Imputing Missing Events in Continuous-Time Event Streams

Appendices

A. Little & Rubin (1987)’s Missing-Data
Taxonomy

Little & Rubin (1987)’s classical taxonomy of MNAR,
MAR, and MCAR mechanisms'? was meant for graphical
models. A graphical model has a fixed set of random vari-
ables. The missingness mechanisms envisioned by Little
& Rubin (1987) simply decide which of those variables are
suppressed in a joint observation. For them, an observed
sample always reveals which variables were observed, and
thus it reveals how many variables are missing.

In contrast, our incomplete event stream is most simply de-
scribed as a single random variable Y that is partly miss-
ing. If we tried to describe it using |x Lz| random variables
with values like kat, then the observed sample x would
not reveal the number of missing variables |z| nor the total
number of variables |x Ll z|. There would not be a fixed set
of random variables.

To formulate our model in Little & Rubin’s terms, we
would need a fixed set of uncountably many random vari-
ables K; where ¢ ranges over the set of times. K; = k if
there is an event of type k at time ¢, and otherwise K; = 0.
For some finite set of times ¢, we observe a specific value
K; > 0, corresponding to some observed event. For all
other times ¢, the value of K is missing, meaning that we
do not know whether or not there is any event at time ¢,
let alone the type of such an event. A crucial point is that
0 values are never observed in our setting, because we are
never told that an event did not happen at time ¢. In con-
trast, a value > 0 (corresponding to an event) may be ei-
ther observed or unobserved. Thus, the probability that K
is missing depends on whether K; > 0, meaning that this
setting is MNAR.

We preferred to present our model (section 2.1) in terms
of the finite sequences that are generated or read by our
LSTMs. This simplified the notation later in the paper. But
it does not cure the MNAR property: see section 5.1.

Again, our presentation does not allow a Little & Rubin
(1987) style formulation in terms of a finite fixed set of ran-
dom variables, some of which have missing values. That
formulation would work if we knew the total number of
events I, and were simply missing the value k; and/or ¢;
for some indices <. But in our setting, the number of events

”Missing not at random (MNAR) makes no assumptions
about the missingness mechanism. Missing at random (MAR) is
a modeling assumption: determining from data whether the MAR
property holds is “almost impossible” (Mohan & Pearl, 2018).
Missing completely at random (MCAR) is a simple special case
of MAR.

is itself missing: after each observed event ¢, we are miss-
ing J; events where J; is itself unknown. In other words,
we need to impute even the number of variables in the com-
plete sequence x LI z, not just their values.

Our definition of MAR in section 2.1 is the correct general-
ization of Little & Rubin (1987)’s definition: namely, it is
the case in which the second factor of equation (1) can be
ignored. The ability to ignore that factor is precisely why
anyone cares about the MAR case. This was mentioned at
equation (1), and is discussed in conjunction with the EM
algorithm in Appendix H.

Since missing-event settings tend to violate this desirable
MAR property, all our experiments address MNAR prob-
lems. As Little & Rubin (1987) explained, the more general
case of MNAR data cannot be treated without additional
knowledge. The difficulty is that identifying pmodel jointly
with pp;ss becomes impossible. If you observe few 50-year-
olds on your survey, you cannot know (beyond your prior)
whether that’s because there are few 50-year-olds, or be-
cause 50-year-olds are very likely to omit their age.

Fortunately, we do have additional knowledge in our set-
ting. Joint identification of ppege; and ppiss 1S Unnecessary
if either (1) one has separate knowledge of the missingness
distribution ppss, or (2) one has separate knowledge of the
complete-data distribution pmegel. In fact, both (1) and (2)
hold in the MNAR experiments of this paper (sections 5.1—
5.2). But in general, if we know at least one of the distribu-
tions, then we can still infer the other (Appendix H).

A.1. Obtaining Complete Data

Readers might wonder why (2) above would hold in a
missing-data situation. In practice, where would we ob-
tain a dataset of complete event streams (as in section 5.2)
for supervised training of pyogel (X LI 2)?

In some event stream scenarios, a training dataset of com-
plete event streams can be collected at extra expense. This
is the hope in the medical and user-interface scenarios in
section 1. For our imputation method to work on partially
observed streams x L! z, their complete streams should be
distributed like the ones in the training dataset.

Other scenarios could be described as having eventually
complete streams. Complete information about each event
stream eventually arrives, at no extra expense, and that
event stream can then be used for training. For example,
in the competitive game scenario in section 1), perhaps
including wars and political campaigns, each game’s true
complete history is revealed after the game is over and the
need for secrecy has passed. While a game is underway,
however, some events are still missing, and imputing them
is valuable. Both (1) and (2) hold in these settings.

Imputing Missing Events in Continuous-Time Event Streams

An interesting subclass of eventual completeness arises in
monitoring settings such as epidemiology, journalism, and
sensor networks. These often have reporting delays, so
that one observes each event only some time after it hap-
pens. Yet one must make decisions at time ¢ < 7" based on
the events that have been observed so far. This may involve
imputing the past and predicting the future. The missing-
ness mechanism for these reporting delays says that more
recent events (soon before the current time t) are more
likely to be missing. The probability that such an event
would be missing depends on the specific distribution of
delays, which can be learned with supervision once all the
data have arrved.

We point out that in all these cases, the “complete” streams
x L z that are used to train ppoege; do not actually have to be
causally complete. It may be that in the real world, there
are additional latent events w that cause the events in x Ll z
or mediate their interactions. Mei & Eisner (2017, section
6.3) found that the neural Hawkes process was expressive
enough in practice to ignore this causal structure and sim-
ply use x LJ z streams to directly train a neural Hawkes
process model ppoder(X LI z) of the marginal distribution
of x LI z, without explicitly considering w in the model or
attempting to sum over w values. The assumption here is
the usual assumption that x LI z will have the same distri-
bution in training and test data, and thus w will be missing
in both, with the same missingness mechanism in both. By
contrast, z is missing only in test data. It is not possible
to impute w because it was not modeled explicitly, nor ob-
served even in training data. However, it remains possible
to impute z in test data based on its distribution in training
data.

B. Complete Data Model Details

Our complete data model, such as a neural Hawkes pro-
cess, gives the probability pmoedel(x U z) that x L z will be
the complete set of events on a given interval [0,7). this
probability can always be written in the factored form

I J;

(TTTIpkisatis | #(ti,0)) - pla=T | H(T)) (14)

i=0j=0

where p(kat | H(t)) denotes the probability density that
the first event following 7 (¢) (which is the set of events oc-
curring strictly before t) will be kat, and p(e > t' | H(t))
denotes the probability that this event will fall at some time
>t

Thus, the final factor of (14) is the probability that there are
no more events on [0, T") following the last event of x LI z.

The initial factor p(koatq | H(to)) is defined to be 1, since
the boundary event kgatg is given (see section 2.1).

