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A. Proofs for Disentangling the β-VAE

Theorem 1. The β-VAE target Lβ(x) can be interpreted in
terms of the standard ELBO,L (x;πθ,β , qφ), for an adjusted
target πθ,β(x, z) , pθ(x | z)fβ(z) with annealed prior
fβ(z) , p(z)

β
/Fβ as

Lβ(x) = L (x;πθ,β , qφ) + (β − 1)Hqφ + logFβ (3)

where Fβ ,
∫
z
p(z)

β
dz is constant given β, and Hqφ is

the entropy of qφ(z | x).

Proof. Starting with (2), we have

Lβ(x) =Eqφ(z|x)[log pθ(x | z)] + βHqφ

+ β Eqφ(z|x)[log p(z)]

=Eqφ(z|x)[log pθ(x | z)] + (β − 1)Hqφ +Hqφ

+ Eqφ(z|x)
[
log p(z)

β − logFβ

]
+ logFβ

=Eqφ(z|x)[log pθ(x | z)] + (β − 1)Hqφ

− KL(qφ(z | x) ‖ fβ(z)) + logFβ

=L (x;πθ,β , qφ) + (β − 1)Hqφ + logFβ

as required.

Corollary 1. If p(z) = N (z; 0,Σ) and qφ(z | x) =
N (z;µφ(x), Sφ(x)), then,

Lβ(x; θ, φ) = L (x; θ′, φ′) +
(β − 1)

2
log|Sφ′(x)|+ c (4)

where θ′ and φ′ represent rescaled networks such that

pθ′(x | z) = pθ

(
x | z/

√
β
)
,

qφ′(z|x) = N (z;µφ′(x), Sφ′(x)) ,

µφ′(x) =
√
βµφ(x), Sφ′(x) = βSφ(x),

and c , D(β−1)
2

(
1 + log 2π

β

)
+ logFβ is a constant,

with D denoting the dimensionality of z.

Proof. We start by noting that

πθ,β(x) = Efβ(z)[pθ(x | z)] = Ep(z)
[
pθ

(
x | z/

√
β
)]

= Ep(z)[pθ′(x | z)] = pθ′(x)

Now considering an alternate form of L (x;πθ,β , qφ) in (3),

L (x;πθ,β , qφ)

= log πθ,β(x)− KL(qφ(z | x) ‖ πθ,β(z | x))

= log pθ′(x)− Eqφ(z|x)
[
log

(
qφ(z | x)pθ′(x)

pθ(x | z)fβ(z)

)]

= log pθ′(x)

− Eqφ′ (z|x)

[
log

(
qφ
(
z/
√
β | x

)
pθ′(x)

pθ(x | z/
√
β)fβ(z/

√
β)

)]
.

(8)

We first simplify fβ(z/
√
β) as

fβ(z/
√
β) =

1√
2π|Σ/β|

exp

(
−1

2
zTΣ−1z

)
= p(z)β(D/2).

Further, denoting z† = z−
√
βµφ′(x), and z‡ = z†/

√
β =

z/
√
β − µφ′(x), we have

qφ′(z | x) =
1√

2π|Sφ(x)β|
exp

(
− 1

2β
zT† Sφ(x)−1z†

)
,

qφ

(
z√
β
| x
)

=
1√

2π|Sφ(x)|
exp

(
−1

2
zT‡ Sφ(x)−1z‡

)
giving qφ

(
z/
√
β | x

)
= qφ′(z | x)β(D/2).

Plugging these back in to (8) while remembering pθ(x |
z/
√
β) = pθ′(x | z), we have

L (x;πθ,β , qφ)

= log pθ′(x)− Eqφ′ (z|x)
[
log

(
qφ′(z | x)pθ′(x)

pθ′(x | z)p(z)

)]
= L(x; θ, φ),

showing that the ELBOs for the two setups are the same.
For the entropy term, we note that

Hqφ =
D

2
(1 + log 2π) +

1

2
log|Sφ(x)|

=
D

2

(
1 + log

2π

β

)
+

1

2
log|Sφ′(x)|.

Finally substituting for Hqφ and L (x;πθ,β , qφ) in (3) gives
the desired result.

Corollary 2. Let [θ′, φ′] = gβ([θ, φ]) represent the trans-
formation required to produced the rescaled networks in
Corollary 1. If 0 < |det∇θ,φg([θ, φ])| <∞ ∀[θ, φ], then

∇θ,φLβ(x; θ, φ) = 0 ⇔ ∇θ′,φ′LH,β (x; θ′, φ′) = 0.

