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Abstract
In distributional reinforcement learning (RL), the
estimated distribution of value function models
both the parametric and intrinsic uncertainties.
We propose a novel and efficient exploration
method for deep RL that has two components.
The first is a decaying schedule to suppress the
intrinsic uncertainty. The second is an exploration
bonus calculated from the upper quantiles of the
learned distribution. In Atari 2600 games, our
method outperforms QR-DQN in 12 out of 14
hard games (achieving 483 % average gain across
49 games in cumulative rewards over QR-DQN
with a big win in Venture). We also compared our
algorithm with QR-DQN in a challenging 3D driv-
ing simulator (CARLA). Results show that our
algorithm achieves near-optimal safety rewards
twice faster than QRDQN.

1. Introduction
Exploration is a long standing problem in Reinforcement
Learning (RL), where optimism in the face of uncertainty is
one fundamental principle (Lai & Robbins, 1985; Strehl &
Littman, 2005). Here the uncertainty refers to parametric
uncertainty, which arises from the variance in the estimates
of certain parameters given finite samples. Both count-based
methods (Auer, 2002; Kaufmann et al., 2012; Bellemare
et al., 2016; Ostrovski et al., 2017; Tang et al., 2017) and
Bayesian methods (Kaufmann et al., 2012; Chen et al., 2017;
O’Donoghue et al., 2017) follow this optimism principle. In
this paper, we propose to use distributional RL methods to
achieve this optimism.

Different from classical RL methods, where an expectation
of value function is learned (Sutton, 1988; Watkins & Dayan,
1992; Mnih et al., 2015), distributional RL methods (Jaque-
tte, 1973; Bellemare et al., 2017) maintain a full distribution
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Figure 1. Uncertainties in deterministic and stochastic environ-
ments.

of future return. In the limit, distributional RL captures the
intrinsic uncertainty of an MDP (Bellemare et al., 2017;
Dabney et al., 2017; 2018; Rowland et al., 2018). Intrinsic
uncertainty arises from the stochasticity of the environment,
which is parameter and sample independent. However, it is
not trivial to quantify the effects of parametric and intrinsic
uncertainties in distribution learning. To investigate this,
let us look closer at a simple setup of distribution learning.
Here we use Quantile Regression (QR) (detailed in Section
2.2), but the example presented here holds for other distribu-
tion learning methods. Here the random samples are drawn
from any stationary distribution. The initial estimated distri-
bution is set to be the uniform one (left plots). At each time
step, QR updates its estimate in an on-line fashion by min-
imizing some loss function. In the limit the estimated QR
distribution converges to the true distribution (right plots).
The two middle plots examine the intermediate estimated
distributions before convergence in two distinct cases.
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Case 1: Figure 1a shows a deterministic environment where
the data is generated by a degenerate distribution. In this
case, the intermediate estimate of the distribution (middle
plot) contains only the information about parametric uncer-
tainty. Here, parametric uncertainty comes from the error
in the estimation of the quantiles. The left sub-plot shows
estimation from the initialized parameters for the distribu-
tion estimator. The middle sub-plot shows the estimated
distribution converges closer to the true distribution on the
right sub-plot.

Case 2: Figure 1b shows a stochastic environment, where
the data is generated by a non-degenerate (stationary) distri-
bution. In this case, the intermediate estimated distribution
is the result of both parametric and intrinsic uncertainties.
In the middle plot, the distribution estimator (QR) models
randomness from both parametric and intrinsic uncertain-
ties, and it is hard to split them. The parametric uncertainty
does go away over time and converge to the true distribution
on the right sub-plot. Our main insight in this paper is that
the upper bound for a state-action value estimate shrinks at
a certain rate (See Section 3 for details). Specifically, the
error of the quantile estimator is known to converge asymp-
totically in distribution to the Normal distribution (Koenker,
2005). By treating the estimated distribution during learn-
ing as sub-normal we can estimate the upper bound of the
state-action values with a high confidence (by applying Ho-
effdings inequality).

This example illustrates distributions learned via distribu-
tional methods (such as distributional RL algorithms) model
the randomness arising from both intrinsic and parametric
uncertainties. In this paper, we study how to take advantage
of distributions learned by distributional RL methods for
efficient exploration in the face of uncertainty.