B.1. Neural Hawkes Process Details

In this section we elaborate slightly on section 2.2. Again,
Ai(t | H(t)) is defined by equation (2) in terms of the
hidden state of a continuous-time left-to-right LSTM. We
spell out the continuous-time LSTM equations here; more
details about them may be found in Mei & Eisner (2017).

h(t) =0;® (QU(QC(t)) — 1) fort € (ti—17ti] (15)

where the interval (¢;_1,¢;] has consecutive observations
k;_1@t;_; and k;at; as endpoints. At ¢;, the continuous-
time LSTM reads k;at; and updates the current (decayed)
hidden cells c(¢) to new initial values c;1+1, based on
the current (decayed) hidden state h(;), as follows:'?

i1 + o (Wik; + Uih(t;) + d;) (16a)
fiz1¢o0 (Wfki + U¢h(t;) + df) (16b)
Zit1 < 20 (W, k; + U,h(t;) +d,) — 1 (16¢)
0141 0 (Woki + Ugh(t;) +do) (16d)
Ciy1 + Fip1 @c(ty) + 1it1 © 241 (17a)
Cit1 < £i+1 ©c; + ii-{-l O) /AN (17b)
dit1 < [(Wek; + Ugh(t;) + dq) (17¢)

The vector k; € {0,1}X is the i input: a one-hot encod-
ing of the new event k;, with non-zero value only at the
entry indexed by k;. Then, c(t) for ¢t € (¢;_1,¢;] is given
by (18), which continues to control h(t) except that ¢ has
now increased by 1).

def

c(t) = cip1 4 (Cipr — €ip1) exp (=iy (E—t;)) (18)

On the interval (t;, ¢;41], c(t) follows an exponential curve
that begins at ¢;; (in the sense that lim, , ,+ c(t) = c;41)
and decays, as time ¢ increases, toward gl 41 (which it
would approach as ¢ — oo, if extrapolated).

The intensity A\, (¢ | #(t)) € R>o may be thought of as
the instantaneous rate of events of type k at time ¢t. More
precisely, as dt — 0%, the expected number of events of
type k occurring in the interval [t, ¢ + dt), divided by dt,
approaches \i(t | H(t)). If no event of any type occurs in
this interval (which becomes almost sure as dt — 01), one
may still occur in the next interval [t + dt,¢ + 2dt), and
so on. The intensity functions A (¢ | H(t)) are continuous
on intervals during which no event occurs (note that ()
is constant on such intervals). They jointly determine a
distribution over the time of the next event after H(¢), as
used in every factor of equation (14). As it turns out (Mei

3The upright-font subscripts i, f, z and o are not variables, but
constant labels that distinguish different W, U and d tensors.
The f and i in equation (17b) are defined analogously to f and i
but with different weights.

Imputing Missing Events in Continuous-Time Event Streams

& Eisner, 2017), log pmodel (Y = x U z) becomes

T K
S tog vt | H(t0) = [SO Nele [M) (19
¢ t=

k=1

where the first sum ranges over all events k,@ty in x U z.

We can therefore train the parameters 6 of the A\ func-
tions by maximizing log-likelihood on training data. The
first term of equation (19) can be differentiated by back-
propagation. Mei & Eisner (2017) explain how simple
Monte Carlo integration (see also our Appendix C.3) gives
an unbiased estimate of the second term of equation (19),
and how the random terms in the Monte Carlo estimate can
similarly be differentiated to give a stochastic gradient.

C. Sequential Monte Carlo Details

Our main algorithm is presented as Algorithm 1. It covers
both particle filtering and particle smoothing, with optional
multinomial resampling.

In this section, we provide some additional details and
notes on the design and operation of the pseudocode.

C.1. Explicit Formula for the Proposal Distribution

The proposal distribution ¢(z | x) factors as follows, and
the pseudocode uses this factorization to construct z by
sampling its individual events from left to right:

Ji

I
TT (T (atkigotis | #(t), Fitig) @0)
i=0 j=1

(0=t | Hltin), Fltis)))

Here the notation for ¢(- | -) is the same as that for p(- | -) in
Appendix B. However, the ¢(- | -) terms are proposal prob-
abilities that condition on different evidence—not only the
set H(t) of all events (observed and unobserved) at times
< t, but also the set F(t) of events at times > t.!* All
of the proposal probabilities (- | -) are determined by the
intensity functions in (5).

We can sample z from ¢(z | x) in chronological order:
for each 0 < ¢ < I in turn, draw a sequence of J; un-
observed events that follow the observed event k;at;. The
probabilities of these .J; events are the inner factors in equa-
tion (20). This sequence ends (thereby determining .J;) if
the next proposed event would have fallen after ¢;,; and
thus is preempted by the observed event k;i@t; ;. The
probability of so ending the sequence corresponds to the
g(@>t;41 | - -) factor in equation (20).

'“In particular, the second ¢ factor above is the probability that
the event at time ¢;_ s, is the last one before ;1 1, given knowledge
of all past events up through and including the one at ¢;, 7,, and all
future observed events starting with the one at £;11.

Equation (20) resembles equation (14), but it conditions
each proposed unobserved event not only on the history but
also on the future. Section 3.2.1 tries to train ¢(z | x) to
approximate the target distribution p(z | x), by making
q(- | #H,F) = p(- | H,F). In other words, at each step,
q should draw the next proposed event approximately from
the posterior of the model p, even though we have no closed
form computation for that posterior.

Just as equation (14) yields the formula (19) for 1og pmodel
when we use a neural Hawkes process model, equation (20)
yields the following formula for log ¢(z | x) when we use
the proposal intensities from (5):

Zlog)\ze(tg ‘ H(tf)vf(té))
J4

7T K
- [Yo Foa ey

=0 =1

where the first sum ranges over all events k,at, in z only.

C.2. Managing LSTM State Information

The push and pop operations shown in the pseudocode
must be implemented so that they also have the effect of
updating LSTM configurations.

Our progder Uses a left-to-right LSTM to construct its state
after reading all events so far from left to right (section 2.2).
Since each particle posits a different event sequence, we
maintain a separate LSTM configuration for each particle
m = 1,2,..., M. If smooth = true, our ¢ additionally
uses a right-to-left LSTM whose state has read all future
observed events from right to left (section 3.2). We main-
tain the configuration of this LSTM as well.

Specifically, in Algorithm 1, when we push an event to the
stack H,, (lines 5 and 46), we update the configuration of
particle m’s left-to-right LSTM (including gates, cell mem-
ories and states).

If smooth = true, then when we push an event to the stack
F (line 8), we update the configuration of the right-to-left
LSTM. Moreover, before updating that configuration, we
push it onto an parallel stack, so that we can revert the up-
date when we later pop the event from F (line 36).

These LSTM configurations provide the h(t) and h(t) vec-
tors for the computation of intensities AY(¢) and A](¢)
in equations (2) and (5). These intensities are needed in
lines 43 and 45 of the algorithm.

