there exists w′ where ‖w′‖0 ≤
‖w‖0/2 and ‖w′‖1 = 1, such that ‖Uw − Uw′‖∞ =
O(
√

lg(2 + n/‖w‖0)/‖w‖0).

To prove Theorem 2.2 from Lemma 2.1, we can repeatedly
apply Lemma 2.1 until we are left with a vector with at most
T non-zeroes. Since the loss O(

√
lg(2 + n/‖w‖0)/‖w‖0)

has a
√

1/‖w‖0 factor, we can use the triangle inequality
to conclude that the total loss is a geometric sum that is
asymptotically dominated by the very last invocation of the
halving procedure. Since the last invocation has ‖w‖0 > T
(otherwise we would have stopped earlier), we get a total
loss ofO(

√
lg(2 + n/T )/T ) as desired. The proof is in the

full version (Grønlund et al., 2019).

The key idea in implementing the halving procedure
Lemma 2.1 is as follows: Let π(j) denote the index of
the j’th non-zero in w and let π−1(j) denote the index i
such that wi is the j’th non-zero entry of w. First we con-
struct a matrix A where the j’th column of A is equal to
the π(j)’th column of U scaled by the weight wπ(j). The
sum of the entries in the i’th row of A is then equal to the
i’th entry of Uw (since

∑
j aij =

∑
j wπ−1(j)uiπ−1(j) =∑

j:wj 6=0 wjuij =
∑
j wjuij = (Uw)i). Minimizing

‖Uw − Uw′‖∞ can then be done by finding a subset of
columns of A that approximately preserves the row sums.
This is formally expressed in Lemma 2.2 below. For ease of
notation we define a± [x] to be the interval [a− x, a+ x]
an ±[x] to be the interval [−x, x].

Lemma 2.2. For all matrices A ∈ [−1, 1]n×T there exists
a submatrix Â ∈ [−1, 1]n×k consisting of k ≤ T/2 distinct
columns fromA, such that for all i, it holds that

∑k
j=1 âij ∈

1
2

∑T
j=1 aij ±

[
O(
√
T lg(2 + n/T ))

]
.

Intuitively we can now use Lemma 2.2 to select a subset
S of at most T/2 columns in A. We can then replace the
vector w with w′ such that w′i = 2wi if i = π−1(j) for
some j ∈ S and w′i = 0 otherwise. In this way, the i’th
coordinate (Uw′)i equals the i’th row sum in Â, scaled
by a factor two. By Lemma 2.2, this in turn approximates
the i’th row sum in A (and thus (Uw)i) up to additively
O(
√
T lg(2 + n/T )).

Unfortunately our procedure is not quite that straightfor-
ward since O(

√
T lg(2 + n/T )) is way too large compared

to O(
√

lg(2 + n/‖w‖0)/‖w‖0) = O(
√

lg(2 + n/T )/T ).
Fortunately Lemma 2.2 only needs the coordinates of A to
be in [−1, 1]. We can thus scale A by 1/maxi |wi| and still
satisfy the constraints. This in turn means that the loss is
scaled down by a factor maxi |wi|. However, maxi |wi|may
be as large as 1 for highly unbalanced vectors. Therefore,
we start by copying the largest T/3 entries ofw tow′ and in-
voke Lemma 2.2 twice on the remaining 2T/3 entries. This
ensures that the O(

√
T lg(2 + n/T )) loss in Lemma 2.2

gets scaled by a factor at most 3/T (since ‖w‖1 = 1, all
remaining coordinates are less than or equal to 3/T ), while
leaving us with at most T/3 + (2T/3)/4 = T/3 + T/6 =
T/2 non-zero entries as required. Since we normalize
by at most 3/T , the error becomes ‖Uw − Uw′‖∞ =
O(
√
T lg(2 + n/T )/T ) = O(

√
lg(2 + n/T )/T ) as de-

sired. As a last technical detail, we also need to ensure
that w′ satisfies ‖w′‖1 = 1. We do this by adding an extra
row to A such that a(n+1)j = wj . In this way, preserving
the last row sum also (roughly) preserves the `1-norm of
w and we can safely normalize w′ as w′ ← w′/‖w‖1. A
formal proof is in the full version (Grønlund et al., 2019).