To be more specific, we use Quantile Regression Deep-Q-
Network (QR-DQN, (Dabney et al., 2017)) to learn the
distribution of value function. We start with an examination
of the two uncertainties and a naive solution that leaves the
intrinsic uncertainty unsupressed. We construct a counter
example in which this naive solution fails to learn. The
intrinsic uncertainty persists and leads the naive solution to
favor actions with higher variances. To suppress the intrinsic
uncertainty, we apply a decaying schedule to improve the
naive solution.

One interesting finding in our experiments is that the distri-
butions learned by QR-DQN can be asymmetric. By using
the upper quantiles of the estimated distribution (Mullooly,
1988), we estimate an optimistic exploration bonus for QR-
DQN.

We evaluated our algorithm in 49 Atari games (Bellemare
et al., 2013). Our approach achieved 483 % average gain
in cumulative rewards over QR-DQN. The overall improve-

ment is reported in Figure 10.

We also compared our algorithm with QR-DQN in a chal-
lenging 3D driving simulator (CARLA). Results show that
our algorithm achieves near-optimal safety rewards twice
faster than QRDQN.

In the rest of this paper, we first present some preliminaries
of RL Section 2. In Section 3, we then study the challenges
posed by the mixture of parametric and intrinsic uncertain-
ties, and propose a solution to suppress the intrinsic uncer-
tainty. We also propose a truncated variance estimation for
exploration bonus in this section. In Section 4, we present
empirical results in Atari games. Section 5 contains results
on CARLA. Section 6 an overview of related work, and
Section 7 contains conclusion.

2. Background
2.1. Reinforcement Learning

We consider a Markov Decision Process (MDP) of a state
space S, an action space A, a reward “function” R : S ×
A → R, a transition kernel p : S × A × S → [0, 1],
and a discount ratio γ ∈ [0, 1). In this paper we treat the
reward “function” R as a random variable to emphasize its
stochasticity. Bandit setting is a special case of the general
RL setting, where we usually only have one state.

We use π : S × A → [0, 1] to denote a stochastic policy.
We use Zπ(s, a) to denote the random variable of the sum
of the discounted rewards in the future, following the policy
π and starting from the state s and the action a. We have
Zπ(s, a)

.
=
∑∞
t=0 γ

tR(St, At), where S0 = s,A0 = a and
St+1 ∼ p(·|St, At), At ∼ π(·|St). The expectation of the
random variable Zπ(s, a) is

Qπ(s, a)
.
= Eπ,p,R[Zπ(s, a)]

which is usually called the state-action value function. In
general RL setting, we are usually interested in finding an
optimal policy π∗, such that Qπ

∗
(s, a) ≥ Qπ(s, a) holds

for any (π, s, a). All the possible optimal policies share
the same optimal state-action value function Q∗, which is
the unique fixed point of the Bellman optimality operator
(Bellman, 2013),

Q(s, a) = T Q(s, a)
.
= E[R(s, a)] + γEs′∼p[max

a′
Q(s′, a′)]

Based on the Bellman optimality operator, Watkins & Dayan
(1992) proposed Q-learning to learn the optimal state-action
value function Q∗ for control. At each time step, we update
Q(s, a) as

Q(s, a)← Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a))

where α is a step size and (s, a, r, s′) is a transition. There
have been many work extending Q-learning to linear func-
tion approximation (Sutton & Barto, 2018; Szepesvári,
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2010). Mnih et al. (2015) combined Q-learning with deep
neural network function approximators, resulting the Deep-
Q-Network (DQN). Assume theQ function is parameterized
by a network θ, at each time step, DQN performs a stochas-
tic gradient descent to update θ minimizing the loss

1

2
(rt+1 + γmax

a
Qθ−(st+1, a)−Qθ(st, at))2

where θ− is target network (Mnih et al., 2015), which is
a copy of θ and is synchronized with θ periodically, and
(st, at, rt+1, st+1) is a transition sampled from a experi-
ence replay buffer (Mnih et al., 2015), which is a first-in-
first-out queue storing previously experienced transitions.
Decorrelating representation has shown to speed up DQN
significantly (Mavrin et al., 2019a). For simplicity, in this
paper we will focus on the case without decorrelation.