C.3. Integral Computation

Mei & Eisner (2017, section B.2) construct a Monte Carlo

estimator of the fOT integral in equation (19), by evaluating
>p Akt | H(t)) - T at a random ¢ ~ Unif(0,1). While
even one such sample would provide an unbiased estimate,

Imputing Missing Events in Continuous-Time Event Streams

Algorithm 1 Sequential Monte Carlo — Neural Hawkes Particle Filtering/Smoothing

Input: observed sequence x = koaty,...,krp1@tr41 withtg = 0,741 =T

model p; missingness mechanism pp;g; proposal distribution ¢; number of particles M ;
boolean flags smooth and resample

Output: collection {(z1,w1),. .., (za, war)} of weighted particles
1: procedure SEQUENTIALMONTECARLO(X, P, Pmiss> ¢, M, smooth, resample)
2. form=1to M : > initialize the M weighted particles (Zm, W)
3 Zy, <— empty seq; Wy, < 1
4 > history Hm will be a stack of the past events, namely koatq followed by the prefix of x U z,,, generated so far
5: H., < empty stack; push kgaty onto H,, > boundary event 0 (not generated by Pmoder)
6 F < empty stack > F is a stack of the future observed events, with the next event on top
7 for i = I downto O : > initialize F later, as we reach each event, we’ll pop it from F and push it onto H,, (Ym)
8 push k;i@t; 1 onto F
9 fori:=0to[: > propose unobserved events on interval (t;,t; 1), then observe next event ki11@t;11
10: form =1to M :
11: DRAWSEGMENT(Z', m) > destructively extend Zy, , Wy, Hm with events on (t;, ti+1]
12: if resample & LOWESS() : RESAMPLE() > optional multinomial resampling replaces all weighted particles
13: return { (Zm, Wyn / Z -1 wm)}m 1 > M particles with weights normalized as in equation (3)
14: procedure LOWESS > check if effective sample size is low
15: ESS ¢ (Zp_y 0m)2/ ey (wi)?
16: if ESS < M/2 : return true
17: return false
18: procedure RESAMPLE > has access to global variables
19: form=1to M : > often draws multiple copies of good (high-weight) particles, 0 copies of bad ones
20: draw m € {1,..., M} where probability of choosing any m is proportional to w;;; then set Z,,, < 2,
21: form=1to M :
22: Zip $— Zipy Wiy — 1 > update particles and their weights
23: procedure DRAWSEGMENT(Z, m) > has access to global variables
24: > algorithm input p gives info to define intensity function X} (t) &f Ae(t | Hm)
25: > algorithm input g gives info to define intensity function \}(t) e (t | Hum, F), or simply A} (t) = X} (t) if smooth = false
26: D these functions consult the state of a left-to-right LSTM that’s read H ., and possibly a right-to-left LSTM that’s read F
27: b we also define the total intensity functions \P(t) &< SR AR () and M (t) o SR ()
28: i <45« 0,1 1y > t; can be found as the time of the top element of H, (currently an observed event)
29: repeat > each iteration adds a new event to H, with index (', j) = (i,1), ..., (i, i), i + 1,0)
30: j—i+1
31: repeat > thinning algorithm (see Mei & Eisner, 2017)
32: find any A* > sup {A\9(t') : ¢’ € (¢,ti11]} > e.g., old * still works if i unchanged; see Appendix C.4
33: draw A ~ Exp(*), u ~ Unif(0, 1)
34: t+=A > time of next proposed event (before thinning)
35: ift >1t;41: > tit1 can be found as the time of the top element of F (always an observed event)
36: kat < pop F;i' + i+ 1,5+ 0; > preempt proposed event by k;1at; 11 (popped from future into present)
37: break
38: until uA* < A9(¢) > thinning: accept proposed time t only with prob 2~ < 1
39: > we’ve now chosen next event time t;/ ; to be t; let t ., denote the time of the top element of Hm
40: ifi =1q: > it’s a missing event
41: draw k € {1,..., K} where probability of k is proportional to A} (t) > choose event type for the proposed time
42: append kat to z,, > add our proposed event k; ;at;s ;
43: Wy, — W, / (exp (ft'—tp,e\ t')dt') - XL(t)) > new factor within q in denominator of (3); see Appendix C.j’
44 ifi <1I: > skip final boundary event I + 1 (not generated by Pmodet)
45: Wy, — Wy, + (exp (ft’ - P(t')dt') - NP (t)) > new factor within puoger in numerator of (3); see Appendix C.3
46: push kat onto H.,, > event (i, j) just generated now becomes part of the past
47: Wy, — Wy, * Priss(ket € Z) = (i =14) | Hm) > new factor within ppiss in numerator of (3): missing or obs
48: untili =i+ 1

Imputing Missing Events in Continuous-Time Event Streams

they draw N = O(I) such samples, where [is the number
of events, and average over these samples. This reduces
the variance of the estimator, which decreases as O(1/N).
Notice that because they sample the N time points uni-
formly on [0, T'), longer intervals between observed events
will tend to contain more points, which is appropriate.

Mei & Eisner (2017) (Appendix C.2) found that rather few
samples could be used to estimate the integral. Indeed, even
sampling at only I time points gave a standard deviation of
log-likelihood—for the whole sequence—that was on the
order of 0.1% of absolute (Mei, p.c.).

Our particle methods in the present paper involve compar-
ing probabilities. For each observed sequence x, we use
(3) to reweight the M particles according to their probabil-
ity under the model divided by their probability under the
proposal distribution. This means contrasting two proba-
bilities for each particle (the p and ¢ probabilities). It also
means comparing the resulting probability ratios across all
M particles, resulting in the normalized weights of equa-
tion (3).

For each of the M particles, the pmogel factor in equation (3)
is obtained by exponentiating equation (19), while the ¢
factor is obtained by exponentiating equation (21). This
means that each of these 2M factors contains the exp of
an integral. To make all of these integral estimates more
comparable and thus reduce the variance in the importance
weights w,, (equation (3)), we evaluate all 2/ integrals at
the same set of N time points (see Appendix G.8). This
practice ensures a “paired comparison” among particles:
Wy, and w,, differ only because they have different in-
tensities at the sampled points, and not also because they
sample at different points.

In Algorithm 1, these integral estimates are accumulated
gradually at lines 43 and 45. The idea is that particle
z,, partitions [0,T) into the intervals between successive
events of x LI z,,. Thus, the (estimated) integral over [0, T')
can be expressed by summing the (estimated) integrals over
these intervals. The estimate over an interval uses only the
small subset of the N time points that fall into the interval.
When we exponentiate the integrals to convert from log-
probabilities into probabilities, this sum turns into a prod-
uct, as shown at lines 43 and 45.

This gradual accumulation method gives the same result as
if we had computed each integral “all at once” before ex-
ponentiating. However, it is useful to begin weighting the
particles before they are complete. After each event k;at;
(for 0 < 4% < I + 1), the partial particles up through this
event already have partial weights w,,. It is these partial
weights that are used by the RESAMPLE procedure (when
resample = true).

In all experiments in this paper, we first sampled 1 + 1

points uniformly on [0,T), for an average of only 1 time
point per interval. In addition, for each interval (¢;,t;41),
we sampled 1 point uniformly on that interval if it did not
yet contain any points. Thus, N € [T + 1,27 4+ 1].

Sampling at more points might be wise in settings where
there are many missing events per interval (e.g., large p
in section 5.1). This is especially true when resample =
true. Resampling allows us to try multiple extensions of a
high-weight particle; at the next resampling step, we prefer
to keep the extensions that fared best. The danger is that
if only a few sampling points happen to fall between re-
sampling steps, then we may make a poor (high-variance)
estimate of which extensions fared best.