Thus [θ∗, φ∗] being a stationary point of 1
n

∑n
i=1Lβ(xi; θ, φ)

indicates that gβ([θ∗, φ∗]) is a stationary point of
1
n

∑n
i=1 LH,β (xi; θ

′, φ′) and vice-versa.

Proof. Starting from Corollary 1 we have that

∇θ,φLβ(x; θ, φ)=∇θ,φLH,β (x; θ′, φ′)

=(∇θ,φgβ([θ, φ]))∇θ′,φ′LH,β (x; θ′, φ′) ,
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so∇θ′,φ′LH,β(x; θ′, φ′)=0=⇒∇θ,φLβ(x; θ, φ)=0 given
our assumption that |det∇θ,φg([θ, φ])| <∞∀[θ, φ]. Fur-
ther, as 0 < |det∇θ,φg([θ, φ])| ∀[θ, φ], (∇θ,φgβ([θ, φ]))

−1

exists and has a finite determinant, so ∇θ,φLβ(x; θ, φ) = 0
also implies ∇θ′,φ′LH,β (x; θ′, φ′) = 0.

Theorem 2. If p(z) = N (z; 0, σI) and qφ(z | x) =
N (z;µφ(x), Sφ(x)), then for all rotation matrices R,

Lβ(x; θ, φ) =Lβ(x; θ†(R), φ†(R)) (6)

where θ†(R) and φ†(R) are transformed networks such that

pθ†(x | z) = pθ
(
x | RTz

)
,

qφ†(z|x) = N
(
z;Rµφ(x), RSφ(x)RT

)
.

Proof. If z ∼ qφ(z|x) and y = Rz then, by Petersen et al.
(§8.1.4 2008)), we have

y ∼ N (y;Rµφ(x), RSφ(x)RT ).

Consequently, the changes made by the transformed net-
works cancel to give the same reconstruction error as

Eqφ(z|x)[log pθ(x | z)] = Eq
φ† (z|x)[log pθ(x | RTz)]

= Eq
φ† (z|x)[log pθ†(x | z)].

Furthermore, the KL divergence between qφ(z|x) and
pθ(z) is invariant to rotation, because of the rotational
symmetry of the latter, such that KL(qφ(z|x) ‖ p(z)) =
KL
(
qφ†(z|x) ‖ p(z)

)
. The result now follows from noting

that the two terms of the β-VAE are equal under rotation.

B. Experimental Details
Disentanglement - 2d-shapes: The experiments from
Section 6 on the impact of the prior in terms disentangle-
ment are conducted on the 2D Shapes (Matthey et al., 2017)
dataset, comprising of 737,280 binary 64 x 64 images of 2D
shapes with ground truth factors [number of values]: shape
[3], scale [6], orientation [40], x-position [32], y-position
[32]. We use a convolutional neural network for the en-
coder and a deconvolutional neural network for the decoder,
whose architectures are described in Table 1a. We use [0, 1]
normalised data as targets for the mean of a Bernoulli distri-
bution and negative cross-entropy for log p(x|z). We rely
on the Adam optimiser (Kingma and Ba, 2015; Reddi et al.,
2018) with learning rate 1e−4, β1 = 0.9, and β2 = 0.999, to
optimise the β-VAE objective from (3).

For p(z) = N (z; 0, diag(σ)), experiments were run with
a batch size of 64 and for 20 epochs. For p(z) =∏
d STUDENT-T(zd; ν), experiments were run with a batch

size of 256 and for 40 epochs. In Figure 2, the PCA ini-
tialised anisotropic prior is initialised so that its standard
deviations are set to be the first D singular values of the
data. These are then mapped through a softmax function
to ensure that the β regularisation coefficient is not implic-

Encoder Decoder

Input 64 x 64 binary image Input ∈ R10

4x4 conv. 32 stride 2 & ReLU FC. 128 ReLU
4x4 conv. 32 stride 2 & ReLU FC. 4x4 x 64 ReLU
4x4 conv. 64 stride 2 & ReLU 4x4 upconv. 64 stride 2 & ReLU
4x4 conv. 64 stride 2 & ReLU 4x4 upconv. 64 stride 2 & ReLU
FC. 128 4x4 upconv. 32 stride 2 & ReLU
FC. 2x10 4x4 upconv. 1. stride 2

(a) 2D-shapes dataset.

Encoder Decoder

Input ∈ R2 Input ∈ R2

FC. 100. & ReLU FC. 100 & ReLU
FC. 2x2 FC. 2x2

(b) Pinwheel dataset.

