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Appendix

A. Proofs

We prove propositions by order of appearance in the main text.

A.1. Asymptotics of the Sinkhorn negentropy—Proof of Prop. 1

Proof. We start by showing the Shannon entropy limit of the Sinkhorn entropy, in the discrete case. In this

case, we use the standard Kantorovich dual (Cuturi, 2013). Let ε > 0, α ∈ △d, and

Ω(α) , ΩC/ε(α) = −max
f∈Rd

〈α, f〉 − 〈α⊗ α, exp(
f ⊕ f − C

2
)〉+ 1. (9)

For all f ∈ R
d

Ψα(f) , 〈α, f〉 − 〈α⊗ α, exp(
f ⊕ f − C/ε

2
) + 1〉 =

d
∑

i=1

fiαi −

d
∑

i,j=1

αiαj exp(
fi + fj − ci,j/ε

2
) + 1.

For f optimal in (9), letting ε→ 0, we have, using element-wise multiplication ∗,

∇Ψα(f) = α− α2 ∗ ef = 0 i.e. efi =
1

αi
for all i ∈ [d].

Replacing in (9), we obtain

Ω(α) = 〈α, logα〉+

d
∑

i=1

αi − 1 = 〈α, logα〉.

Let us now consider the limit for ε→ ∞ of ΩC/ε(α), for an arbitrary symmetric cost matrix C. We rewrite

ΩC/ε(α) = max
f∈C(Y)

2〈α,
f

2
〉 − ε〈α⊗ α, e

f⊕f
2

−C

ε 〉 = OTε(α, α).

The asymptotic behavior of εΩC/ε(α), namely

εΩC/ε(α)
ε→+∞
−→

1

2
〈α⊗ α,−C〉,

is then a simple consequence of the asymptotics of Sinkhorn OT distances (Genevay et al., 2018), that we

apply in the symmetric case. In the discrete setting, the result for ε→ ∞ becomes, if C = 1− Id×d,

1

2
〈α⊗ α, Id×d − 1〉 =

1

2

d
∑

i=1

α2
i − 1,

as 〈α⊗ α, 1〉 = 1, which concludes the proof.
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A.2. Construction of the geometric softmax—Proof of Prop. 2

Proof. We can rewrite the self transport with the change of variable µ = αe
f
2 ∈ M+(Y), due to Feydy &

Trouvé (2019). We then have f
2 = − log dα

dµ , and

Ω(α) , −
1

2
OT2(α, α) = − max

f∈C(Y)
〈α, f〉 − log〈α⊗ α,

exp(f ⊕ f − C)

2
〉

= − max
µ∈M+(Y)

−2〈α, log
dα

dµ
〉 − log ‖µ‖

2
k2
,

where ‖µ‖k2
,

∫

X

∫

X

exp(
−C(x, y)

2
)dµ(x)dµ(y)

is the kernel norm defined with kernel k2 , e−
C
2 . Then, the conjugate of Ω(α) reads, for all f ∈ C(Y),

Ω⋆(f) = max
α∈M+

1 (Y)
〈α, f〉 − Ω(α)

= max
α∈M+

1 (Y)

µ∈M+(Y)

〈α, f〉 − 2〈α, log
dα

dµ
〉 − log ‖µ‖

2
k2

= max
µ∈M+(Y)

log

∫∫

X 2 exp
(f(x)+f(y)

2 )dµ(x)dµ(y)
∫∫

X 2 exp(−
C(x,y)

2 )dµ(x)dµ(y)
,

where we have used the conjugation of the relative entropy over the space of probability measure M+
1 (Y):

max
α∈M+

1 (Y)
〈α, f〉 − 2〈α, log

dα

dµ
〉 = 2 log

∫

X

exp(
f(x)

2
)dµ(x).

We now revert the first change of variable, setting β = µe
f
2 ∈ M+(Y), and α = β∫

X
dν

∈ M+
1 (Y). We have

Ω⋆(f) = max
α∈M+

1 (Y)
− log

∫∫

X 2

exp(−
f(x) + f(y) + C(x, y)

2
)dα(x)dα(y),

and the first part of the proposition follows:

g-LSE(f) = Ω⋆(f) = − min
α∈M+

1 (Y)
〈α⊗ α, exp(−

f ⊕ f + C

2
)〉.

