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Abstract
Events in the world may be caused by other,
unobserved events. We consider sequences of
events in continuous time. Given a probability
model of complete sequences, we propose parti-
cle smoothing—a form of sequential importance
sampling—to impute the missing events in an
incomplete sequence. We develop a trainable
family of proposal distributions based on a type
of bidirectional continuous-time LSTM. Bidirec-
tionality lets the proposals condition on future
observations, not just on the past as in particle
filtering. Our method can sample an ensemble
of possible complete sequences (particles), from
which we form a single consensus prediction that
has low Bayes risk under our chosen loss metric.
We experiment in multiple synthetic and real do-
mains, using different missingness mechanisms,
and modeling the complete sequences in each do-
main with a neural Hawkes process (Mei & Eis-
ner, 2017). On held-out incomplete sequences,
our method is effective at inferring the ground-
truth unobserved events, with particle smoothing
consistently improving upon particle filtering.

1. Introduction
Event streams of discrete events in continuous time are
often partially observed. We would like to impute the
missing events z. Suppose we know the prior distribu-
tion pmodel of complete event streams, as well as the “miss-
ingness mechanism” pmiss(z | complete stream), which
stochastically determines which of the events will not be
observed. One can then use use Bayes’ Theorem, as spelled
out in equation (1) below, to define the posterior distribu-
tion p(z | x) given just the observed events x.1

Why is this important? The ability to impute z is useful
in many applied domains, for example:
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• Medical records. Some patients record detailed symp-
toms, self-administered medications, diet, and sleep.
Imputing these events for other patients would pro-
duce an augmented medical record that could improve
diagnosis, prognosis, treatment, and counseling.
Similar remarks apply to users of life-tracking apps
(e.g., MyFitnessPal) who forget to log some of their
daily activities (e.g., meals, sleep and exercise).

• Competitive games. In poker or StarCraft, a player
lacks full information about what her opponents have
acquired (cards) or done (build mines and train sol-
diers). Accurately imputing hidden actions from
“what I did” and “what I observed others doing” can
help the player make good decisions. Similar remarks
apply to practical scenarios (e.g., military) where mul-
tiple actors compete and/or cooperate.

• User interface interactions. Cognitive events are usu-
ally unobserved. For example, users of an online
news provider (e.g., Bloomberg Terminal) may have
read and remembered a displayed headline whether or
not they clicked on it. Such events are expensive to
observe (e.g., via gaze tracking or asking the user).
Imputing them given the observed events (e.g., other
clicks) would facilitate personalization.

• Other partially observed event streams arise in online
shopping, social media, etc.

Why is it challenging? It is computationally difficult
to reason about the posterior distribution p(z | x). Even
for a simple pmodel like a Hawkes process (Hawkes, 1971),
Markov chain Monte Carlo (MCMC) methods are needed,
and these methods obtain an efficient transition kernel only
by exploiting special properties of the process (Shelton
et al., 2018). Unfortunately, such properties no longer hold
for the more flexible neural models that we will use in this
paper (Du et al., 2016; Mei & Eisner, 2017).

What is our contribution? We are, to the best of our
knowledge, the first to develop general sequential Monte
Carlo (SMC) methods to approximate the posterior dis-
tribution over incompletely observed draws from a neural
point process. We begin by sketching the approach.

2019 by the author(s).
1Bayes’ Theorem can be applied even if pmiss is a missing-

not-at-random (MNAR) mechanism, as is common in this setting.
MNAR is only tricky if we know neither pmodel nor pmiss.
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Figure 1. Stochastically imputing a taxi’s pick-up events ( ) given its observed drop-off events ( ). At this stage, we are trying to
determine the next event after the at time t1—either an unobserved event at t1,1 ∈ (t1, t2) or the next observed event at t2.
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(a1) Both intensities are low (i.e., passen-
gers are scarce at this time of day), so no
event happens to be proposed in (t1, t2).
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(a2) Specifically, the next proposed event
( ) would be somewhere after t2, without
bothering to determine its time precisely.
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(a3) Thus, the next event is @t2; we feed
it into the LSTM, preempting , which is
discarded (line 37 of Algorithm 1).

(a) Particle filtering (section 3.1). We show part of the process of drawing one particle. Above left, the neural Hawkes process’s
LSTM has already read the proposed and observed events at times≤ t1. Its resulting state determines the model intensities and

of the two event types and , from which the sampler (Algorithm 1 in Appendix C) determines that there is no unobserved event
in (t1, t2). Above right, we continue to extend the particle by feeding @t2 into the LSTM and proposing subsequent events based on
the new intensities after t2. But because was low at t2, the @t2 was unexpected, and that results in downweighting the particle
(line 45 of Algorithm 1). Downweighting recognizes belatedly that proposing no event in (t1, t2) has committed us to a particle that
will be improbable under the posterior, because its complete sequence includes consecutive drop-offs ( @t1, @t2) far apart in time.
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(b1) Since a drop-off at t2 strongly sug-
gests a pick-up before t2, considering the
future increases the intensity of pick-up on
(t1, t2) from to (while decreasing
that of drop-off from to ).
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(b2) Consequently, the next proposed event
is more likely to be a pick-up in (t1, t2)
than it was in Figure 1a. If we stochasti-
cally generate such an event @t1,1, it is
fed into the original LSTM.

t1 t2 t3

x
z

0 t
(b3) The updated state determines the
new model intensities and , and
also combines with to determine the new
proposal intensities and , which
are used to sample the next event.