For our setting, however, we found only negligible changes
in the results by increasing to 5 time points per interval
(i.e., sampling 5145 points at the first step). Our evaluation
metric (the minimum of (13) over all alignments a) became
slightly better for some values of C' and slightly worse for
others, but never by more than 2% relative. This is about
the same variance that we get across different runs (with
different random seeds) that have 1 time point per interval.

Thus, we report only the results of the faster scheme. We
caution that other settings might be more sensitive to this
hyperparameter settings. Thus, it might be wise to elimi-
nate the hyperparameter altogether by estimating the inte-
grals at lines 43 and 45 with a more sophisticated Monte
Carlo integration method, such as the adaptive partitioning
method of Baran et al. (2008), which can bound the additive
error of the estimate with high probability. This approach
no longer provides a “paired comparison” across particles,
nor does it need one.

C.4. Choice of *

How do we construct the upper bound A* (line 32 of Al-
gorithm 1)? For particle filtering, we follow the recipe in
Appendix B.3 of Mei & Eisner (2017): we can express
A* = fr(max; g1 (t) + ...+ max; g,(t)) where each sum-
mand vgghg(t) = vkg - 0ia - (20(2¢4(t)) — 1) is upper-
bounded by maXce (e, .c.,} Vkd * 0id - (20(2¢) — 1). Note
that the coefficients v;4 may be either positive or negative.

For particle smoothing, we simply have more summands
inside fi so * = fr(max; g1(¢) + ... + max; g, (¢t) +
maxy g1 (t)+. . . +max; gr (t)) where each extra summand
ukdﬁd(t) = Ukd - 0id * (20(2Ed(t)) — 1) is upper-bounded
by maxcee,y.e,,} Ukd * Oid * (20(2¢) — 1) and each uq is
the d™ element of vector sz (equation (5)). Note that
the 04, Cid, C;q of newly added summands g are actually
from the right-to-left LSTM while those of g are from the
left-to-right LSTM.

Imputing Missing Events in Continuous-Time Event Streams

C.5. Missing Data Factors in p

Recall that the joint model (1) includes a factor pyiss(z |
x U z), which appears in the numerator of the unnormal-
ized importance weight (3). Regardless of the form of this
factor, it could be multiplied into the particle’s weight .,
at the end of sampling (line 13 of Algorithm 1).

However, for some pp;s distributions, there is a better way.
Algorithm 1 assumes that the missingness of each event
kat depends only on that event and preceding events,'> so
that pmiss(z | x U z) factors as

[pmiss(keate € Z | {kpaty - € <)) (22)
£eindices(z)

'Hpmiss(ké@tf g Z | {kf’@tK’ A < é})

£cindices(x)

Algorithm 1 can thus incrementally incorporate the subfac-
tors of equation (22), and does so at line 47 of Algorithm 1.
For example, with the missingness mechanism in our ex-
periments, equation (12), the py,;ss factor in line 47 is py, if
the event is unobserved (that is, ¢/ = 7) or 1 — py, if it is
observed.

These subfactors are therefore taken into account as the
particles are constructed, and thus play a role in resam-

pling.

C.6. Optional Missing Data Factors in ¢

We can optionally improve the particle filtering proposal
intensities to incorporate the pyss factor discussed in Ap-
pendix C.5 (in which case that factor will be multiplied
into the denominator of (3) and not just the numerator).
This makes ¢(z | x) better match p(z | x): it means we
will rarely posit an unobserved event that would rarely have
gone missing.

Specifically, if a completed-data event kat would have
probability py(t | H(t)) of going missing given the pre-
ceding events H(t), it is wise to define A} (t | H(t)) =
A TH(E)) - pi(t | H(2)).

We do include this extra pj, factor when defining A} for our
experiments (section 5); that is, we modify the definition
of A at line 25. The factor is particularly simple in our
experiments, where py, is constant for each k.

Was this factor really necessary in the case of particle
smoothing? One might say no: particle smoothing al-
ready tries to ensure through training that the proposal
distribution will incorporate pniss. That is because sec-
tion 3.2.1 aims to train A} (¢ | H(t), F(t)) so that the re-
sulting ¢(z | x) =~ p(z | x), and the posterior distribution

'5This assumption could trivially be relaxed to allow it to also
depend on the missingness of the preceding events, and/or on the
future observed events F ().

p(z | x) does condition on the missingness of z.

Still, if the py, factor is known, why not include it explicitly
in the proposal distribution, instead of having to train the
BiLSTM to mimic it? Thus, in effect, we have modified
the right-hand side of equation (5) to include a factor of pg.
This yields a more expressive and better-factored family of
proposal distributions: missingness is now handled by the
known py, factor and the BiLSTM does not have to explain
it. Additionally, our proposal distribution becomes more
conservative about proposing missing events, because hav-
ing a lot of missing events is a posteriori improbable. In
other words, ppiss as given in equation (12) falls off with
the number of missing events |z|.

Modifying equation (5) in this way is particularly useful in
the special case pp = 0 (i.e., event type k is never missing
and should not be proposed). There, it enforces the hard
constraint that A = 0 (something that the BILSTM by it-
self could not achieve); and since this constraint is enforced
regardless of the BILSTM parameters, the events of type k
appropriately become irrelevant to the training of the BiL-
STM, which can focus on predicting other event types.

C.7. Events with Equal Times

In contrast to the notation in the main paper, our pseu-
docode is written in terms of sequence of events, rather
than sets of events. As a result, it can handle the gener-
alization noted in footnote 4, where a 0 delay is allowed
between an event and the preceding event in the complete
sequence. If this occurs, it means that multiple events have
fallen at the same time—yet they still have a well-defined
order in which they are generated and read by the LSTM.

An unobserved event may have a 0 delay, if line 33 pro-
poses A = 0 and the proposal is accepted. The neural
Hawkes model can in principle make such a proposal, but it
has zero probability. However, it might have positive prob-
ability under a slightly different model.

An observed event may also have a 0 delay, if t = ¢;4; at
line 35 and the proposal is accepted.'® In this way, it is pos-
sible for the proposal distribution to propose any number of
unobserved events at time ;11 and immediately before the
actual observed event k;iat;;1. However, once the pro-
posal distribution happens to propose A > 0, the actual
observed event k;@t; 1 will preempt the proposal, end-
ing this sequence of J; unobserved events.

15Tt may seem improbable to propose ¢t = t; 41 exactly, but if
t; = tit+1, then proposing an unobserved event between these two
observed events is just a case of proposing with 0 delay, as in the
previous paragraph.

Imputing Missing Events in Continuous-Time Event Streams

D. Right-to-Left Continuous-Time LSTM

Here we give details of the right-to-left LSTM from sec-
tion 3.2. Note that this set of formulas is nearly the same
as that of Appendix B.1—after all, it is a continuous-time
LSTM that has the same architecture as the one in the neu-
ral Hawkes process. The difference is that it reads only the
observed events, and does so from right to left. The two
LSTMs do not share parameters.