The final step of our algorithm is thus to select a subset of
at most half of the columns from a matrix A ∈ [−1, 1]n×T ,
while approximately preserving all row sums. Our idea for
doing so builds on the following seminal result by Spencer:
Theorem 2.3. (Spencer’s Theorem (Spencer, 1985)) For
all matrices A ∈ [−1,+1]n×T with T ≤ n, there exists
x ∈ {−1,+1}T such that ‖Ax‖∞ = O(

√
T ln(en/T )).

For all matrices A ∈ [−1,+1]n×T with T > n, there exists
x ∈ {−1,+1}T such that ‖Ax‖∞ = O(

√
n).

We use Spencer’s Theorem as follows: We find a vector
x ∈ {−1,+1}T with ‖Ax‖∞ = O(

√
T ln(en/T )) if T ≤

n and with ‖Ax‖∞ = O(
√
n) = O(

√
T ) if T > n. Thus

we always have ‖Ax‖∞ = O(
√
T lg(2 + n/T )). Con-

sider now the i’th row of A and notice that |
∑
j:xj=1 aij −∑

j:xj=−1 aij | ≤ ‖Ax‖∞. That is, for every single row, the
sum of the entries corresponding to columns where x is 1, is
almost equal (up to ±‖Ax‖∞) to the sum over the columns
where x is −1. Since the two together sum to the full row
sum, it follows that the subset of columns with xi = 1 and
the subset of columns with xi = −1 both preserve the row
sum as required by Lemma 2.2. Since x has at most T/2
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of either +1 or −1, it follows that we can find the desired
subset of columns. The proof of Lemma 2.2 using Spencer’s
Theorem is in the full version (Grønlund et al., 2019).

Algorithm 2 Sparsification
Input: Matrix U ∈ [−1, 1]n×m, vector w ∈ Rm with
‖w‖1 = 1 and target T ≤ m.
Output: A vector w′ ∈ Rm with ‖w′‖1 = 1, ‖w′‖0 ≤ T
and ‖Uw − Uw′‖∞ = O(

√
lg(2 + n/T )/T ).

1. Let w′ ← w.
2. While ‖w′‖0 > T :
3. Let R be the indices of the ‖w′‖0/3 entries in w′

with largest absolute value.
4. Let ω := maxi/∈R |wi| be the largest value of

an entry outside R.
5. Do Twice:
6. Let π(1), π(2), . . . , ..., π(k) be the indices of

the non-zero entries in w′ that are not in R.
7. Let A ∈ [−1, 1](n+1)×k have

aij = uiπ(j)w
′
π(j)/ω for i ≤ n and

a(n+1)j = |w′π(j)|/ω.
8. Invoke Spencer’s Theorem to find x ∈ {−1, 1}k

such that ‖Ax‖∞ = O(
√
k lg(2 + n/k)).

9. Let σ ∈ {−1, 1} denote the sign such that
xi = σ for at most k/2 indices i.

10. Update w′i as follows:
11. If there is a j such that i = π−1(j) and

xj = σ: set w′i ← 2w′i.
12. If there is a j such that i = π−1(j) and

xj 6= σ: set w′i ← 0.
13. Otherwise (i ∈ R or w′i = 0): set w′i ← w′i.
14. Update w′ ← w′/‖w′‖1.
15. Return w′.

We have summarized the entire sparsification algorithm in
Algorithm 2 and end with a few added remarks.

Running Time. While Spencer’s original result (Theo-
rem 2.3) is purely existential, recent follow up work (Lovett
& Meka, 2015) show how to find the vector x ∈ {−1,+1}n
in expected Õ((n + T )3) time, where Õ hides polyloga-
rithmic factors. A small modification to the algorithm was
suggested in (Larsen, 2017). This modification reduces the
running time of Lovett and Meka’s algorithm to expected
Õ(nT + T 3). This is far more desirable as T tends to be
much smaller than n in boosting. Moreover, the nT term
is already paid by running AdaBoostV. Using this in Step
7. of Algorithm 2, we get a total expected running time of
Õ(nT + T 3). We remark that these algorithms are random-
ized and lead to different vectors x on different executions.

Non-Negativity. Examining Algorithm 2, we observe that
the weights of the input vector are only ever copied, set to
zero, or scaled by a factor two. Hence if the input vector w
has non-negative entries, then so has the final output vector
w′. This may be quite important if one interprets the linear
combination over hypotheses as a probability distribution.