We have assumed that exp(−C
2 ) is positive definite, which ensures that the bivariate function

Φ(f, α) , 〈α⊗ α, exp(−
f ⊕ f + C

2
)〉 (10)

is strictly convex in α and in f . Let α⋆ , argminα∈M+
1 (Y) Φ(f, α). The gradient of Φ with respect to f is

a measure that reads

∇fΦ(f, α) = −α exp(−f − TC(−f, α)) ∈ M(Y), where we recall

TC(f, α) , −2 log〈α, exp(
f − C

2
)〉.

From a generalized version of the Danskin theorem (Bernhard & Rapaport, 1995), the function

f → argmin
α∈M+

1 (Y)

〈α⊗ α, exp(−
f ⊕ f + C

2
)〉
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is differentiable everywhere and has for gradient ∇fΦ(f, α
⋆). Composing with the log, we obtain

∇Ω⋆(f) ∈ M+
1 (Y), and ∇Ω⋆(f) ∝ α⋆ exp(−f − TC(−f, α

⋆)),

where ∝ indicates proportionality. To conclude, we use Lemma 2, that describes the minimizers of (10), and

that we prove in the next section. It ensures that −f − TC(−f, α
⋆) = 0 on the support of α⋆. Therefore

∇Ω⋆(f) = α⋆ ∈ M+
1 (Y),

and the proposition follows.

A.3. Geometry of the link function—Proofs of Lemma 1 and Prop. 3

We first state and proof Lemma 2 on optimality condition in the minimization of α → Φ(α, f). We then

prove Lemma 1, establish some basic properties of the extrapolation operator and prove Prop. 3.

A.3.1. NECESSARY AND SUFFICIENT CONDITION OF OPTIMALITY IN ∇Ω⋆(f)

Finding the minimizer α of α → Φ(α, f) amounts to finding the distribution for which −f and its C-

transform T (−f, α) are the less distant, as it appears in the following lemma.

Lemma 2 (∇Ω⋆ from first order optimality condition). ∇Ω⋆(f) is the only distribution α ∈ M+
1 (Y) such

that there exists a constant A ∈ R such that

f(y) + T (−f, α)(y)

2
= A ∀ y ∈ suppα

f(y) + T (−f, α)(y)

2
≤ A ∀ y ∈ Y/ suppα,

(11)

We then have A = 2Ω⋆(f). (11) form sufficient optimality conditions for finding ∇Ω⋆(f) = α.

Proof. We use an infinite version of the KKT condition (Luenberger, 1997, Section 9) to solve the optimality

of φ, as defined in (10). We fix f ∈ C(Y). The Lagrangian associated to the minimization of α → φ(f, α)
over the space of probability measure M(X ) reads

L(α, µ, ν) , Φ(f, α) + 〈α, µ〉+ ν(〈α, 1〉 − 1).

A necessary and sufficient condition for α⋆ to be optimal is the existence of a function µ ∈ C(Y) and a real

ν ∈ R such that,

α⋆ ∈ M+
1 (Y) (primal feasibility),

∀ y ∈ Y, −∇αΦ(f, α
⋆)(y) = µ(y) + ν (stationarity),

∀ y ∈ Y, µ(y) ≤ 0 (dual feasibility),

∀ y ∈ supp(α⋆), µ(y) = 0 (complementary slackness),

where the derivative ∇αΦ(f, α
⋆) is the displacement derivative (5), computed as

∇αΦ(f, α
⋆)(y) = 2 exp(−

f + T (−f, α)

2
).

Therefore

f + T (−f, α⋆)

2
= − log(−

ν

2
) on the support of α⋆, and

f + T (−f, α⋆)

2
= − log(−

µ(y) + ν

2
) ≤ − log(−

ν

2
) otherwise. (12)

Replacing in the definition Ω⋆(f) = − log Φ(f, α⋆), and using the equality

Φ(f, α) = 〈α, exp(−
f + T (−f, α)

2
)〉
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we obtain

− log(−
ν

2
) = Ω⋆(f),

and the first part of the lemma follows. Then, note that T (f + c, α) = T (f, α)− c for all c ∈ R, f ∈ C(Y),
α ∈ M+

1 (Y). Removing Ω⋆(f) from both side of inequality (12), we obtain

f − Ω⋆(f) + T
(

− (f − Ω⋆(f)),∇Ω⋆(f)
)

≤ 0,

with equality on the support of ∇Ω⋆(f), which brings the second part of the lemma.