(b) Particle smoothing (section 3.2) samples from a better-informed proposal distribution: a second LSTM (Appendix D) reads the
future observations from right to left, and its state is used together with to determine the proposal intensities and .

Mei & Eisner (2017) give an algorithm to sample a com-
plete sequence from a neural Hawkes process. Each event
in turn is sampled given the complete history of previous
events. However, this algorithm only samples from the
prior over complete sequences. We first adapt it into a
particle filtering algorithm that samples from the posterior
given all the observed events. The basic idea (Figure 1a) is
to draw the events in sequence as before, but now we force
any observed events to be “drawn” at the appropriate times.
That is, we add the observed events to the sequence as they
happen (and they duly affect the distribution of subsequent
events). There is an associated cost: if we are forced to
draw an observed event that is improbable given its past
history, we must downweight the resulting complete se-
quence accordingly, because evidently the particular past
history that we sampled was inconsistent with the observed
event, and hence cannot be part of a high-likelihood com-
plete sequence. Using this method, we sample many se-
quences (or particles) of different relative weights. This

method applies to any temporal point process.2 Linderman
et al. (2017) apply it to the classical Hawkes process.

Alas, this approach is computationally inefficient. Sam-
pling a complete sequence that is actually probable under
the posterior requires great luck, as the proposal distribu-
tion must have the good fortune to draw only events that
happen to be consistent with future observations. Such
lucky particles would appropriately get a high weight rel-
ative to other particles. The problem is that we will rarely
get such particles at all (unless we sample very many).

To get a more accurate picture of the posterior, this paper
draws each event from a smarter distribution that is condi-
tioned on the future observations (rather than drawing the
event in ignorance of the future and then downweighting
the particle if the future does not turn out as hoped).

2As long as the number of events is finite with probability 1,
and it is tractable to compute the log-likelihood of a complete
sequence and to estimate the log-likelihoods of its prefixes.
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This idea is called particle smoothing (Doucet & Jo-
hansen, 2009). How does it work in our setting? The
neural Hawkes process defines the distribution of the next
event using the state of a continuous-time LSTM that has
read the past history from left to right. When sampling
a proposed event, we now use a modified distribution (Fig-
ure 1b) that also considers the state of a second continuous-
time LSTM that has read the future observations from right
to left. As this modified distribution is still imperfect—
merely a proposal distribution—we still have to reweight
our particles to match the actual posterior under the model.
But this reweighting is not as drastic as for particle filtering,
because the new proposal distribution was constructed and
trained to resemble the actual posterior. Our proposal dis-
tribution could also be used with other point process mod-
els by replacing the left-to-right LSTM state with other in-
formative statistics of the past history.

What other contributions? We introduce an appropri-
ate evaluation loss metric for event stream reconstruction,
and then design a consensus decoder that outputs a single
low-risk prediction of the missing events by combining the
sampled particles (instead of picking one of them).

2. Preliminaries3

2.1. Partially Observed Event Streams

We consider a missing-data setting (Little & Rubin, 1987).
We are given a fixed time interval [0, T ) over which events
can be observed. An event of type k ∈ {1, 2, . . . ,K}
at time t ∈ [0, T ) is denoted by an ordered pair written
mnemonically as k@t. Each possible outcome in our prob-
ability distributions is a complete event sequence in which
each event is designated as either “observed” or “missing.”

We observe only the observed events, denoted by x =
{k1@t1, k2@t2, . . . , kI@tI}, where 0 = t0 < t1 < t2 <
. . . < tI < tI+1 = T . We are given the observation inter-
val [0, T ) in the form of two boundary events k0@t0 and
kI+1@tI+1 at its endpoints, where k0 =0 and kI+1 =K+1.

Let ki,0@ti,0 be an alternative notation for the observed
event ki@ti. Following this observed event (for any 0 ≤
i ≤ I), there are Ji ≥ 0 unobserved events z =
{ki,1@ti,1, ki,2@ti,2, . . . , ki,Ji@ti,Ji}, where ti,0 < ti,1 <
. . . < ti,Ji < ti+1. We must guess this unobserved se-
quence including its length Ji. Let t denote disjoint union.
Our hypothesized complete event sequence x t z is thus
{ki,j@ti,j : 0 ≤ i ≤ I + 1, 0 ≤ j ≤ Ji}, where ti,j in-
creases strictly with the pair 〈i, j〉 in lexicographic order.4

3Our conventions regarding capitalization, boldface, etc. are
inherited from the notation of Mei & Eisner (2017, section 2).