Encoder

Input 32 x 32 x 1 channel image
4x4 conv. 32 stride 2 & BatchNorm2d & LeakyReLU(.2)
4x4 conv. 64 stride 2 & BatchNorm2d & LeakyReLU(.2)
4x4 conv. 128 stride 2 & BatchNorm2d & LeakyReLU(.2)
4x4 conv. 50, 4x4 conv. 50

Decoder

Input ∈ R50

4x4 upconv. 128 stride 1 pad 0 & BatchNorm2d & ReLU
4x4 upconv. 64 stride 2 pad 1 & BatchNorm2d & ReLU
4x4 upconv. 32 stride 2 pad 1 & BatchNorm2d & ReLU
4x4 upconv. 1 stride 2 pad 1

(c) Fashion-MNIST dataset.

Table 1. Encoder and decoder architectures.

itly scaled compared to the isotropic case. For the learned
anisotropic priors, standard deviations are first initialised
as just described, and then learned along with the model
through a log-variance parametrisation.

We rely on the metric presented in §4 and Appendix B of
Kim and Mnih (2018) as a measure of axis-alignment of the
latent encodings with respect to the true (known) generative
factors. Confidence intervals in Figure 2 were computed
via the assumption of normally distributed samples with
unknown mean and variance, with 100 runs of each model.

Clustering - Pinwheel We generated spiral cluster data1,
with n = 400 observations, clustered in 4 spirals, with
radial and tangential standard deviations respectively of
0.1 and 0.30, and a rate of 0.25. We use fully-connected
neural networks for both the encoder and decoder, whose
architectures are described in Table 1b. We minimise the
objective from (7), with D chosen to be the inclusive KL and
qφ(z) approximated by the aggregate encoding of the full
dataset:

D (qφ(z), p(z)) = KL (p(z)||qφ(z))

= Ep(z)
[
log(p(z))− log

(
EpD(x)[qφ(z | x)]

)]
1
http://hips.seas.harvard.edu/content/

synthetic-pinwheel-data-matlab.

http://hips.seas.harvard.edu/content/synthetic-pinwheel-data-matlab
http://hips.seas.harvard.edu/content/synthetic-pinwheel-data-matlab
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Figure 6. (a) PDF of Gaussian mixture model prior p(z), as per (9). (b) PDF for a 2-dimensional factored Student-t distributions pν with
degree of freedom ν = {3, 5, 100} (left to right). Note that pν(z)→ N (z;0, I) as ν →∞.

≈
B∑
j=1

(
log p(zj)− log

(
n∑
i=1

qφ(zj | xi)

))
with zj ∼ p(z). A Gaussian likelihood is used for the
encoder. We trained the model for 500 epochs using the
Adam optimiser (Kingma and Ba, 2015; Reddi et al., 2018),
with β1 = 0.9 and β2 = 0.999 and a learning rate of 1e−3.
The batch size is set to B = n.

The Gaussian mixture prior (c.f. Figure 6(a)) is defined as

p(z) =

C∑
c=1

πc N (z|µc,Σc)

=

C∑
c=1

πc
D∏
d=1

N (zd|µcd, σcd) (9)

with D = 2, C = 4, Σc = 0.03ID, π
c = 1/C, and µcd ∈

{0, 1}.

Sparsity - Fashion-MNIST The experiments from Sec-
tion 6 on the latent representation’s sparsity are conducted
on the Fashion-MNIST (Xiao et al., 2017) dataset, com-
prising of 70, 000 greyscale images resized to 32×32.

To enforce sparsity, we relied on a prior defined as a factored
univariate mixture of a standard and low variance normal
distributions:

p(z) =
∏

d
(1− γ) N (zd; 0, 1) + γ N (zd; 0, σ2

0)

with σ2
0 = 0.05. The weight, γ, of the low-variance com-

ponent indicates how likely samples are to come from that
component, hence to be off.

We minimised the objective from (7), with D(qφ(z), p(z))
taken to be a dimension-wise MMD with a sum of Cauchy
kernels on each dimension. Equivalently, we can think of
this as calculating a single MMD using the single kernel

k(x,y) =

D∑
d=1

L∑
`

σ`
σ`=1 + (xd − yd)2

. (10)

where σ` ∈ {0.2, 0.4, 1, 2, 4, 10} are a set of length scales.