A.3.2. PROOF OF LEMMA 1

Proof. Let α ∈ M+
1 (Y) and f , ∇Ω(α). From the optimality condition of Sinkhorn dual minimization (4),

T (−f, α) = −f,

hence, α meets the sufficient conditions for optimality in Lemma 2. Therefore ∇Ω⋆(f) = α, Ω⋆(f) = 0,

and the first part of the lemma follows. To demonstrate the second part, we consider f ∈ F . There exists

α ∈ M+
1 (Y) such that f = ∇Ω(α), and thus

∇Ω ◦ ∇Ω⋆(f) = ∇Ω ◦ ∇Ω⋆ ◦ Ω(α) = ∇Ω(α) = f.

The lemma follows.

A.3.3. EXTRAPOLATION EFFECT OF ∇Ω⋆—PROOF OF PROP. 3

We start by establishing some basic properties of the extrapolation operator.

Lemma 3 (Properties of fE). The following properties hold, for all f ∈ C(Y),

i. The extrapolated potential fE verifies

f ≤ fE , f| supp∇Ω⋆(f) = fE| supp∇Ω⋆(f).

ii. The extrapolation operator maintain the following values:

fEE = fE , Ω⋆(fE) = Ω⋆(f), ∇Ω⋆(fE) = ∇Ω⋆(f).

Proof. We demonstrate (i), then (ii).

i. Note that T (f + c, α) = T (f, α)− c for all c ∈ R, f ∈ C(Y), α ∈ M+
1 (Y). Removing Ω⋆(f) from both

side of inequality (12), we obtain

f − Ω⋆(f) + T
(

− (f − Ω⋆(f)),∇Ω⋆(f)
)

≤ 0,

with equality on the support of ∇Ω⋆(f).

ii. We set α = ∇Ω⋆(f). According to Lemma 2, for all y ∈ suppα, fE(y) = f(y) and

fE(y) + T (−fE , α)(y)

2
= 2Ω⋆(f).

Furthermore, for all y ∈ Y , −fE(y) ≤ −f(y), and therefore, as the soft C-transform operator is non-

increasing with respect to f ,

2Ω⋆(f)− fE = T (−f,∇Ω⋆(f)) ≤ T (−fE ,∇Ω⋆(f)),

where the left equality stems from the definition of fE . Therefore

fE(y) + T (−fE , η)(y)

2
≤ 2Ω⋆(f),
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on all Y , and we meet the sufficient condition of Lemma 2 for the optimality of η in

min
α∈M+

1 (Y)
Φ(fE , α).

We thus have Ω⋆(fE) = Ω⋆(f), ∇Ω⋆(f) = ∇Ω⋆(fE). Therefore

fEE = −T (−fE ,∇Ω⋆(fE)) + 2Ω⋆(fE)

= −T (−fE ,∇Ω⋆(f)) + 2Ω⋆(f)

= −T (−f,∇Ω⋆(f)) + 2Ω⋆(f) = fE ,

where we have used on the third line the fact that the value of T (f, α) depends only on the values of f on the

support of α. In our case, we have fE| supp∇Ω⋆(f) = f| supp∇Ω⋆(f), from Lemma 2. The lemma follows.

With Lemma 1 and Lemma 3 at hand, we are now ready to prove Prop. 3.

Proof. We consider a function f ∈ C(Y). By construction of the extrapolation fE ,

g = fE −∇Ω⋆(f)

is a negative symmetric Sinkhorn potentials, as T (−g,∇Ω⋆(f)) = −g. Therefore, from Lemma 1,

∇Ω ◦ ∇Ω⋆(g) = g

∇Ω ◦ ∇Ω⋆(fE) = fE −∇Ω⋆(f)

∇Ω ◦ ∇Ω⋆(f) = fE −∇Ω⋆(f),

where the third equality stems from Lemma 3, property (ii), and the second from (8).

A.4. Relation to Hausdorff divergence—Proofs of Prop. 4 and Prop. 5

We now turn to proving Prop. 4 and Prop. 5, that justifies the validity of the geometric logistic loss for a

certain Bregman divergence, dubbed the asymmetric Hausdorff divergence.