Importance Sampling. Another natural approach one
might attempt in order to prove our sparsification result, The-
orem 2.2, is to apply importance sampling. Importance sam-
pling samples T entries from w with replacement, such that
each entry i is sampled with probability |wi|. It then returns
the vector w′ where coordinate i is equal to sign(wi)ni/T
where ni denotes the number of times i was sampled and
sign(wi) ∈ {−1, 1} gives the sign of wi. Analysing this
method gives a w′ with ‖Uw − Uw′‖∞ = Θ(

√
lg(n)/T )

(with high probability), i.e. slightly worse than our ap-
proach based on discrepancy minimization. The loss in the
lg is enough that if we use importance sampling in Sparsi-
Boost, then we get no improvement over simply stopping
AdaBoostV after T iterations.

3. Lower Bound
In this section, we explain our lower bound stating that there
exist a data set and corresponding set of base hypothesesH,
such that if one uses only T of the base hypotheses in H,
then one cannot obtain a gap smaller than Ω(

√
lg(n/T )/T ).

Similar to the approach taken in (Nie et al., 2013), we model
a data set D = {(xi, yi)}ni=1 of n data points and a corre-
sponding set of k base hypothesesH = {h1, . . . , hk} as an
n × k matrix A. The entry ai,j is equal to yihj(xi). We
prove our lower bound for binary classification where the
hypotheses take values only amongst {−1,+1}, meaning
that A ∈ {−1,+1}n×k. Thus an entry ai,j is +1 if hypoth-
esis hj is correct on point xi and it is −1 otherwise. We
remark that proving the lower bound under the restriction
that hj(xi) is among {−1,+1} instead of [−1,+1] only
strengthens the lower bound.

Notice that if w ∈ Rk is a vector with ‖w‖1 = 1, then
(Aw)i gives exactly the margin on data point (xi, yi) when
using the linear combination

∑
j wjhj of base hypotheses.

The optimal minimum margin ρ∗ for a matrix A is thus
equal to ρ∗ := maxw∈Rk:‖w‖1=1 mini(Aw)i. We now seek
a matrix A for which ρ∗ is at least Ω(

√
lg(n/T )/T ) larger

than mini(Aw)i for all w with ‖w‖0 ≤ T and ‖w‖1 = 1.
If we can find such a matrix, it implies the existence of a
data set (rows) and a set of base hypotheses (columns) for
which any linear combination of up to T base hypotheses
has a gap of Ω(

√
lg(n/T )/T ). The lower bound thus holds

regardless of how an algorithm would try to determine which
linear combination to construct.

When showing the existence of a matrix A with a large
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gap, we fix k = n, i.e. the set of base hypotheses H has
cardinality equal to the number of data points. The following
theorem shows the existence of the desired matrix A:

Theorem 3.1. There exists a universal constant C > 0
such that for all sufficiently large n and all T with lnn ≤
T ≤ n/C, there exists a matrix A ∈ {−1,+1}n×n such
that: 1) Let v ∈ Rn be the vector with all coordinates equal
to 1/n. Then all coordinates of Av are greater than or
equal to −O(1/

√
n). 2) For every vector w ∈ Rn with

‖w‖0 ≤ T and ‖w‖1 = 1, it holds that: mini(Aw)i ≤
−Ω

(√
lg(n/T )/T

)
.

Quite surprisingly, Theorem 3.1 shows that for any T with
lnn ≤ T ≤ n/C, there is a matrix A ∈ {−1,+1}n×n
for which the uniform combination of base hypotheses∑n
j=1 hj/n has a minimum margin that is much higher

than what is possible using only T base hypotheses. Specif-
ically, let A be a matrix satisfying the properties of The-
orem 3.1 and let v ∈ Rn be the vector with all coordi-
nates 1/n. Then ρ∗ := maxw∈Rk:‖w‖1=1 mini(Aw)i ≥
mini(Av)i = −O(1/

√
n). By the second property in The-

orem 3.1, it follows that any linear combination of at
most T base hypotheses must have a gap of −O(1/

√
n)−(

−Ω
(√

lg(n/T )/T
))

= Ω
(√

lg(n/T )/T
)
. This is

precisely the claimed lower bound. This also shows that our
vector sparsification algorithm from Theorem 2.2 is optimal
for any T ≤ n/C. To prove Theorem 3.1, we first show the
existence of a matrix B ∈ {−1,+1}n×n having the second
property. We then apply Spencer’s Theorem (Theorem 2.3)
to “transform” B into a matrix A having both properties.
We find it surprising that Spencer’s result finds applications
in both our upper and lower bound.