This dimension-wise kernel only enforces a congruence
between the marginal distributions ofx and y and so, strictly
speaking, its MMD does not constitute a valid divergence
metric in the sense that we can have D(qφ(z), p(z)) = 0
when qφ(z) and p(z) are not identical distributions: it only
requires their marginals to match to get zero divergence.

The reasons we chose this approach are twofold. Firstly,
we found that conventional kernels based on the Euclidean
distance between encodings produced gradients with insur-
mountably high variances, meaning that effectively mini-
mizing the divergence to get qφ(z) and p(z) to match was
not possible, even for very large batch sizes and α→∞.

Secondly, though just matching the marginal distributions
is not sufficient to ensure sparsity—as one could have some
points with all dimensions close to the origin and some
with all dimensions far away—a combination of the need
to achieve good reconstructions and noise in the encoder
process should prevent this from occurring. In short, pro-
vided the noise from the encoder is properly regulated, there
is little information that can be stored in latent dimensions
near the origin because of the high level of overlap forced
in this region. Therefore, for a datapoint to be effectively
encoded, it must have at least some of its latents dimensions
outside of this region. Coupled with the need for most of
the latent values to be near the origin to match the marginal
distributions, this, in turn, enforces a sparse representation.
Consequently, the loss in sparsity performance relative to
using a hypothetical kernel that is both universal and has
stable gradient estimates should only be relatively small, as
is borne out in our empirical results. This may, however, be
why we see a slight drop in sparsity performance for very
large values of α.

We use a convolutional neural network for the encoder and
a deconvolutional neural network for the decoder, whose
architectures come from the DCGAN model (Radford et al.,
2016) and are described in Table 1c. We use [0, 1] nor-
malised data as targets for the mean of a Laplace distribution
with fixed scaling of 0.1. We rely on the Adam optimiser
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with learning rate 5e−4, β1 = 0.5, and β2 = 0.999. The
model is then trained (on the training set) for 80 epochs
with a batch-size of 500.

As an extrinsic measure of sparsity, we use the Hoyer metric
(Hurley and Rickard, 2008), defined for y ∈ Rd by

Hoyer (y) =

√
d− ‖y‖1/‖y‖2√

d− 1
∈ [0, 1],

yielding 0 for a fully dense vector and 1 for a fully sparse
vector. We additionally normalise each dimension to have
a standard deviation of 1 under its aggregate distribution,
i.e. we use z̄d = zd/σ(zd) where σ(zd) is the standard
deviation of dimension d of the latent encoding taken over
the dataset. Overall sparsity is computed by averaging over
the dataset as Sparsity = 1/n

∑n
i Hoyer (z̄i).

As discussed in the main text, we use a trained model with
α = 1000, β = 1, and γ = 0.8 to perform a qualitative
analysis of sparsity using the Fashion-MNIST dataset. Fig-
ure 7 shows the per-class average embedding magnitude
for this model, a subset of which was shown in the main
text. As can be seen clearly, the different classes utilise
predominantly different subsets of dimensions to encode the
image data, as one might expect for sparse representations.

C. Posterior regularisation
The aggregate posterior regulariser D(q(z), p(z)) is a little
more subtle to analyse than the entropy regulariser as it
involves both the choice of divergence and potential difficul-
ties in estimating that divergence. One possible choice is the
exclusive Kullback-Leibler divergence KL(q(z) ‖ p(z)), as
previously used (without additional entropy regularisation)
by (Dilokthanakul et al., 2019; Esmaeili et al., 2019), but
also implicitly by (Chen et al., 2018), through the use of a to-
tal correlation (TC) term. We now highlight a shortfall with
this choice of divergence due to difficulties in its empirical
estimation.

In short, the approaches used to estimate the H[q(z)] (noting
that KL(q(z) ‖ p(z)) = −H[q(z)]−Eq(z)[log p(z)], where
the latter term can be estimated reliably by a simple Monte
Carlo estimate) can exhibit very large biases unless very
large batch sizes are used, resulting in quite different effects
from what was intended. In fact, our results suggest they
will exhibit behaviour similar to the β-VAE if the batch size
is too small. These biases arise from the effects of nesting
estimators (Rainforth et al., 2018a), where the variance in
the nested (inner) estimator for q(z) induces a bias in the
overall estimator. Specifically, for any random variable Ẑ,

E[log(Ẑ)] = log(E[Ẑ])− Var[Ẑ]

2Z2
+O(ε)

where O(ε) represents higher-order moments that get domi-
nated asymptotically if Ẑ is a Monte-Carlo estimator (see

Proposition 1c in Maddison et al. (2017), Theorem 1 in Rain-
forth et al. (2018b), or Theorem 3 in Domke and Sheldon
(2018)). In this setting, Ẑ = q̂(z) is the estimate used for
q(z). We thus see that if the variance of q̂(z) is large, this
will induce a significant bias in our KL estimator.