The hidden state h(t) is continually obtained from the
memory cells c(t) as the cells decay (in reversed time):

h(t) = 0; ® (20(2¢(t)) — 1) fort € [t;_1,t;) (23)

where the interval [¢;_1,t;) has consecutive observations
k;_1@t;_1 and k;at; as endpoints. At t;, the continuous-
time LSTM reads k;at; and updates the current (decayed)
hidden cells ¢(¢) to new initial values ¢;_;, based
on the current (decayed) hidden state h(t;), as follows:

ij_1 + o (Wik; + Uih(t;) + d;) (24a)
fi,1 —0o (Wfki + U¢h () + df) (24b)
z;—1 + 20 (W,k; + U,h(t;) +d,) — 1 (24c)
0;—1 < o (Wok; + Ush(t;) + do) (24d)
Cioi+fi1oct) +iim1 021 (25a)
C,_1¢+f,_,0¢+i_ 107z (25b)
6i—1 < f(Wak; + Ugh(t;) + da) (25¢)

The vector k; € {0,1}X is the i input: a one-hot encod-
ing of the new event k;, with non-zero value only at the
entry indexed by k;. Then, c(t) for ¢t € [t;_1,t;) is given
by (26), which continues to control h(t) except that i has
now decreased by 1.

c(t) & C,_q1+ (cl 1—C;_)exp (752-_1 (t; — t)) (26)
On the interval [¢;_1,t;), ¢(t) follows an exponential curve
that begins at ¢;_; (in the sense that lim, - ¢(t) = ¢;_1)

and decays, as time ¢ decreases, toward C,_;.

E. Optimal Transport Distance Details

Pseudocode is presented in Algorithm 2 for finding optimal
transport distance and the corresponding alignment. In the
remainder of this section, we prove that optimal transport
distance is a valid metric.

It is trivial that OTD is non-negative, since movement, dele-
tion and insertion costs are all positive.

It is also trivial to prove that the following statement is true:

L(Zl,Zg) :O<:>Z1 = Z2, (27)

where z; and z, are two sequences. If z; is not identi-
cal to z,, the distance of them must be larger than O since
we have to do some movement, insertion or deletion to
make them exactly matched, so the right direction of equa-
tion (27) holds. If the distance between z; and zs is zero,
which means they are already matched without any opera-
tions, z; and z, must be identical, thus the left direction of
equation (27) holds.

OTD is symmetric, that is, L(z1,22) = L(z2,21), if we
set Cinsert = Clelete- Suppose that a is an alignment be-
tween z; and zy. It’s easy to see that the only differ-
ence between D(z1,22,a) and D(z2,21,a) 7 is that the
insertion and deletion operations are exchanged. For ex-
ample, if we delete a token ¢; € z; when calculating
D(z1,22,a), we should insert a token at ¢; to zs when cal-
culating D(z2, 21, a). If we set Cipsert = Clelete, We have

D(z1,29,a) = D(22,21,a), Vac€ A(z1,22). (28)
Therefore, we could obtain
L(z1,22) = min D(z;,29,a%)
a*cA(zy1,2z2)
= min D(z3,7z1,a") = L(z2,71)

a*cA(z1,2z2)

Finally let’s prove that OTD satisfies triangle inequality,
that is:

L(z1,22) + L(22,23) > L(z1,23), (30)

where z;, zo and z3 are three sequences. This property
could be proved intuitively. Suppose that the operations
on z; with minimal costs to make z; matched to zo are
denoted by 01,02,...,0,,, and those on z; to make z
matched to z3 are denoted by 07,05, ...,0],,. 0; could be
a deletion, insertion or movement on a token. To make z;
matched to z3, one possible way, which is not necessar-
ily the optimal, is to do 01,02, ...,04,,01,05,...,0;,_ on
z1. Since the total cost is the accumulation of the cost of
each operation, and the operations on z; above to make z;
matched to zs might not be optimal, the triangle inequality
equation (30) holds.

F. Approximate MBR Details

Our approximate consensus decoding algorithm is given as
Algorithm 3. In the remainder of this section, we prove
Theorem 1 from section 4.2, namely:

Theorem 1. Given {z,,}M_,, if we define z, =
|_|f\r/f=1 Zm, then 3z C z|, such that

fo:l Wi L(Z, Z) = Mingez Z

That is to say, there exists one subsequence of z,, that
achieves the minimum Bayes risk.

_ W L(2,2m)

17We abuse the notation a, which we think could represent both
the movement from z; to zz and from z3 to z;.

Imputing Missing Events in Continuous-Time Event Streams

Algorithm 2 A Dynamic Programming Algorithm to Find Optimal Transport Distance

Input: proposal z; reference z*
Qutput: optimal transport distance d; alignment a
1: procedure OTD(z, z*)
2: d < 0; a < empty collection {}
3: fork< 1toK:
4 d® a®) « ALiGN(z"), 2+ M)
5: d+—d+d*®;a+—auak®
6: returnd, a
7: procedure ALIGN(2®, z*(¥))
8 [+ [2®); 1« |z¢®)
9

220 =4y, 6 andw® = ¢, t].

D < zero matrix with (1 + 1) rows and (I* + 1) columns

10: P < empty matrix with I rows and I* columns
11: fori+1to!:
12: D%,O —]:)A-_l_’0 + Clelete

?

13: for¢* < 1to[*:
14: DO,i* — DO,i* + Cingert

15: fori« 1tol:

16: fori* < 1toI*:

17: Daelete < Dg_u* + Celete

13: Dingert D%,i*—l + Clinsert

19: Dinove D%—l,i*—l + |t} — t;;‘

20: Dﬁﬂ;* <~ min{Dinsem Daelete Dmove}
21: P%,i* — arglninee~‘[insert,delete,move} De

22 i f;Ai* + I*;a « empty collection{ }
23: while:>0andi* > 0:

24: if P“ = delete :

25: iei—1

26: if P; .. = insert:

27: =it —1

28: if P” = move :

29: 10— 10— i*—1
30: a«aU{(t,tr)}
31: returnD; .. ,a

> back pointers
> transport reference of length O to proposal of length i
> delete f; (and prefixes are matched)

> transport preference of length i* to proposal of length O

> insert ti« = t}« to decode (and their prefixes are matched)
> proposal prefix of length i

> to match reference of length i*

> if the event token at f; is deleted from 2

> if an event token at t;« is inserted to 2

> if the event at t}« of z* ®) i aligned to event at t; of 2
> choose the edit that yields the shortest distance

> e represents the kind of edition

> back trace
> token t; is deleted.

> a token at t}« is inserted

> token t}. is aligned to t;

Proof. Here we assume that there is only one type of event.
Since the distances of different types of events are calcu-
lated separately, our conclusion is easy to be extended to
the general case.

Suppose z is an optimal decode, that is,

M M

E Wi L(Zpm, 2) = min E Wi L(Zm, 2).
zEZ

m=1 m=1

If z C z,,, the proof is done. If not, we can choose some
t; ¢ z. Lett; = max{t € z, : t < t;} and ¢, = min{t €
z, : t > t;}. (These sets are nonempty because z, al-
ways contains the endpoints 0 and 7".) We will show that
if we move t; around, as long as t; € [t;, t,], the weighted
optimal transport distance, i.e. Zn]\le Wi L(2pm, 2), will
neither increase nor decrease.