That a matrix satisfying the second property in Theorem 3.1
exists is expressed in the following lemma:

Lemma 3.1. There exists a universal constant C > 0 such
that for all sufficiently large n and all T with lnn ≤ T ≤
n/C, there exists a matrix A ∈ {−1,+1}n×n such that for
every vector w ∈ Rn with ‖w‖0 ≤ T and ‖w‖1 = 1 it

holds that: mini(Aw)i ≤ −Ω
(√

ln(n/T )/T
)
.

We prove Lemma 3.1 in the full version (Grønlund et al.,
2019), and move on to show how we use it in combination
with Spencer’s Theorem to prove Theorem 3.1:

Proof. Let B be a matrix satisfying the statement in
Lemma 3.1. Using Spencer’s Theorem (Theorem 2.3), we
get that there exists a vector x ∈ {−1,+1}n such that
‖Bx‖∞ = O(

√
n ln(en/n)) = O(

√
n). Now form the

matrix A which is equal to B, except that the i’th column
is scaled by xi. Then A1 = Bx where 1 is the all-ones vec-
tors. Normalizing the all-ones vector by a factor 1/n yields
the vector v with all coordinates equal to 1/n. Moreover,

it holds that ‖Av‖∞ = ‖Bx‖∞/n = O(1/
√
n), which in

turn implies that mini(Av)i ≥ −O(1/
√
n).

Now consider any vector w ∈ Rn with ‖w‖0 ≤ T and
‖w‖1 = 1. Let w̃ be the vector obtained from w by
multiplying wi by xi. Then Aw = Bw̃. Furthermore
‖w̃‖1 = ‖w‖1 = 1 and ‖w̃‖0 = ‖w‖0 ≤ T . It follows
from Lemma 3.1 and our choice of B that mini(Aw)i =

mini(Bw̃)i ≤ −Ω
(√

ln(n/T )/T
)
.

We sketch the proof of Lemma 3.1 here: At a high level,
our proof goes as follows: First argue that for a fixed vector
w ∈ Rn with ‖w‖0 ≤ T and ‖w‖1 = 1 and a random
matrix A ∈ {−1,+1}n×n with each coordinate chosen
uniformly and independently, it holds with very high prob-
ability that Aw has many coordinates that are less than
−a1(

√
ln(n/T )/T ) for a constant a1. Now intuitively we

would like to union bound over all possible vectors w and
argue that with non-zero probability, all of them satisfies
this simulatenously. This is not directly possible as there are
infinitely many w. Instead, we create a net W consisting
of a collection of carefully chosen vectors. The net has the
property that any w with ‖w‖1 = 1 and ‖w‖0 ≤ T is close
to a vector w̃ ∈ W . Since the net is not too large, we can
union bound over all vectors in W and find a matrix A with
the above property for all vectors in W simultaneously.

For an arbitrary vector w with ‖w‖1 = 1 and ‖w‖0 ≤ T ,
we can then write Aw = Aw̃ + A(w − w̃) where w̃ ∈ W
is close to w. Since w̃ ∈ W we get that Aw̃ has many
coordinates that are less than −a1(

√
ln(n/T )/T ). The

problem is that A(w − w̃) might cancel out these negative
coordinates. However, w − w̃ is a very short vector so this
seems unlikely. To prove it formally, we show that for every
vector v ∈W , there are also few coordinates in Av that are
greater than a2(

√
ln(n/T )/T ) in absolute value for some

constant a2 > a1. We can then round (w− w̃)/‖w− w̃‖1 to
a vector in the net, apply this reasoning and recurse on the
difference between (w − w̃)/‖w − w̃‖1 and the net vector.
See the full version (Grønlund et al., 2019) for details.

4. Experiments
Gradient Boosting (Mason et al., 2000; Friedman, 2001) is
probably the most popular boosting algorithm in practice.
It has several highly efficient open-source implementations
(Chen & Guestrin, 2016; Ke et al., 2017; Prokhorenkova
et al., 2018) and obtain state-of-the-art performance in many
machine learning tasks (Ke et al., 2017). In this section we
demonstrate how our sparsification algorithm can be com-
bined with Gradient Boosting. For simplicity we consider a
single dataset in this section, the Flight Delay dataset (air),
see the full version (Grønlund et al., 2019) for similar results
on other dataset.
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Figure 1. The plot depicts the cumulative margins of three classi-
fiers: (1) a LightGBM classifier with 500 hypotheses (2) a clas-
sifier sparsified from 500 to 80 hypotheses and (3) a LightGBM
classifier with 80 hypotheses.