To make things precise, we consider the estimator used for
H[q(z)] in Chen et al. (2018); Dilokthanakul et al. (2019);
Esmaeili et al. (2019)

H[q(z)] ≈ Ĥ , − 1

B

B∑
b=1

log q̂(zb), where (11a)

q̂(zb) =
qφ(zb|xb)

n
+

n− 1

n(B − 1)

∑
b′ 6=b

qφ(zb|x′b), (11b)

zb ∼ qφ(z|xb), and {x1, . . . ,xB} is the mini-batch of data
used for the current iteration for dataset size n. Esmaeili
et al. (2019) correctly show that E[q̂(zb)] = q̃(zb), with the
first term of (11b) comprising an exact term in q̃(zb) and
the second term of (11b) being an unbiased Monte-Carlo
estimate for the remaining terms in q̃(zb).

To examine the practical behaviour of this estimator when
B � n, we first note that the second term of (11b) is, in
practice, usually very small and dominated by the first term.
This is borne out empirically in our own experiments, and
also noted in Kim and Mnih (2018). To see why this is the
case, consider that given encodings of two independent data
points, it is highly unlikely that the two encoding distribu-
tions will have any notable overlap (e.g. for a Gaussian
encoder, the means will most likely be very many standard
deviations apart), presuming a sensible latent space is be-
ing learned. Consequently, even though this second term
is unbiased and may have an expectation comparable or
even larger than the first, it is heavily skewed—it is usually
negligible, but occasionally large in the rare instances where
there is substantial overlap between encodings.

Let the second term of (11b) be T2 and the event that this it is
significant be ES , such that E[T2 | ¬Es] ≈ 0. As explained
above, P(ES)� 1 typically. We now have

E
[
Ĥ
]

= P(ES)E
[
Ĥ | ES

]
+ (1− P(ES))E

[
Ĥ | ¬ES

]
= P(ES)E

[
Ĥ | ES

]
+ (1− P(ES))

·
(
log n− 1

B

∑B
b=1 E[log qφ(zb|xb)|¬ES ]−E[T2|¬ES ]

)
= P(ES)E

[
Ĥ | ES

]
+ (1− P(ES))

· (log n−E[log qφ(z1|x1)|¬ES ]−E[T2|¬ES ])

≈ P(ES)E
[
Ĥ | ES

]
+ (1− P(ES))(log n− E[log qφ(z1|x1)])

where the approximation relies firstly on our previ-
ous assumption that E[T2 | ¬ES ] ≈ 0 and also that
E[log qφ(z1|x1) | ¬ES ] ≈ E[log qφ(z1|x1)]. This second
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Figure 7. Average encoding magnitude over data for each classes in Fashion-MNIST.
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assumption will also generally hold in practice, firstly be-
cause the occurrence of ES is dominated by whether two
similar datapoints are drawn (rather than by the value of x1)
and secondly because P(ES)� 1 implies that

E[log qφ(z1 | x1)]

= (1− P(ES))E[log qφ(z1 | x1) | ¬ES ]

+ P(ES)E[log qφ(z1 | x1) | ES ]

≈ E[log qφ(z1 | x1) | ¬ES ].

Characterising E
[
Ĥ | ES

]
precisely is a little more chal-

lenging, but it can safely be assumed to be smaller than
E[log qφ(z1 | x1)], which is approximately what would re-
sult from all the x′b being the same as xb. We thus see
that even when the event ES does occur, the resulting es-
timates will still, at most, be on a comparable scale to
when it does not. Consequently, whenever ES is rare, the
(1− P(ES))E

[
Ĥ | ¬ES

]
term will dominate and we thus

have

E
[
Ĥ
]
≈ log n− E[log qφ(z1 | x1)]

= log n+ Ep(x)[H[qφ(z | x)]].

We now see that the estimator mimics the β−VAE reg-
ularisation up to a constant factor log n, as adding the
Eq(z)[log p(z)] back in gives

−E
[
Ĥ
]
− Eq(z)[log p(z)]

≈ Ep(x)[KL(qφ(z|x) ‖ p(z))]− log n.