4In general we should allow ti,j to increase non-strictly with
〈i, j〉. But equality happens to have probability 0 under the neural
Hawkes model. So it is convenient to exclude it here, simplifying
notation by allowing x, z,H(t) to be sets, not sequences.

In this paper, we will attempt to guess all of z jointly by
sampling it from the posterior distribution

p(Z = z | X = x)

∝ pmodel(Y = x t z) · pmiss(Z = z | Y = x t z)

of a process that first generates the complete sequence
x t z from a complete data model pmodel (given [0, T )),
and then determines which events to censor with the possi-
bly stochastic missingness mechanism pmiss. The random
variables X , Z , and Y refer respectively to the sets of ob-
served events, missing events, and all events over [0, T ).
Thus Y = X t Z . Under the distributions we will con-
sider, |Y | is almost surely finite. Notice that z denotes the
set of missing events in Y and Z = z denotes the fact that
they are missing. That said, we will abbreviate our notation
above in the standard way:

p(z | x) ∝ pmodel(x t z) · pmiss(z | x t z) (1)

Note that x t z is simply an undifferentiated sequence of
k@t pairs; the subscripts 〈i, j〉 are in effect assigned by
pmiss, which partitions x t z into x and z. To explain a se-
quence of 50 observed events, one hypothesis is that pmodel
generated 73 events and then pmiss selected 23 of them to
be missing (as z), leaving the 50 observed events (as x).

In many missing data settings, the second factor of equa-
tion (1) can be ignored because (for the given x) it is known
to be a constant function of z. Then the missing data are
said to be missing at random (MAR). For event streams,
however, the second factor is generally not constant in z
but varies with the number of missing events |z|. Thus, our
unobserved events are normally missing not at random
(MNAR). See discussion in section 5.1 and Appendix A.

2.2. Choice of pmodel

We need a multivariate point process model pmodel(x t z).
We choose the neural Hawkes process (Mei & Eisner,
2017), which has proven flexible and effective at modeling
many real-world event streams.

Whether an event happens at time t ∈ [0, T ) depends on
the history H(t)

def
= {k′@t′ ∈ x t z : t′ < t}—the set

of all observed and unobserved events before t. Given
this history, the neural Hawkes process defines an inten-
sity λk(t | H(t)) ∈ R≥0, which may be thought of as the
instantaneous rate at time t of events of type k:

λk(t | H(t)) = fk(v>k h(t)) (2)

Here fk is a softplus function with k-specific scaling
parameter. The vector h(t) ∈ (−1, 1)D summarizes
(H(t), t). It is the hidden state at time t of a continuous-
time LSTM that previously read the events inH(t) as they
happened. The state of such an LSTM evolves endoge-
nously as it waits between events, so the state h(t) reflects
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not only the sequence of past events but also their timing,
including the gap between the last event inH(t) and t.

As Mei & Eisner (2017) explain, the probability of an event
of type k in the interval [t, t+dt), divided by dt, approaches
(2) as dt→ 0+. Thus, λk is similar to the intensity function
of an inhomogeneous Poisson process. Yet it is not a fixed
parameter: the λk function for times ≥ t is affected by the
previously sampled eventsH(t). See Appendix B.1.

3. Particle Methods
It is often intractable to sample exactly from p(z | x),
because x and z can be interleaved with each other. As
an alternative, we can use normalized importance sam-
pling, drawing many z values from a proposal distribu-
tion q(z | x) and weighting them in proportion to p(z|x)

q(z|x) .
Figure 1 shows the key ideas in terms of an example. Full
details are spelled out in Algorithm 1 in Appendix C.

Algorithm 1 is a Sequential Monte Carlo (SMC) ap-
proach (Moral, 1997; Liu & Chen, 1998; Doucet et al.,
2000; Doucet & Johansen, 2009). It returns an ensemble of
weighted particles ZM = {(zm, wm)}Mm=1. Each particle
zm is sampled from the proposal distribution q(z | x),
which is defined to support sampling via a sequential pro-
cedure that draws one unobserved event at a time. The cor-
respondingwm are importance weights, which are defined
as follows (and built up factor-by-factor in Algorithm 1):

wm ∝
pmodel(x t zm) pmiss(zm | x t zm)

q(zm | x)
≥ 0 (3)

where the normalizing constant is chosen to make∑M
m=1 wm = 1. Equations (1) and (3) imply that we would

have wm = 1/M if we could set q(z | x) equal to p(z | x),
so that the particles were IID samples from the desired pos-
terior distribution. In practice, q will not equal p, but will be
easier than p to sample from. To correct for the mismatch,
the importance weights wm are higher for particles that q
proposes less often than p would have proposed them.