A . M .
Suppose & = argmin, | e 4(z,..2) 2om—1 Wn(Zm, 2, an).
Let’s use r(t) to indicate the weighted transport distance
of z with fixed alignment if we move ¢; to ¢, that is,

M
T(t) dér Z me(vai(t)’é>7

where z(t) is the sequence z with ¢; moved to ¢. Because
z(t;) is an optimal decode, and a is the optimal alignment
for z(¢;), we should have

r(t;) = mtinr(t).
Note that the transport distance is comprised of three parts:

deletion, insertion and alignment costs. Since every a is
fixed, if we change ¢, only the alignment cost that related

Imputing Missing Events in Continuous-Time Event Streams

Algorithm 3 Approximate Consensus Decoding

Input: collection of weighted particles Z; = {(Zm, wm)}M_;

Output: consensus sequence z with low fo:l Wi L(Z, Z,)

: procedure APPROXMBR(Z,,)
Z < empty sequence
fork=1to K :

2™ « DECODEK ({(z), wi)YM_,); 2 + 22"

: procedure DECODEK(Z,y)
> Zn actually means ZEJ;) = {(zﬁ,’f), W) M

1

2

3

4

5: return z
6

7

8 Z < argmaX,cg, M W
9

repeat
10: form=1to M :
11: A, &py < ALIGN(Z, 2y,)
12: Tmin <= D WinGm
13: 2, {dpm,am}M_| < MOVE(z, {Zm, dm,am }M_))
14 2, {dpm,am }M_| < DELETE(z, {Zm, dm, am }M_,)
15: 2, {dpm, am }M_| < INSERT(2,{Zm, dpm,am }M_,)

16: until E%:l Wi = Tmin
17: return z

> decode for type-k by calling DECODEK

m=1 throughout the procedure; z., is constant

> init decode as highest weighted particle and it is global

> Align Phase

> call method in Algorithm 2; d,,, am, are global
> track the risk of current z

> see Algorithm 4

> see Algorithm 4

> see Algorithm 4

> risk stops decreasing

to token ¢ will affect r(¢). This part of r(¢) is linear to ¢,
since we have a constraint ¢ € [¢;,t.], which guarantees
that it will not cross any other tokens in z,.

Since r(t) is linear to ¢ € [r;,t,] and r(t) gets minimized
att; € (t,t,), we conclude that

r(t) = r(t;) = Const, Vt € [t;,t,].

Since r(t) is the upper bound of the weighted optimal trans-
port distance Z%ﬂ Wy, L(Z,, 2(t)), which also gets the
same minimal value at ¢; € (¢;,t,) as (), we could con-
clude that Vt € [t;, t,]:

M M
> Wi L(2Zm, 2(t) = Y Wy L(zpm, 2(t;)) = Const

m=1 m=1

Therefore we could move token ¢; to either ¢; or ¢, without
increasing the Bayes risk. We could do this movement for
each t; ¢ z,, to get a new decode z C z,, which is also an
optimal decode.

O

G. Experimental Details

In this section, we elaborate on the details of data genera-
tion, processing, and experimental results.

In all of our experiments, the distribution ppeqe s trained
on the complete (uncensored) version of the training data.
The system is then asked to complete the incomplete (cen-
sored) version of the test (or dev) data. For particle smooth-

ing, the proposal distribution is trained using both the com-
plete and incomplete versions of the training data, as ex-
plained at the end of section 3.2.1. We used the Adam algo-
rithm with its default settings (Kingma & Ba, 2015). Adam
is a stochastic gradient optimization algorithm that contin-
ually adjusts the learning rate in each dimension based on
adaptive estimates of low-order moments. Each training
example for Adam is a complete event stream x LI z over
some time interval [0,7). We stop training early when
we detect that log-likelihood has stopped increasing on the
held-out development dataset. We do no other regulariza-
tion.

G.1. Dataset Statistics

Table 1 shows statistics about each dataset that we use in
this paper.

G.2. Training Details

We used single-layer LSTMs (Hochreiter & Schmidhu-
ber, 1997), selected the number D of hidden nodes of the
left-to-right LSTM, and then D’ of the right-to-left one
from a small set {16, 32,64, 128,256,512,1024} based
on the performance on the dev set of each dataset. The
best-performing (D, D') pairs are (256, 128) on Synthetic,
(256,256) on Elevator (256,256) on NYC Taxi, but we
empirically found that the model performance is robust to
these hyperparameters. For the chosen (D, D’) pair on
each dataset, we selected 5 based on the performance on
the dev set, and 8 = 1.0 yields the best performance across
all the datasets we use. For learning, we used Adam with

Imputing Missing Events in Continuous-Time Event Streams

Algorithm 4 Subroutines for Approximate Consensus Decoding

1: procedure MOVE(z, {Z,, dpm, am }M_)) > Move Phase
2: fortinz:
3: fort/ e {t': (t',t) € U%=1 am}: > may replace t with t' which is aligned 1o t
4 (Vm)d,, + dm
5. for (t",m) € {(t",m) : (",) € am,m € {1,...,M}}:
6: dr, «—d — |t —t|+ [t =7
7: if Y wnd, <> wndny
8: vYm)dy, < d, st t/ > t move to t’ for lower risk
9: return z, {d,,,a }M_,
10: procedure DELETE(Z, {Z, dpm, am }2_) > Delete Phase
11: fortinz: > may delete this event
12: form =1to M : > update each d,y,
13: if 3t' € z,,, and (t', 1) € a,, : > find the only, if any, t' € 2, that is aligned to t
14: > if we delete t and its alignment (', t), d,, decreases by the alignment cost (because we do not need to align it)
15: > but increases by an insertion cost (because we need to insert an event at t to match z.,,)
16: d;n — dm + C'insert - ‘t/ - t|
17: else > otherwise, this event has been deleted when matching with z,
18: d’m < dpm — Cyelete > we do not need to pay deletion cost when matching with z,, if we do not have this event at t in z
19: ity wnd, <> Wndny,
20: delete t from z; (¥Ym) delete (t/,t) from a,,; d,, < d,
21: return z, {d,,,a,, }M_,;
22: procedure INSERT(Z, {2, dpm, & }M_ 1) > Insert Phase
23: repeat
24: t + None, A + —o0
25: fort. € |_|m Zpy, suchthatt, ¢ z: > may insert t. if it is not in z yet
26: form=1to M :
27: z — {t' vt (¢, t) ¢ a,, and t' € z,, } > find t' in zn, that is not aligned yet
28: if z’ is not empty and mint/ez;" [t' — te| < Cinsert + Caelete * > if there is any that is close enough to t.
29: dh, < dpm — Cinsert + mint’EZ/m |t' —tc|; al, < am U{(te, ')} > align the closest one to t.
30: else
31: dl, dpm 4 Clelete; @)y, < am
32: ifY wndm — >, wnd, > A
33: bty A= Wndy — >, Wnd,
34: ifA>0:
35: z + zU{t}; (Ym)a, «+ al,;d, < d.,

36: until A <0
37: return z, {d,,,a, }M_,

Imputing Missing Events in Continuous-Time Event Streams

DATASET K # OF EVENT TOKENS SEQUENCE LENGTH
TRAIN DEv TEST MIN MEAN MAXxX
SYNTHETIC 4 =~ 74967 ~ 7513 =~ 7507 10 ~ 15 20
NYCTAx1 10 157916 15826 15808 22 32 38
ELEVATOR 10 313043 31304 31206 235 313 370

Table 1. Statistics of each dataset. We write “~ N to indicate that [V is the average value over multiple datasets of one kind (synthetic);

the variance is small in each such case.

its default settings (Kingma & Ba, 2015).