A.4.1. PROOF OF PROP. 4

Proof. Let α ∈ M+
1 (Y) and f ∈ C(Y). By definition, the Hausdorff divergence H = DΩ between α and

∇Ω⋆(f) rewrites

DΩ(α|∇Ω⋆(f)) = Ω(α)− Ω(∇Ω⋆(f))− 〈∇Ω ◦ ∇Ω⋆(f), α− Ω⋆(fE)〉

= Ω(α) + 〈f,∇Ω⋆(f)〉 − Ω(∇Ω⋆(f))− 〈f, α〉+ 〈f −∇Ω ◦ ∇Ω⋆(f), α−∇Ω⋆(f)〉

= ℓΩ(α, f) + 〈f −∇Ω ◦ ∇Ω⋆(f), α−∇Ω⋆(f)〉.

This decomposition is a generic way of decomposing a Bregman divergence into a Fenchel-Young loss plus a

perturbation term that depends on the “projection” ∇Ω ◦∇Ω⋆(f). In our case, thanks to Lemma 3, property

(iv), this term rewrites

〈f −∇Ω ◦ ∇Ω⋆(f), α−∇Ω⋆(f)〉 = 〈f − fE , α〉+ 〈f − fE ,∇Ω⋆(f)〉+Ω⋆(f)〈1, α−∇Ω⋆(f)〉.

The second term is null as a consequence of Lemma 3, while the third is null because α and ∇Ω⋆(f) are

both probability measures. The first one is null in case supp∇Ω⋆(f) ∈ suppα, in accordance to Lemma 3,

property (i). The proposition follows from the fact that fE ≥ f on the space Y , according to the same

property.
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A.4.2. PROOF OF PROP. 5

Proof. As a consequence of Prop. 4, for any true and estimated distribution α, α̂ ∈ M+
1 (Y), we have

DΩ(α|α̂) = DΩ(α|∇Ω⋆(∇Ω(α))) = ℓΩ(α,∇Ω(α))− 〈α, (∇Ω(α))
E
−∇Ω(α)〉,

where the last term is null as T (−∇Ω(α), α) = −∇Ω(α) and Ω⋆(∇Ω(α)) = 0 from Lemma 1. Therefore

DΩ(α|α̂) = ℓΩ(α,∇Ω(α)).

The equality of risks and the connection between minimizers immediately follows. To establish the Fisher

consistency of the g-FY loss with respect to the Hausdorff divergence, note that, from Prop. 4, we have, for

all f̂ : X → C(Y), for all x ∈ X , α ∈ M+
1 (Y),

DΩ(α|∇Ω⋆(f̂(x)) ≤ ℓΩ(α, f̂(x)).

Taking the expectation with respect to the data distribution D, we obtain

E(∇Ω⋆ ◦ f̂) ≤ R(f̂),

and the proposition follows.

B. Further experiments and details

B.1. Variational auto-encoders

High definition experiment. As a complementary experiment, we generate a dataset of cat doodles from

the Google QuickDraw dataset, with a line width of one pixel. We test the g-softmax link function and the

geometric Fenchel-Young loss functions to train a VAE with a DC-GAN architecure (Radford et al., 2016).

We reuse the architecture of the authors, using the discriminator as an encoder, with a final layer with a

size of output twice the size of the latent dimension, to model the mean and variance of the latent encoding,

and the generator as a decoder. Similarly to the experiment in the main text, we observe that the generated

samples and the reconstructions are more concentrated on thin measures.

MNIST. We display a visualization of generates images and reconstruction of test image in Figure 5. The

output distributions are well concentrated, despite the low resolution of the dataset.

Architecture Our multi-layer perceptron is simple: encoder and decoder are two layer MLP with 400

hidden units and ReLU activation.

Hyperparameters. We use a latent size of 100 in the experiment on QuickDraw 28x28, and 256 for the

high resolution experiment. We set the KL weight to 1, and rescale the KL loss with a factor h×w, to make

its gradient of the same order as the one computed with separated binary cross entropy. We use σ = 2 as the

scaling parameter of the Euclidean cost function.
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Figure 5. Examples of generated images and reconstruction of test images with an MLP VAE on MNIST dataset.

softmax g-softmax

Reconstruction

Generation

Figure 6. Examples of generated images and reconstruction of test images with a VAE-DC-GAN and a geometric soft-

max last layer. The generated images are sharper than when using a standard softmax layer and a KL divergence training.