The distribution implicitly formed by the ensemble, p̂(z),
approaches p(z | x) as M → ∞ (Doucet & Johansen,
2009). Thus, for large M , the ensemble may be used to
estimate the expectation of any function f(z), via

Ep(z|x)[f(z)] ≈ Ep̂[f(z)] =
∑M
m=1 wmf(zm) (4)

f(z) may be a function that summarizes properties of the
complete stream x t z on [0, T ), or predicts future events
on [T,∞) using the sufficient statisticH(T ) = x t z.

In the subsections below, we will describe two specific
proposal distributions q that are appropriate for the neural
Hawkes process, as we sketched in section 1. These distri-
butions define intensity functions λq over time intervals.

The trickiest part of Algorithm 1 (at line 31) is to sample
the next unobserved event from the proposal distribution
q. Here we use the thinning algorithm (Lewis & Shedler,
1979; Liniger, 2009; Mei & Eisner, 2017). Briefly, this is a
rejection sampling algorithm whose own proposal distribu-
tion uses a constant intensity λ∗, making it a homogeneous
Poisson process (which is easy to sample from). A event
proposed by the Poisson process at time t is accepted with
probability λq(t)/λ∗ ≤ 1. If it is rejected, we move on to
the next event proposed by the Poisson process, continu-
ing until we either accept such an unobserved event or are
preempted by the arrival of the next observed event.

After each step, one may optionally resample a new set of
particles from {zm}Mm=1 (the RESAMPLE procedure in Al-
gorithm 1). This trick tends to discard low-weight particles
and clone high-weight particles, so that the algorithm can
explore multiple continuations of the high-weight particles.

3.1. Particle Filtering

We already have a neural Hawkes process pmodel that was
trained on complete data. This model uses a neural net to
define an intensity function λpk(t | H(t)) for any history
H(t) of events before t and each event type k.

The simplest proposal distribution uses this intensity func-
tion to draw the unobserved events. More precisely, for
each i = 0, 1, . . . , I , for each j = 0, 1, 2, . . ., let the next
event ki,j+1@ti,j+1 be the first event generated by any of
the K intensity functions λk(t | H(t)) over the interval
t ∈ (ti,j , ti+1), where H(t) consists of all observed and
unobserved events up through ki,j@ti,j . If no event is gen-
erated on this interval, then the next event is ki+1@ti+1.
This is implemented by Algorithm 1 with smooth = false.

3.2. Particle Smoothing

As motivated in section 1, we would rather draw each un-
observed event according to λk(t | H(t),F(t)) where the
future F(t)

def
= {ki@ti : t < ti ≤ T} consists of all ob-

served events that happen after t. Note the asymmetry with
H(t), which includes observed but also unobserved events.

We use a right-to-left continuous-time LSTM to summa-
rize the future F(t) for any time t into another hidden state
vector h̄(t) ∈ (−1, 1)D

′
. Then we parameterize the pro-

posal intensity using an extended variant of equation (2):
λqk(t | H(t),F(t)) = fk(v>k (h(t) + Bh̄(t))) (5)

This extra machinery is used by Algorithm 1 when
smooth = true. Intuitively, the left-to-right h(t), as ex-
plained in Mei & Eisner (2017), reads the historyH(t) and
computes sufficient statistics for predicting events at times
≥ t given H(t). But we wish to predict these events given
H(t) and F(t). Equation (5) approximates this Bayesian
update using the right-to-left h̄(t), which is trained to carry
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back relevant information about future observations F(t).

This is a kind of neuralized forward-backward algorithm.
Lin & Eisner (2018) treat the discrete-time analogue, ex-
plaining why a neural forward pmodel no longer admits
tractable exact proposals as does a hidden Markov model
(Rabiner, 1989) or linear dynamical system (Rauch et al.,
1965). Like them, we fall back on training an approxi-
mate proposal distribution. Regardless of pmodel, particle
smoothing is to particle filtering as Kalman smoothing is to
Kalman filtering (Kalman, 1960; Kalman & Bucy, 1961).

Our right-to-left LSTM has the same architecture as the
left-to-right LSTM used in our pmodel (section 2.2), but a
separate parameter vector. For any time t ∈ [0, T ), it ar-
rives at h̄(t) by reading only the observed events {ki@ti :
t < ti ≤ T}, i.e., F(t), in reverse chronological or-
der. Formulas are given in Appendix D. This architecture
seemed promising for reading an incomplete sequence of
events from right to left, as Mei & Eisner (2017, section
6.3) had already found that this architecture is predictive
when used to read incomplete sequences from left to right.