2.2. Quantile Regression

The core idea behind QR-DQN is the Quantile Regression
introduced by the seminal paper (Koenker & Bassett Jr,
1978). This approach gained significant attention in the
field of Theoretical and Applied Statistics and might not be
well known in other fields. For that reason we give a brief
introduction here. Let us first consider QR in the supervised
learning. Given data {(xi, yi)}i, we want to compute the
quantile of y corresponding the quantile level τ . linear
quantile regression loss is defined as:

L(β) =
∑
i

ρτ (yi − xiβ) (1)

where

ρτ (u) = u(τ − Iu<0) = τ |u|Iu≥0 + (1− τ)|u|Iu<0 (2)

is the weighted sum of residuals. Weights are proportional
to the counts of the residual signs and order of the estimated
quantile τ . For higher quantiles positive residuals get higher
weight and vice versa. If τ = 1

2 , then the estimate of the
median for yi is θ1(yi|xi) = xiβ̂, with β̂ = arg minL(β).

2.3. Distributional RL

Instead of learning the expected return Q, distributional
RL focuses on learning the full distribution of the random
variable Z directly (Jaquette, 1973; Bellemare et al., 2017;
Mavrin et al., 2019b). There are various approaches to
represent a distribution in RL setting (Bellemare et al., 2017;
Dabney et al., 2018; Barth-Maron et al., 2018). In this paper,
we focus on the quantile representation (Dabney et al., 2017)
used in QR-DQN, where the distribution of Z is represented
by a uniform mix of N supporting quantiles:

Zθ(s, a)
.
=

1

N

N∑
i=1

δθi(s,a)

where δx denote a Dirac at x ∈ R, and each θi is an esti-
mation of the quantile corresponding to the quantile level
(a.k.a. quantile index) τ̂i

.
= τi−1+τi

2 with τi
.
= i

N for
0 ≤ i ≤ N . The state-action value Q(s, a) is then ap-
proximated by 1

N

∑N
i=1 θi(s, a). Such approximation of a

distribution is referred to as quantile approximation.

Similar to the Bellman optimality operator in mean-centered
RL, we have the distributional Bellman optimality operator
for control in distributional RL,

T Z(s, a)
.
= R(s, a) + γZ(s′, arg max

a′
Ep,R[Z(s′, a′)])

s′ ∼ p(·|s, a)

Based on the distributional Bellman optimality operator,
Dabney et al. (2017) proposed to train quantile estimations
(i.e., {qi}) via the Huber quantile regression loss (Huber,
1964). To be more specific, at time step t the loss is

1

N

N∑
i=1

N∑
i′=1

[
ρκτ̂i
(
yt,i′ − θi(st, at)

)]
where yt,i′

.
= rt +

γθi′
(
st+1, arg maxa′

∑N
i=1 θi(st+1, a

′)
)

and ρκτ̂i(x)
.
= |τ̂i − I{x < 0}|Lκ(x), where I is the indicator function
and Lκ is the Huber loss,

Lκ(x)
.
=

{
1
2x

2 if x ≤ κ
κ(|x| − 1

2κ) otherwise

3. Algorithm
In this section we present our method. First, we study the
issue of the mixture of parametric and intrinsic uncertainties
in the estimated distributions learned by QR approach. We
show that the intrinsic uncertainty has to be suppressed
in calculating exploration bonus and introduce a decaying
schedule to achieve this.

Second, in a simple example where the distribution is asym-
metric, we show exploration bonus from truncated variance
outperforms bonus from the variance. In fact, we did find
that the distributions learned by QR-DQN (in Atari games)
can be asymmetric. Thus we combine the truncated variance
for exploration in our method.

3.1. The issue of intrinsic uncertainty

A naive approach to exploration would be to use the variance
of the estimated distribution as a bonus. We provide an
illustrative counter example. Consider a multi-armed bandit
environment with 10 arms where each arm’s reward follows
normal distribution N (µk, σk). In each run, means {µk}k
are drawn from standard normal. Standard deviation of the
best arm is set to 1.0, other arms’ standard deviations are
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Figure 2. Exploration in the face of intrinsic and parametric uncer-
tainties.

set to 5. In the setting of multi-armed bandits, this approach
leads to picking the arm a such that

a = arg max
k

µ̄k + cσk (3)

where µ̄k and σ2
k are the estimated mean and variance of

the k-th arm, computed from the corresponding quantile
distribution estimation.