Our Monte Carlo integral estimates are in fact unbiased
(Appendix C.3). As a result, our stochastic gradient esti-
mate is also unbiased, as required (assuming that the com-
plete data is distributed according to pmode1). Why? Since
B = 1, our stochastic gradient is simply equation (6). No
particle filtering or smoothing is used to estimate equa-
tion (6), because we train it using complete data, as ex-
plained in the last long paragraph of section 3.2.1. The
only randomness is the integral over [0,7T) (similar to the
one in equation (19)) that is required to estimate the term
log q(z | x) in equation (6): as just noted, this integral esti-
mate is unbiased.

It is true that if 5 < 1, we would compute the exclusive
KL gradient using particle filtering or smoothing with M
particles, and this would introduce bias in the gradient.
Nonetheless, since the bias vanishes as M — oo, it would
be possible to restore a theoretical convergence guarantee
by increasing M at an appropriate rate as SGD proceeds
(Spall, 2005, page 107).'8

G.3. Details of the Synthetic Datasets

Each of the ten neural Hawkes processes has its param-
eters sampled from Unif[—1.0,1.0]. Then a set of event
sequences is drawn from each of them via the plain vanilla
thinning algorithm (Mei & Eisner, 2017). For each of the
ten synthetic datasets, we took K = 4 as the number of
event types. To draw each event sequence, we first chose
the sequence length I (number of event tokens) uniformly
from {11,12,...,20} and then used the thinning algorithm
to sample the first I events over the interval [0, c0). For
subsequent training or testing, we treated this sequence (ap-
propriately) as the complete set of events observed on the
interval [0, T") where T' = ¢, the time of the last generated
event.

We generate 5000, 500 and 500 sequences for each train-

'8SGD methods succeed, both theoretically and practically,
with even high-variance estimates of the batch gradient (e.g.,
where each stochastic estimate is derived from a single randomly
chosen training example). Thus, one should be fine with a noisy
sampling-based gradient as long as it is unbiased.

ing, dev, and test set respectively. For the missingness
mechanism: in the deterministic settings, we censor all
events of type 3 and 4—in other words, we set p; = pa =0
and p3 = pg = 1; in the stochastic settings, we set
pr = 0.5 for all k.

G 4. Elevator System Dataset Details

We examined our method in a simulated 5-floor building
with 2 elevator cars. During a typical afternoon down-peak
rush hour (when passengers go from floor-2,3,4,5 down to
the lobby), elevator cars travel to each floor and pick up
passengers that have (stochastically) arrived there accord-
ing to a traffic profile (Bao et al., 1994). Each car will also
avoid floors that already are or will soon be taken care of
by the other. Having observed when and where car-1 has
stopped (to pick up or drop off passengers) over this hour,
we are interested in when and where car-2 has stopped dur-
ing the same time period. In this dataset, each event type is
a tuple of (car number, floor number) so there are K = 10
in total in this simulated 5-floor building with 2 elevator
cars.

Passenger arrivals at each floor are assumed to follow a in-
homogeneous Poisson process, with arrival rates that vary
during the course of the day. The simulations we use fol-
lows a human-recorded traffic profile (Bao et al., 1994)
which dictates arrival rates for every S-minute interval dur-
ing a typical afternoon down-peak rush hour. Table 2
shows the mean number of passengers (who are going to
the lobby) arriving at floor-2,3,4,5 during each 5-minute
interval.

We simulated the elevator behavior following a naive base-
line strategy documented in Crites & Barto (1996)."” In
details, each car has a small set of primitive actions. If
it is stopped at a floor, it must either “move up” or “move
down”. If it is in motion between floors, it must either “stop
at the next floor” or “continue past the next floor”. Due to
passenger expectations, there are two constraints on these
actions: a car cannot pass a floor if a passenger wants to
get off there and cannot turn until it has serviced all the

We rebuilt the system in Python following the original For-
tran code of Crites & Barto (1996).

Imputing Missing Events in Continuous-Time Event Streams

car buttons in its current direction. Three additional ac-
tion constraints were made in an attempt to build in some
primitive prior knowledge: 1) a car cannot stop at a floor
unless someone wants to get on or off there; 2) it cannot
stop to pick up passengers at a floor if another car is al-
ready stopped there; 3) given a choice between moving up
and down, it should prefer moving up (since the down-peak
traffic tends to push the cars toward the bottom of the build-
ing). Because of this last constraint, the only real choices
left to each car are the stop and continue actions, and the
baseline strategy always chooses to continue. The actions
of the elevator cars are executed asynchronously since they
may take different amounts of time to complete.

We repeated the (one-hour) simulation 700 times to collect
the event sequences, each of which has around 300 time-
stamped records of which car stops at which floor. We ran-
domly sampled disjoint train, dev and test sets with 500,
100 and 100 sequences respectively.

For the missingness mechanism: in the deterministic set-
tings, we set p, = O for k = 1,...,5 and p; = 1 for
k = 6,...,10 (meaning that the events (of arriving at floor
1,2,...,5) of car 1 are all observed, but those of car 2 are
not); in the stochastic settings, we set pi, = 0.5 for all &.

G.5. New York City Taxi Dataset Details

The New York City Taxi dataset (section 5.2) includes
189,550 taxi pick-up and drop-off records in the city of
New York in 2013. Each record has its medallion ID, driver
license and time stamp. Each combination of medallion
ID and driver license naturally forms a sequence of time-
stamped pick-up and drop-off events. Following the pro-
cessing recipe of previous work (Du et al., 2016), we con-
struct shorter sequences by breaking each long sequence
wherever the temporal gap between a drop-off event and its
following pick-up event is larger than six hours. Then the
left boundary of this gap is treated as the EOS of the se-
quence before it, while the right boundary is set as the BOS
of the following sequence.

We randomly sampled a month from 2013 and then ran-
domly sampled disjoint train, dev and test sets with 5000,
500 and 500 sequences respectively from that month.

In this dataset, each event type is a tuple of (location, ac-
tion). The location is one of the 5 boroughs {Manhattan,
Brooklyn, Queens, The Bronx, Staten Island}. The ac-
tion can be either pick-up or drop-off. Thus, there are
K =5 x 2 =10 event types in total.

For the missingness mechanism: in the deterministic set-
tings, we set pp, = Ofor k = 1,...,5 and p;, = 1 for
k =6,...,10 (which means that all drop-off events but no
pick-up events are observed); in the stochastic settings, we
set p, = 0.5 for all k.

cle smoothing

2.738 nats” 1.269 nats

particle smoothing
particle smoothing

™ particle filtering

(¢) NYC Taxi

particle filtering “particie filtering

(a) Synthetic (b) Elevator System
Figure 4. Scatterplots with a deterministic missingness mecha-
nism. Again, the method works, with very similar qualitative be-
havior to Figure 2.