3.2.1. TRAINING THE PROPOSAL DISTRIBUTION

The particle smoothing proposer q can be trained to
approximate p(z | x) by minimizing a Kullback-Leibler
(KL) divergence. Its left-to-right LSTM is fixed at pmodel,
so its trainable parameters φ are just the parameters of
the right-to-left LSTM together with the matrix B from
equation (5). Though p(z | x) is unknown, the gradient of
inclusive KL divergence between q(z | x) and p(z | x) is

∇φKL(p || q) = Ez∼p(z|x)[−∇φ log q(z | x)] (6)

and the gradient of exclusive KL divergence is:

∇φKL(q || p) = Ez∼q[∇φ
(

1
2 (log q(z | x)− b)2

)
] (7a)

b = log pmodel(x t z) + log pmiss(z | x t z) (7b)

where log pmodel(x t z) is given in Appendix B.1,
log q(z | x) is given in Appendix C.1, and pmiss(z | x t z)
is assumed to be known to us for any given pair of x and z.

Minimizing inclusive KL divergence aims at high recall—
q(z | x) is adjusted to assign high probabilities to all of the
good hypotheses (according to p(z | x)). Conversely, min-
imizing exclusive KL divergence aims at high precision—
q(z | x) is adjusted to assign low probabilities to poor re-
constructions, so that they will not be proposed. We seek
to minimize the linearly combined divergence

Div = β KL(p‖q) + (1− β)KL(q‖p) with β ∈ [0, 1] (8)

and training is early-stopped when the divergence stops de-
creasing on the held-out development set.

But how do we measure these divergences between q(z | x)
and p(z | x)? Of course, we actually want the expected

divergence when the observed sequence x ∼ the true dis-
tribution. Thus, we sample x by starting with a fully ob-
served sequence from our training examples and then sam-
pling a partition x, z from the known missingness mecha-
nism pmiss.5 The inclusive expectation in (6) uses this x and
z. For the exclusive expectation in (7), we keep this x but
sample a new z from our proposal distribution q(· | x).

Notice that minimizing exclusive divergence here is essen-
tially the REINFORCE algorithm (Williams, 1992), which
is known to have large variance. In practice, when tuning
our hyperparameters (Appendix G.2), β = 1 in (8) gave
the best results. That is—perhaps unsurprisingly—our ex-
periments effectively avoided REINFORCE altogether and
placed all the weight on the inclusive KL, which has no
variance issue. More training details including a bias and
variance discussion can be found in Appendix G.2.

Appendix H discusses situations where training on incom-
plete data by EM is possible.

4. A Loss Function and Decoding Method
It is often useful to find a single hypothesis ẑ that mini-
mizes the Bayes risk, i.e., the expected loss with respect to
the unknown ground truth z∗. This procedure is called min-
imum Bayes risk (MBR) decoding and can be approxi-
mated with our ensemble of weighted particles:

ẑ = argminz∈Z
∑

z∗∈Z p(z
∗ | x)L(z, z∗) (9a)

≈ argminz∈Z
∑M
m=1 wmL(z, zm) (9b)

where L(z, z∗) is the loss of z with respect to z∗. This pro-
cedure for combining the particles into a single prediction
is sometimes called consensus decoding. We now propose
a specific loss function L and an approximate decoder.

4.1. Optimal Transport Distance

The loss of z is defined as the minimum cost of editing z
into the ground truth z∗. To accomplish this edit, we must
identify the best alignment—a one-to-one partial matching
a—of the events in the two sequences. We require any two
aligned events to have the same type k. We define a as a
collection of alignment edges (t, t∗) where t and t∗ are the
times of the aligned events in z and z∗ respectively. An
alignment edge between a predicted event at time t (in z)
and a true event at time t∗ (in z∗) incurs a cost of |t− t∗| to
move the former to the correct time. Each unaligned event
in z incurs a deletion cost of Cdelete, and each unaligned
event in z∗ incurs an insertion cost of Cinsert. Now

L(z, z∗) = min
a∈A(z,z∗)

D(z, z∗,a) (10)

5To get more data for training q, we could sample more parti-
tions of the fully observed sequence. In this paper, we only sample
one partition. Note that the fully observed sequence is a real ob-
servation from the true complete data distribution (not the model).
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where A(z, z∗) is the set of all possible alignments be-
tween z and z∗, and D(z, z∗,a) is the total cost given
the alignment a. Notice that if |z| 6= |z∗|, any alignment
leaves some events unaligned; also, rather than align two
faraway events, it is cheaper to leave them unaligned if
Cdelete + Cinsert < |t − t∗|. Algorithm 2 in Appendix E
uses dynamic programming to compute the loss (10) and its
corresponding alignment a, similar to edit distance (Lev-
enshtein, 1965) or dynamic time warping (Sakoe & Chiba,
1971; Listgarten et al., 2005). In practice we symmetrize
the loss by specifying equal costs Cinsert = Cdelete = C.