Figure 3 shows that naive exploration bonus fails. Fig-
ure 2a illustrates the reason for the failure of naive explo-
ration bonus. The estimated QR distribution is a mixture of
parametric and intrinsic uncertainties. Recall, as learning
progresses the parametric uncertainty vanishes and the in-
trinsic uncertainty stays (Figure 2b). Therefore, this naive
exploration bonus will tend to be biased towards intrinsic
variation, which hurts performance. Note that the best arm
has a low intrinsic variation. It is not chosen since its explo-
ration bonus term is much smaller than the other arms as
parametric uncertainty vanishes in all arms.

The major obstacle in using the estimated distribution by
QR for exploration is the composition of parametric and
intrinsic uncertainties, whose variance is measured by the
term σ2

k in (3). To suppress the intrinsic uncertainty, we
propose a decaying schedule in the form of a multiplier to
σ2
k:

a = arg max
k

µ̄k + ctσ̄k (4)

Figure 2b depicts the exploration bonus resulting from the
application of decaying schedule. From the classical QR

Figure 3. Performance of naive exploration and decaying explo-
ration bonus in the counter example.

theory (Koenker, 2005), it is known that the parametric
uncertainty decays at the following rate:

ct = c

√
log t

t
(5)

where c is a constant factor.

We apply this new schedule to the counter example where
the naive solution fails. As shown in Figure 3, this decaying
schedule significantly outperforms the naive exploration
bonus.

3.2. Assymetry and truncated variance

QR has no restriction on the family of distributions it can
represent. In fact, the learned distribution can be asymmet-
ric, defined by mean 6= median. From Figure 5 it can be
seen that the distribution estimated by QR-DQN-1 is mostly
asymmetric. At the end of training, agent achieved nearly
maximum score. Hence, the distributions correspond to the
near-optimal policy, but they are not symmetric.

For the sake of the argument, consider a simple decompo-
sition of the variance of the QR’s estimated distribution
into the two terms: the Right Truncated and Left Truncated
variances 1:

σ2 =
1

N

N∑
i=1

(θ̄ − θi)2

=
2

N

N
2∑
i=1

(θ̄ − θi)2 +
2

N

N∑
i=N

2 +1

(θ̄ − θi)2

=σ2
rt + σ2

lt,

where σ2
rt is the Right Truncated Variance and σ2

lt is the
right. To simplify notation we assume N is an even number

1Note: Right truncation means dropping left part of the distri-
bution with respect to the mean



Distributional Reinforcement Learning for Efficient Exploration

Truncated Variance
Variance

(a) Environment with Symmetric distributions.

Truncated Variance
Variance

(b) Environment with Asymmetric distributions.

Figure 4. Environments with symmetric and asymmetric rewards distributions.

Figure 5. Pong. Empirical measure of the distribution learned for
a single action obtained from QR-DQN-1 during training, showing
very asymmetric.

here. The Right Truncated Variance tells about lower tail
variability and the Left Truncated Variance tells about upper
tail variability. In general, the two variances are not equal. 2

If the distribution is symmetric, then the two are the same.

The Truncated Variance is equivalent to the Tail Conditional
Variance (TCV):

TCVx(θ) = V ar(θ − θ̄|θ > x) (6)

defined in (Valdez, 2005). For instantiating optimism in the
face of uncertainty, the upper tail variability is more relevant
than the lower tail, especially if the estimated distribution
is asymmetric (Valdez, 2005). Intuitively speaking, σ2

lt is
more optimistic. σ2

lt is biased towards positive rewards. To

2Consider discrete empirical distribution with support
{−1, 0, 2} and probability atoms { 1

3
, 1
3
, 1
3
}.

increase stability, we use the left truncated measure of the
variability, σ2

+, based on the median rather than the mean
due to its well-known statistical robustness (Huber, 2011;
Hampel et al., 2011):

σ2
+ =

1

2N

N∑
i=N

2

(θN
2
− θi)2 (7)

where θi’s are i
N -th quantiles. By combining decaying

schedule from (5) with σ2
+ from (7) we obtain a new explo-

ration bonus for picking an action, which we call Decaying
Left Truncated Variance (DLTV).