We should thus expect to empirically see training with this
estimator as a regulariser to behave similarly to the β−VAE
with the same regularisation term whenever B � n. Note
that the log n constant factor will not impact the gradients,
but does mean that it is possible, even likely, that negative
estimates for K̂L will be generated, even though we know
the true value is positive.

Overcoming the problem can, at least to a certain degree, be
overcome by using very large batch sizes B, at an inevitable
computational and memory cost. However, the problem is
potentially exacerbated in higher dimensional latent spaces
and larger datasets, for which one would typically expect
the typical overlap of datapoints to decrease.

C.1. Other Divergences

As discussed in the main paper, KL(q(z) ‖ p(z)) is far
from the only aggregate posterior regulariser one might use.
Though we do not analyse them formally, we expect many
alternative divergence-estimator pairs to suffer from similar
issues. For example, using Monte Carlo estimators with the
inclusive Kullback-Leibler divergence KL(p(z) ‖ q(z)) or
the sliced Wasserstein distance (Kolouri et al., 2019) both re-
sult in nested expectations analogously to KL(q(z) ‖ p(z)),
and are therefore likely to similarly induce substantial bias
without using large batch sizes.

Interestingly, however, MMD and generative adversarial net-
work (GAN) regularisers of the form discussed in (Tolstikhin
et al., 2018) do not result in nested expectations and there-
fore are necessarily not prone to the same issues: they
produce unbiased estimates of their respective objectives.
Though we experienced practical issues in successfully im-
plementing both of these—we found the signal-to-noise-
ratio of the MMD gradient estimates to be very low, partic-
ularly in high dimensions, while we experienced training
instabilities for the GAN regulariser—their apparent the-
oretical advantages may indicate that they are preferable
approaches, particularly if these issues can be alleviated.
The GAN-based approach to estimating the total correla-
tion introduced by Kim and Mnih (2018) similarly allows a
nested expectation to be avoided, at the cost of converting a
conventional optimization into a minimax problem.

Given the failings of the available existing approaches, we
believe that further investigation into divergence-estimator
pairs for D(q(z), p(z)) in VAEs is an important topic for
future work that extends well beyond the context of this
paper, or even the general aim of achieving decomposition.
In particular, the need for congruence between the posterior
(encoder), likelihood (decoder), and marginal likelihood
(data distribution) for a generative model, means that ensur-
ing q(z) is close to p(z) is a generally important endeavour
for training VAEs. For example, mismatch between q(z)
and p(z) will cause samples drawn from the learned genera-
tive model to mismatch the true data-generating distribution,
regardless of the fidelity of our encoder and decoder.

D. Characterising Overlap
Reiterating the argument from the main text, although the
mutual information I(x; z) between data and latents pro-
vides a perfectly serviceable characterisation of overlap in
a number of cases, the two are not universally equivalent
and we argue that it is overlap which is important in achiev-
ing useful representations. In particular, if the form of the
encoding distribution is not fixed—as when employing nor-
malising flows, for example—I(x; z) does not necessarily
characterise overlap well.

Consider, for example, an encoding distribution that is
a mixture between the prior and a uniform distribution
on a tiny ε-ball around the mean encoding µφ(x), i.e.
qφ(z|x)=λ·Uniform (‖µφ(x)− z‖2 < ε)+(1−λ)·p(z).
If the encoder and decoder are sufficiently flexible to learn
arbitrary representations, one now could arrive at any value
for mutual information simply by an appropriate choice of λ.
However, enforcing structuring of the latent space will be
effectively impossible due to the lack of any pressure (other
than a potentially small amount from internal regularization
in the encoder network itself) for similar encodings to cor-
respond to similar datapoints; the overlap between any two
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encodings is the same unless they are within ε of each other.

While this example is a bit contrived, it highlights a key
feature of overlap that I(x; z) fails to capture: I(x; z) does
not distinguish between large overlap with a small number
of other datapoints and small overlap with a large number of
other datapoints. This distinction is important because we
are particularly interested in how many other datapoints
one datapoint’s encoding overlaps with when imposing
structure—the example setup fails because each datapoint
has the same level of overlap with all the other datapoints.

Another feature that I(x; z) can fail to account for is a
notion of locality in the latent space. Imagine a scenario
where the encoding distributions are extremely multimodal
with similar sized modes spread throughout the latent space,
such as q(z|x) =

∑1000
i=1 N (z;µφ(x) +mi, σI) for some

constant scalar σ, and vectors mi. Again we can achieve
almost any value for I(x; z) by adjusting σ, but it is difficult
to impose meaningful structure regardless as each datapoint
can be encoded to many different regions of the latent space.
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