4.2. Consensus Decoding

Since aligned events must have the same type, consensus
decoding (9b) decomposes into separately choosing a set
ẑ(k) of type-k events for each k = 1, 2, . . . ,K, based on
the particles’ sets z(k)

m of type-k events. Thus, we simplify
the presentation by omitting (k) throughout this section.
The loss function L defined in section 4.1 warrants:

Theorem 1. Given {zm}Mm=1, if we define zt =⊔M
m=1 zm, then ∃ẑ ⊆ zt such that∑M

m=1 wmL(ẑ, zm) = minz∈Z
∑M
m=1 wmL(z, zm)

That is to say, there exists one subsequence of zt that
achieves the minimum Bayes risk.

The proof is given in Appendix F: it shows that if ẑ mini-
mizes the Bayes risk but is not a subsequence of zt, then
we can modify it to either improve its Bayes risk (a con-
tradiction) or keep the same Bayes risk while making it a
subsequence of zt as desired.

Now we have reduced this decoding problem to a combi-
natorial optimization problem:

ẑ = argminz⊆zt
∑M
m=1 wmL(z, zm) (11)

which is probably NP-hard, by analogy with the Steiner
string problem (Gusfield, 1997).

Our heuristic (Algorithm 3 of Appendix F) seeks to itera-
tively improve ẑ by (1) using Algorithm 2 to find the opti-
mal alignment am of ẑ with each zm, and then (2) repeating
the following sequence of 3 phases until ẑ does not change.
Each phase tries to update ẑ to decrease the weighted dis-
tance

∑M
m=1 wmD(ẑ, zm,am) which by Theorem 1 is an

upper bound of the Bayes risk
∑M
m=1 wmL(ẑ, zm):6

Move Phase For each event in ẑ, move its time to the
weighted median (using weights wm) of the times of
all ≤ M events that am aligns it to (if any), while
keeping the alignment edges. This selects the new
time that minimizes

∑M
m=1 wmD(ẑ, zm,am).

6Note these phases compute D(ẑ, zm,am) but not L(ẑ, zm),
so they need not call the dynamic programming algorithm.

Delete Phase For each event in ẑ, delete it (together
with any related edges in each am) if this decreases∑M
m=1 wmD(ẑ, zm,am).

Insert Phase If we inserted t into ẑ, we would also
modify each am to align t to the closest un-
aligned event in zm (if any) provided that this de-
creased D(ẑ, zm,am). Let ∆(t) be the resulting
reduction in

∑M
m=1 wmD(ẑ, zm,am). Let t∗ =

argmaxt∈zt,t/∈ẑ ∆(t). While ∆(t∗) > 0, insert t∗.

The move or delete phase can consider events in any order,
or in parallel; this does not change the result.

5. Experiments
We compare our particle smoothing method with the strong
particle filtering baseline—our neural version of Linder-
man et al. (2017)’s Hawkes process particle filter—on mul-
tiple real-world and synthetic datasets. See Appendix G
for training details (e.g., hyperparameter selection). Py-
Torch code can be found at https://github.com/

HMEIatJHU/neural-hawkes-particle-smoothing.

5.1. Missing-Data Mechanisms

We experiment with missingness mechanisms of the form
pmiss(z | x t z) =

∏
ki@ti∈z

ρki
∏

ki@ti∈x

(1− ρki) (12)

meaning that each event in the complete stream x t z is
independently censored with probability ρk that only de-
pends on its event type k.7 We consider both deterministic
and stochastic missingness mechanisms. For the determin-
istic experiments, we set ρk for each k to be either 0 or 1,
so that some event types are always observed while others
are always missing. Then pmiss(z | x t z) = 1 if z consists
of precisely the events in x t z that ought to go missing,
and 0 otherwise. For our stochastic experiments, we simply
set ρk = ρ regardless of the event type k and experiment
with ρ = 0.1, 0.3, 0.5, 0.7, 0.9. Then equation (12) can be
written as pmiss(z | x t z) = (1 − ρ)|x|ρ|z|, whose value
decreases exponentially in the number of missing events
|z|. As this depends on z, the stochastic setting is definitely
MNAR (not MCAR as one might have imagined).

5.2. Datasets

The datasets that we use in this paper range from short se-
quences with mean length 15 to long ones with mean length
> 300. For each of the datasets, we possess fully observed
data that we use to train the model and the proposal dis-
tribution.8 For each dev and test example, we censored

7Appendix H discusses how ρ could be imputed when com-
plete and incomplete data are both available.

8The focus of this paper is on inference (imputation) under a
given model, so training the model is simply a preparatory step.

https://github.com/HMEIatJHU/neural-hawkes-particle-smoothing
https://github.com/HMEIatJHU/neural-hawkes-particle-smoothing
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out some events from the fully observed sequence, so we
present the x part as input to the proposal distribution but
we also know the z part for evaluation purposes. Fully
replicable details of the dataset preparation can be found
in Appendix G, including how event types are defined and
which event types are missing in the deterministic settings.