In order to empirically validate our new approach we em-
ploy a multi-armed bandits environment with asymmetri-
cally distributed rewards. In each run the means of arms
{µk}k are drawn from standard normal distribution. The
best arm’s reward follow µk + E[LogNormal(0, 1)] −
LogNormal(0, 1). Other arms rewards follow µk +
LogNormal(0, 1) − E[LogNormal(0, 1)]. We compare
the performance of both exploration methods in another,
symmetric environment with rewards following the normal
distribution centered at corresponding means (same as the
asymmetric environment) with unit variance.

The results are presented in Figure 4. With asymmetric re-
ward distributions, the truncated variance exploration bonus
significantly outperforms the naive variance exploration
bonus. In addition, the performance of truncated variance is
slightly better in the symmetric case.

3.3. DLTV for Deep RL

So far, we introduced the decaying schedule to control the
parametric part of the composite uncertainty. Additionally,
we introduced a truncated variance to improve performance
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Figure 6. Median human-normalized performance across 49
games.

in environments with asymmetric distributions. These ideas
generalize in a straightforward fashion to the Deep RL set-
ting. Algorithm 1 outlines DLTV for Deep RL. Action se-
lection step in line 2 of Algorithm 1 uses exploration bonus
in the form of σ2

+ defined in (7) and schedule ct defined in
(5).

Algorithm 1 DLTV for Deep RL

Require: w,w−, (x, a, r, x′), γ ∈ [0, 1) {network weights,
sampled transition, discount factor}

1: Q(x′, a′) =
∑
j qjθj(x

′, a′;w−)

2: a∗ = arg maxa′(Q(x, a′) + ct

√
σ2
+)

3: T θj = r + γθj(x
′, a∗;w−)

4: L(w) =
∑
i

1
N

∑
j [ρτ̂i(T θj − θi(x, a;w))]

5: w′ = arg minw L(w)
Ensure: w′ {Updated weights of θ}

Figure 8 presents naive and decaying exploration bonus
term from DLTV of QR-DQN during training in Atari Pong.
Comparison of Figure 8 to Figure 2b reveals the similarity
in the behavior of the naive exploration bonus and the de-
caying exploration bonus. This shows what the raw variance
looks like in Atari 2600 game and the suppressed intrinsic
uncertainty leading to a decaying bonus as illustrated in
Figure 2b.

4. Atari 2600 Experiments
We evaluated DLTV on the set of 49 Atari games initially
proposed by (Mnih et al., 2015). Algorithms were eval-
uated on 40 million frames3 3 runs per game. The sum-
mary of the results is presented in Figure 10. Our approach

3Equivalently, 10 million agent steps.

Figure 7. Online training curves for DLTV (with decaying schedule
and with constant schedule) on the game of Venture.

Naive exploration bonus

Decaying bonus

Figure 8. The naive exploration bonus and decaying bonus used
for DLTV in Pong.

achieved 483 % average gain in cumulative rewards 4 over
QR-DQN-1. Notably the performance gain is obtained in
hard games such as Venture, PrivateEye, Montezuma Re-
venge and Seaquest. The median of human normalized
performance reported in Figure 6 shows a significant im-
provement of DLTV over QR-DQN-1. We present learning
curves for all 49 games in the Appendix.

The architecture of the network follows (Dabney et al.,
2017). For our experiments we chose the Huber loss with
κ = 1 5 in the work by (Dabney et al., 2017) due to its

4The cumulative reward is a suitable performance measure
for our experiments, since none of the learning curves exhibit
plummeting behaviour. Plummeting is characterized by abrupt
degradation of performance. In such cases the learning curve
drops to the minimum and stays their indefinitely. A more detailed
discussion of this point is presented in (Machado et al., 2017).

5QR-DQN with κ = 1 is denoted as QR-DQN-1
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smoothness compared to L1 loss of QR-DQN-0. (Smooth-
ness is better suited for gradient descent methods). We
followed closely (Dabney et al., 2017) in setting the hy-
per parameters, except for the learning rate of the Adam
optimizer which we set to α = 0.0001.