““““

(a) Elevator System (b) NYC Taxi

Figure 5. Optimal transport distance results with a deterministic
missingness mechanism. Again, the method works, with very
similar qualitative behavior to Figure 3.

G.6. Experiments with Deterministic Missingness
Mechanisms

We show our experimental results for the deterministic
missingness mechanisms in Figures 4 and 5.

G.7. Sensitivity Experiment Details

Figure 6 displays the optimal transport distance with var-
ious values of p: our particle smoothing method consis-
tently outperforms the filtering baseline.

G.8. Wall-Clock Runtime Details

A given run of particle smoothing begins by drawing O(T)
time points from Unif ([0, 7)), where I is the number of
observed events. All particles are evaluated using integrals
that are estimated by evaluating the function at these time
points (Appendix C.3).

The theoretical runtime complexity is O(M1I) because
drawing a particle requires O(I) time—the outer loop over
time steps (line 9 of Algorithm 1)—and we draw M parti-
cles in total—the inner loop over particles (line 10 in Al-
gorithm 1). Our GPU implementation (which we will re-
lease) parallelizes the inner loop over particles. We sample
50 particles in parallel in these experiments, but we have
tested with 1000 particles in parallel as well. So this is not
a real problem with a GPU.

We reported experiments that we performed to demon-

Imputing Missing Events in Continuous-Time Event Streams

START TIME (MIN) 00 05 10 15
MEAN # PASSENGER 1 2 4 4

20
18

25 30 35
12 8 7

40
18 5 3 2

Table 2. The Down-Peak Traffic Profile

® partie fitering
partcle smoothing

® partie fitering
partcle smoothing

c=16.00

[

(a) Elevator System (b) NYC Taxi

Figure 6. Optimal transport distance results with varying miss-
ingness rate p. Rows (top-down) are results with p
0.1,0.3,0.5,0.7,0.9. As we can see, our particle smoothing con-
sistently outperforms the filtering baseline with different p, al-
though no clear trend with increasing p is found on either dataset.

strate the practicality. On average, drawing an ensemble of
50 particles takes 5 seconds per example on the synthetic
datasets (average length 15 events), 12 seconds per exam-
ple on the NYC Taxi dataset (average length 32 events) and
100 seconds per example on the Elevator System dataset

(average length 313 events)—that is, 300-400 milliseconds
per event. Such speeds are acceptable in many incomplete
data applications, compared to the cost of collecting com-
plete data—all the applications in section 1 involve real-
time decision making at a human timescale.

H. Monte Carlo EM

We normally assume (section 3.2.1) that some complete se-
quences are available for training the neural Hawkes pro-
cess models. If incomplete sequences are also available,
our particle smoothing method can be used to (approxi-
mately) impute the missing events, which yields additional
complete sequences for training. Indeed, if we are will-
ing to make a MAR assumption (Little & Rubin, 1987),
then we can do imputation without modeling the missing-
ness mechanism. Training on such imputed sequences is
an instance of Monte Carlo expectation-maximization
(MCEM) (Dempster et al., 1977, Wei & Tanner, 1990;
McLachlan & Krishnan, 2007), with particle smoothing as
the Monte Carlo E-step, and makes it possible to train with
incomplete data only.

In the more general MNAR scenario, we can extend the E-
step to consider the not-at-random missingness mechanism
(see equation (3) below), but then we need both complete
and incomplete sequences at training time in order to fit the
parameters of the missingness mechanism (unless these pa-
rameters are already known) jointly with those of the neural
Hawkes process. Although training with incomplete data is
out of the scope of our experiments, we describe the meth-
ods here and provide MCEM pseudocode.

In this case, we would like to know the (marginal) proba-
bility of the observed data x under the target distribution
p:

€1y

meodel(x U Z)pmiss(z ‘ x U Z)

z
If we propose z from ¢(z | x), then it can be rewritten as:

q(z | x)

q(z | x)

pmodel(X U Z)pmiss(z | x U Z)}
q(z | x)

p(x)

p(x) = meodel(x U 2)Pmiss(z | x L 2) (32a)

V4

- (32b)

a~aq(zlx) |

Given a finite number M of proposed particles {z,, }_,,
this expectation can be estimated with empirical average:

M
1 Pmodel (X L Zm)pmiss(zm | x U Zm)
P 33
p(x) = 57 mE_; (33)

q(zm | x)

Imputing Missing Events in Continuous-Time Event Streams

and it is obvious that

M
1
logp(x) > 17 D (b — log q(zm | X)) (34a)
m=1
by = lngmodel(x U Zm) + 1ngmiss(zm | x U Zm)
(34b)

where the right-hand-side (RHS) term of equation (34a) is
the Evidence Lower Bound (ELBO) that we would max-
imize in order to maximize the log-likelihood.

The MCEM algorithm is composed of two steps:

E(xpectation)-step We train the proposal distribution
¢(z | x) using the method in section 3.2.1 and then
sample M weighted particles from ¢(z | x) by calling
Algorithm 1.

M(aximization)-step We train the neural Hawkes pro-
eSS Pmodel (X U z) by maximizing the ELBO (equa-
tion (34a)).

Note that in the MAR case, pmiss(z | x U z) is constant of
z so the it can be omitted from the formulation (and thus
the algorithms). Also note that, for particle filtering, the
proposal distribution ¢(z | x) is only part of ppeger(x L)
so we do not need to train ¢(z | x) at the E-step.

Maximum-likelihood estimation remains sensible in the
MNAR case provided that we know one of the distributions
Pmodel OF Pmiss» i Which case we can use EM to estimate the
other distribution.

(1) If puiss 1s known and fixed, as in our experiments, this
gives a minor variant of ordinary EM. Ordinary EM makes
the MAR assumption that the py,ss factor of equation (1)
can be ignored. However, if we know pp;ss, We can incor-
porate it rather than ignoring it; then it need not satisfy the
MAR assumption.

(2) Conversely, if pmodel 1 known and fixed because we es-
timated it from a sufficient quantity of complete data, then
we can use incomplete data to learn the MNAR missing-
ness distribution pp;s. This setting would even lets us learn
contextual missingness mechanisms in which the proba-
bility that an event is censored depends not only on the
event itself, but also on the surrounding events and whether
they are censored. For example, one could try to fit ppy;g
with an LSTM model or a BILSTM-CRF model (Huang
et al., 2015) that performs structured joint prediction of the
missingness of all events in the sequence. Extending that
method to use continuous-time LSTMs would allow it to
take timing into account.

The E step of Monte Carlo EM uses the current guesses of
Pmodel aNd/OT Priss to sample from the posterior distribution

p(z | x) of the missing values. That posterior is uncontro-
versially defined by the simple Bayesian formula (1). No-
tice that even if ppogel and Puiss were both unknown, we
could still run MCEM to locally maximize the likelihood
p(x), but unfortunately the parameters would be uniden-
tifiable in this case. Thus, there would be many missing-
data models with the same likelihood, as explained in Ap-
pendix A, and they would make different predictions of z.