Synthetic Datasets We first checked that we could suc-
cessfully impute unobserved events that are generated from
known distributions. That is, when the generating distribu-
tion actually is a neural Hawkes process, could our method
outperform particle filtering in practice? Is the performance
consistent over multiple datasets drawn from different pro-
cesses? To investigate this, we synthesized 10 datasets,
each of which was drawn from a different neural Hawkes
process with randomly sampled parameters.

Elevator System Dataset (Crites & Barto, 1996). A
multi-floor building is often equipped with multiple ele-
vator cars that follow cooperative strategies to transport
passengers between floors (Lewis, 1991; Bao et al., 1994;
Crites & Barto, 1996). In this dataset, the events are which
elevator car stops at which floor. The deterministic case of
this domain is representative of many real-world coopera-
tive (or competitive) scenarios—observing the activities of
some players and imputing those of the others.

New York City Taxi Dataset (Whong, 2014). Each
medallion taxi in New York City has a sequence of time-
stamped pick-up and drop-off events, where different loca-
tions have different event types. Figure 1 shows how we
impute the pick-up events given the drop-off events (the
deterministic missingness case).

5.3. Data Fitting Results

First, as an internal check, we measure how probable each
ground truth reference z∗ is under the proposal distribution
constructed by each method, i.e., log q(z∗ | x). As shown
in Figure 2, the improvement from particle smoothing is
remarkably robust across 12 datasets, improving nearly ev-
ery sequence in each dataset. The plots for the determinis-
tic missingness mechanisms are so boringly similar that we
only show them in Appendix G.6 (Figure 4).

5.4. Decoding Results

For each x, we now make a prediction by sampling an en-
semble of M = 50 particles (section 3)9 and constructing
their consensus sequence ẑ (section 4.2). We use multino-
mial resampling since otherwise the effective sample size

However, inference could be used to help train on incomplete data
via the EM algorithm, provided that the missingness mechanism
is known; see Appendix H for discussion.

9Increasing M would increase both effective sample size
(ESS) and runtime.

(a) Synthetic Data (b) Elevator System (c) NYC Taxi

Figure 2. Scatterplots of neural Hawkes particle smoothing (y-
axis) vs. particle filtering (x-axis) with a stochastic missingness
mechanism (ρ = 0.5). Each point represents a single test se-
quence, and compares the values of log q(z∗ | x) / |z∗|. Larger
values mean that the proposal distribution is better at proposing
the ground truth z∗. Each dataset’s scatterplot is converted to a
cloud using kernel density estimation, with the centroid denoted
by a black dot. A double-arrowed line indicates the improvement
of particle smoothing over filtering. For the synthetic datasets,
we draw ten clouds on the same figure and show the line for the
dataset where smoothing improves the most. As we can see, the
density is always well concentrated above y = x. That is, this
is not merely an average improvement: nearly every ground truth
z∗ gets higher proposal probability! Particle smoothing performs
well even on datasets where particle filtering performs badly.

is very low (only 1–2 on some datasets).10 We evaluate ẑ
by its optimal transport distance (section 4.1) to the ground
truth z∗. Note that ∀a, we can decompose D(ẑ, z∗,a) as

C · ( |ẑ|+ |z∗| − 2|a|︸ ︷︷ ︸
total insertions+deletions

) +
∑

(t,t∗)∈a |t− t∗|︸ ︷︷ ︸
total distance moved

(13)

Letting a be the alignment that minimizes D(ẑ, z∗,a), the
former term measures how well ẑ predicts which events
happened, and the latter measures how well ẑ predicts when
those events happened. Different choices of C yield dif-
ferent ẑ with different trade-offs between these two terms.
Intuitively, when C ≈ 0, the decoder is free to insert
and delete event tokens; as C increases, ẑ will tend to in-
sert/delete fewer event tokens and move more of them.

Figure 3 plots the performance of particle smoothing ( )
vs. particle filtering ( ) for the stochastic missingness
mechanisms, showing the two terms above as the x and
y coordinates. The very similar plots for the deterministic
missingness mechanisms are in Appendix G.6 (Figure 5).11

5.5. Sensitivity to Missingness Mechanism

For the stochastic missingness mechanisms, we also did
experiments with different values of missing rate ρ =
0.1, 0.3, 0.7, 0.9. Our particle smoothing method consis-
tently outperforms the filtering baseline in all the experi-
ments (Figure 6 in Appendix G.7), similar to Figure 3.

10Any multinomial resampling step drives the ESS metric to
M . This cannot guarantee better samples in general, but resam-
pling did improve our decoding performance on all datasets.