The most significant distinction of our DLTV is the way
the exploration is performed. As opposed to QR-DQN there
is no epsilon greedy exploration schedule in DLTV. The
exploration is performed via the σ2

+ term only (line 2 of
Algorithm 1).

An important hyper parameter which is introduced by DLTV
is the schedule, i.e. the sequence of multipliers for σ2

+,
{ct}t. In our experiments we used the following schedule

ct = 50
√

log t
t .

We studied the effect of the schedule in the Atari 2600 game
Venture. Figure 7 show that constant schedule for DLTV
significantly degenerates the performance. These empirical
results show that the decaying schedule in DLTV is very
important.

5. CARLA Experiments
A particularly interesting application of the (Distributional)
RL approach is driving safety. There has been quite a con-
verge of interests in using RL for autonomous driving, e.g.,
see (Sakib et al., 2019; Fridman et al., 2018; Chen et al.,
2018; Yao et al., 2017). In the classical RL setting the agent
only cares about the mean. In Distributional RL the estimate
of the whole distribution allows for the construction of the
risk-sensitive policies. For that reason we further validate
DLTV in CARLA environment which is a 3D self driving
simulator.

5.1. Sample efficiency

It should be noted that CARLA is a more visually com-
plex environment than Atari 2600, since it is based on a
modern Unreal Engine 4 with realistic physics and visual
effects. For the purpose of this study we picked the task
in which the ego car has to reach a goal position follow-
ing predefined paths. In each episode the start and goal
positions are sampled uniformly from a predefined set of
locations (around 20). We conducted our experiments in
Town 2. We simplified the reward signal provided in the
original paper (Dosovitskiy et al., 2017). We assign reward
of −1.0 for any type of infraction and a a small positive
reward for travelling in the correct direction without any
infractions, i.e. 0.001(distancet − distancet+1). The in-
fractions we consider are: collisions with cars, collisions
with humans, collisions with static objects, driving on the
opposite lane and driving on a sidewalk. The continuous
action space was discretized in a coarse grain fashion. We

Figure 9. Naive exploration bonus and decaying bonus (as used in
DLTV) for CARLA. DLTV learns significantly faster than DQN
and QR-DQN, achieving higher rewards for safety driving.

defined 7 actions: 6 actions for going in different directions
using fixed values for steering angle and throttle and a no op
action. The training learning curves are presented in Figure
9. DLTV significantly outperforms QR-DQN-1 and DQN.
Interestingly QR-DQN-1 performs on par with DQN.

5.2. Driving Safety

A byproduct of Distributional RL is the estimated distri-
bution of Q(s, a). The access to this density allows for
different approaches to control. For example Morimura
et al. (2012) derive risk-sensitive policies based on the quan-
tiles rather than the mean. The reasoning behind such ap-
proach is to view quantile as a risk metric. For instance,
one particularly interesting risk metric is Value-at-Risk
(VaR) which has been in use for a few decades in Finan-
cial Industry (Philippe, 2006). Artzner et al. (1999) define
V aRα(X) as Prob(X ≤ −V aRα(X)) = 1 − α, that is
V aRα(X) = (1− α)th quantile of X .

It might be easier to understand the idea behind VaR in
financial setting. Consider two investments: first investment
will lose 1 dollar of its value or more with 10% probability
(V aR10% = 1) and second investment will lose 2 dollars or
more of its value with 5 percent probability (V aR10% = 2).
Second investment is riskier than the first one, that is a risk-
sensitive investor will pick an investment with the higher
VaR. This same reasoning applies directly to RL setting.
Here, instead of investments we deal with actions. risk-
sensitive policy will pick the action that has highest VaR.
For instance Morimura et al. (2012) showed in a simple envi-
ronment of Cliff Walk the policy maximizing low quantiles
yields paths further away from the dangerous cliff.