We train a classifier with T = 500 hypotheses using Light-
GBM (Ke et al., 2017) which we sparsify using Theorem 2.2
to have T ′ = 80 hypotheses. The sparsified classifier is guar-
anteed to preserve all margins of the original classifier to an
additiveO(

√
lg(n/T ′)/T ′). The cumulative margins of the

sparsified classifier and the original classifier are depicted
in Figure 1. Furthermore, we also depict the cumulative
margins of a LightGBM classifier trained to have T ′ = 80
hypotheses. First observe the difference between the Light-
GBM classifiers with T = 500 and T ′ = 80 hypotheses
(blue and orange in Figure 1). The margins of the classifier
with T = 500 hypotheses vary less. It has fewer points
with a large margin, but also fewer points with a small
margin. The margin distribution of the sparsified classifier
with T ′ = 80 approximates the margin distribution of the
LightGBM classifier with T = 500 hypotheses. Inspired
by margin theory one might suspect this leads to better gen-
eralization. To investigate this, we performed additional
experiments computing AUC and classification accuracy
of several sparsified classifiers and LightGBM classifiers
on a test set (we show the results for multiple sparsified
classifiers due to the randomization in the discrepancy mini-
mization algorithms). The experiments indeed show that the
sparsified classifiers outperform the LightGBM classifiers
with the same number of hypotheses. See Figure 2 for test
AUC and test classification accuracy.

Further Experiments and Importance Sampling. In-
spired by the experiments in (Wang et al., 2008; Ke et al.,
2017; Chen & Guestrin, 2016) we also performed the above
experiments on the Higgs (Whiteson, 2014) and Letter
(Dheeru & Karra Taniskidou, 2017) datasets. See the full
version (Grønlund et al., 2019) for (1) further experimental
details and (2) for cumulative margin, AUC and test accu-
racy plots on all dataset for different values of n and T and
(3) a comparison that shows SparsiBoost obtain equal or bet-
ter minimal margin compared to AdaBoost and AdaBoostV
in the experimental setting of (Reyzin & Schapire, 2006).

As mentioned in Section 2, one could use importance sam-
pling for sparsification. It has a slightly worse theoretical
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Figure 2. The plot depicts test AUC and test classification accu-
racy of a LightGBM classifier during training as the number of
hypotheses increase (in blue). Notice the x-axis is logarithmically
scaled. The final classifier with 500 hypotheses was sparsified
with Theorem 2.2 multiple times to have between T/2 to T/16
hypotheses. The green triangles show test AUC and test accuracy
of the resulting sparsified classifiers. The red cross represents the
sparsified classifier used to plot the cumulative margins in Figure 1.

guarantee, but might work better in practice. The full ver-
sion (Grønlund et al., 2019) also contains test AUC and test
accuracy of the classifiers that result from using importance
sampling instead of our algorithm based on discrepancy
minimization. Our algorithm and importance sampling are
both random so the experiments were repeated several times.
On average over the experiments, our algorithm outperforms
importance sampling.

A Python implementation of Theorem 2.2 can be found at:
https://github.com/AlgoAU/DiscMin

5. Conclusion
A long line of research into obtaining a large minimal mar-
gin using few hypotheses (Breiman, 1999; Grove & Schu-
urmans, 1998; Bennett et al., 2000; Rätsch & Warmuth,
2002) culminated with the AdaBoostV (Rätsch & Warmuth,
2005) algorithm. AdaBoostV was later conjectured by (Nie
et al., 2013) to provide an optimal trade-off between mini-
mal margin and number of hypotheses. In this article, we
introduced SparsiBoost which refutes the conjecture of (Nie
et al., 2013). Furthermore, we show a matching lower bound,
which implies that SparsiBoost is optimal.

The key idea behind SparsiBoost, is a sparsification algo-
rithm that reduces the number of hypotheses while approx-
imately preserving the entire margin distribution. Exper-
imentally, we combine our sparsification algorithm with
LightGBM. We find that the sparsified classifiers obtains a
better margin distribution, which typically yields a better
test AUC and test classification error when compared to a
classifier trained directly to the same number of hypotheses.

https://github.com/AlgoAU/DiscMin
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