11We show the 2 real datasets only. The figures for the 10 syn-
thetic datasets are boringly similar to these.
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(a) Elevator System (b) NYC Taxi

Figure 3. Optimal transport distance of particle smoothing ( )
vs. particle filtering ( ) on test data with a stochastic miss-
ingness mechanism (ρ = 0.5). In each figure, the x-axis is
the total number of deletions and insertions in the test dataset,∑N
n=1(|ẑn| + |z

∗
n| − 2|an|), and the y-axis is the total move-

ment cost,
∑N
n=1

∑
(t,t∗)∈an

|t − t∗|. Both axes are normalized

by the true total number of missing events
∑N
n=1 |z

∗
n|, so the

x-axis shows a fraction and the y-axis shows an average time dif-
ference. On each dataset, we show one per C. According to
equation (13), (C, 1), denoted by , turns out to be the gradi-
ent of

∑N
n=1D(ẑn, z

∗
n,an) at this . The shows the actual

improvement obtained by switching to particle smoothing (which
is, indeed, an improvement because it has positive dot product
with the gradient ). The Pareto frontier (convex hull) of the

symbols dominates the Pareto frontier of the symbols—lying
everywhere to its left—which means that our particle smoothing
method outperforms the filtering baseline.

5.6. Runtime

The theoretical runtime complexity is O(MI) where M is
the number of particles and I is the number of observed
events. In practice, we generate the particles in parallel,
leading to acceptable speeds of 300-400 milliseconds per
event for the final method. More details about the wall-
clock runtime can be found in Appendix G.8.

6. Discussion and Related Work
To our knowledge, this is the first time a bidirectional re-
current neural network has been extended to predict events
in continuous time. Bidirectional architectures have proven
effective at predicting linguistic words and their properties
given their left and right contexts (Graves et al., 2013; Bah-
danau et al., 2015; Peters et al., 2018; Devlin et al., 2018):
in particular, Lin & Eisner (2018) recently applied them to
particle smoothing for discrete-time sequence tagging.

Previous work that infers unobserved events in continu-
ous time exploits special properties of simpler models, in-
cluding Markov jump processes (Rao & Teh, 2012; 2013),
continuous-time Bayesian networks (Fan et al., 2010) and
Hawkes processes (Shelton et al., 2018). Such properties
no longer hold for our more expressive neural model, ne-
cessitating our approximate inference method.

Metropolis-Hastings would be an alternative to our particle

smoothing method. The transition kernel could propose a
single-event change to z (insert, delete, or move). Unfor-
tunately, this would be quite slow for a neural model like
ours, because any proposed change early in the sequence
would affect the LSTM state and hence the probability of
all subsequent events. Thus, a single move takesO(|xtz|)
time to evaluate. Furthermore, the Markov chain may mix
slowly because a move that changes only one event may of-
ten lead to an incoherent sequence that will be rejected. The
point of our particle smoothing is essentially to avoid such
rejection by proposing a coherent sequence of events, left
to right but considering future x events, from an approxi-
mation q(z | x) to the true posterior. (One might build a
better Metropolis-Hastings algorithm by designing a tran-
sition kernel that makes use of our current proposal distri-
bution, e.g., via particle Gibbs (Chopin & Singh, 2015).)

We also introduced an optimal transport distance between
event sequences, which is a valid metric. It essentially re-
gards each event sequence as a 0-1 function over times, and
applies a variant of Wasserstein distance (Villani, 2008)
or Earth Mover’s distance (Kantorovitch, 1958; Levina &
Bickel, 2001). Such variants are under active investigation
(Benamou, 2003; Chizat et al., 2015; Frogner et al., 2015;
Chizat et al., 2018). Our version allows event insertion and
deletion during alignment, where these operations can only
apply to an entire event—we cannot align half of an event
and delete the other half. Due to these constraints, dynamic
programming rather than a linear programming relaxation
is needed to find the optimal transport. Xiao et al. (2017)
also proposed an optimal transport distance between event
sequences that allows event insertion and deletion; how-
ever, their insertion and deletion costs turn out to depend
on the timing of the events in (we feel) a peculiar way.

We also gave a method to find a single “consensus” re-
construction with small average distance to our particles.
This problem is related to Steiner string (Gusfield, 1997),
which is usually reduced to multiple sequence alignment
(MSA) (Mount, 2004) and heuristically solved by progres-
sive alignment construction using a guide tree (Feng &
Doolittle, 1987; Larkin et al., 2007; Notredame et al., 2000)
and iterative realignment of the initial sequences with ad-
dition of new sequences to the growing MSA (Hirosawa
et al., 1995; Gotoh, 1996). These methods might also be
tried in our setting. For us, however, the ith event of type
k is not simply a character in a finite alphabet such as
{A,C,G,T} but a time that falls in the infinite set [0, T ).
The substitution cost between two events of type k is then
their time difference.

On multiple synthetic and real-world datasets, our method
turns out to be effective at inferring the ground truth se-
quence of unobserved events. The improvement of particle
smoothing upon particle filtering is substantial and consis-
tent, showing the benefit of training a proposal distribution.
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Chizat, L., Peyré, G., Schmitzer, B., and Vialard, F.-X. Un-
balanced optimal transport: Geometry and Kantorovich
formulation. arXiv preprint arXiv:1508.05216, 2015.
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