Risk-sensitive policies are not only applicable to toy do-
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Average distance V aR90% or q0.1 Mean
between infractions
Opposite lane 4.55 1.35
Sidewalk None None
Collision-static None 3.54
Collision-car 0.70 1.53
Collision-pedestrian 52.33 16.41

Average collision impact
Collision-static None 509.81
Collision-car 497.22 1078.76
Collision-pedestrian 40.79 40.70

Distance, km 104.69 98.66
# of evaluation episodes 1000 1000

Table 1. Safety performance in CARLA. We compared decision
making using mean and quantile, both are according to the model
trained by DLTV. Recall that DLTV learns a distribution of state-
action values, represented by a set of quantile values. On the
middle column is selecting actions using a low quantile for the
state-action value function, q0.1, which is more conservative than
the mean. In 1000 episodes, the total distance driven is 104.69km,
and driving on the opposite lane every 4.55 km. Using the mean
for action selection, the total distance driven is 98.66 km and on
opposite lane every 1.35 km. Across all measures, using low quan-
tile achieves better than using mean for action selection, except
that collision rate with car is higher but the collision impact is
lower.

mains. In fact risk sensitive policies is a very important
research question in self-driving. In that respect CARLA
is a non trivial domain where risk-sensitive policies can
be thoroughly tested. In (Dosovitskiy et al., 2017) authors
introduce simple safety performance metric such as average
distance travelled between infractions. In addition to this
metric we also consider the collision impact. This metric
allows one to differentiate policies with the same average
distance between infractions. Given the impact is not avoid-
able, a good policy should minimize the impact.

We trained our agent using DLTV approach and dur-
ing evaluation we used risk-sensitive policy derived from
V aR(Q(s, a)90%) instead of the usual mean. Interestingly,
this approach does employ mean-centered RL at all. We
benchmark this approach against the agent that uses mean
for control. The safety results for the risk-sensitive and
the mean agents are presented in Table 1. It can be seen
that risk-sensitive agent significantly improves safety perfor-
mance across almost all metrics, except for collisions with
cars. However, the impact of colliding with cars is twice
lower for the risk-sensitive agent.

6. Related Work
Tang & Agrawal (2018) combined Bayesian parameter up-
dates with distributional RL for efficient exploration. How-
ever, they demonstrated improvement in only simple do-
mains. Zhang et al. (2019) generated risk-seeking and risk-
averse policies via distributional RL for exploration, making
use of both optimism and pessimism of intrinsic uncertainty.
To our best knowledge, we are the first to use the para-
metric uncertainty in the estimated distributions learned by
distributional RL algorithms for exploration.

For optimism in the face of uncertainty in deep RL set-
ting, Bellemare et al. (2016) and Ostrovski et al. (2017)
exploited a generative model to enable pseudo-count. Tang
et al. (2017) combined task-specific features from an auto-
encoder with similarity hashing to count high dimensional
states. Chen et al. (2017) used Q-ensemble to compute
variance-based exploration bonus. O’Donoghue et al. (2017)
used uncertainty Bellman equation to propagate the uncer-
tainty through time steps. Most of those approaches bring
in non-negligible computation overhead. In contrast, our
DLTV achieves this optimism via distributional RL (QR-
DQN in particular) and requires very little extra computa-
tion.

7. Conclusions
Recent advancements in distributional RL, not only estab-
lished new theoretically sound principles but also achieved
state-of-the-art performance in challenging high dimen-
sional environments like Atari 2600. We take a step fur-
ther by studying the learned distributions by QR-DQN, and
discovered the composite effect of intrinsic and parametric
uncertainties is challenging for efficient exploration. In ad-
dition, the distribution estimated by distributional RL can
be asymmetric. We proposed a novel decaying scheduling
to suppress the intrinsic uncertainty, and a truncated vari-
ance for calculating exploration bonus, resulting in a new
exploration strategy for QR-DQN. Empirical results showed
that the our method outperforms QR-DQN (with epsilon-
greedy strategy) significantly in Atari 2600. Our method
can be combined with other advancements in deep RL, e.g.
Rainbow (Hessel et al., 2017), to yield yet better results.
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A. Performance Profiling on Atari Games
Figure 10 shows the performance of DLTV and QR-DQN on
49 Atari games, which is measured by cumulative rewards
(normalized Area Under the Curve).
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Figure 10. Cumulative rewards performance comparison of DLTV and QR-DQN-1. The bars represent relative gain/loss of DLTV over
QR-DQN-1.


