
Geometric Losses for Distributional Learning

Arthur Mensch 1 2 Mathieu Blondel 3 Gabriel Peyré 1 2

Abstract

Building upon recent advances in entropy-

regularized optimal transport, and upon Fenchel

duality between measures and continuous func-

tions, we propose a generalization of the lo-

gistic loss that incorporates a metric or cost

between classes. Unlike previous attempts to

use optimal transport distances for learning, our

loss results in unconstrained convex objective

functions, supports infinite (or very large) class

spaces, and naturally defines a geometric gener-

alization of the softmax operator. The geometric

properties of this loss make it suitable for predict-

ing sparse and singular distributions, for instance

supported on curves or hyper-surfaces. We study

the theoretical properties of our loss and show-

case its effectiveness on two applications: ordi-

nal regression and drawing generation.

1. Introduction

For probabilistic classification, the most popular loss is ar-

guably the (multinomial) logistic loss. It is smooth, en-

abling fast convergence rates, and the softmax operator pro-

vides a consistent mapping to probability distributions. In

many applications, different costs are associated to mis-

classification errors between classes. While a cost-aware

generalization of the logistic loss exists (Gimpel & Smith,

2010), it does not provide a cost-aware counterpart of the

softmax. The softmax is pointwise by nature: it is oblivious

to misclassification costs or to the geometry of classes.

Optimal transport (Wasserstein) losses have recently

gained popularity in machine learning, for their ability to

compare probability distributions in a geometrically faith-

ful manner, with applications such as classification (Kusner

et al., 2015), clustering (Cuturi & Doucet, 2014), domain
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adaptation (Courty et al., 2017), dictionary learning (Ro-

let et al., 2016) and generative models training (Montavon

et al., 2016; Arjovsky et al., 2017). For probabilistic clas-

sification, Frogner et al. (2015) proposes to use entropy-

regularized optimal transport (Cuturi, 2013) in the multi-

label setting. Although this approach successfully lever-

ages a cost between classes, it results in a non-convex

loss, when combined with a softmax. A similar regular-

ized Wasserstein loss is used by Luise et al. (2018) in con-

junction with a kernel ridge regression procedure (Ciliberto

et al., 2016) in order to obtain a consistency result.

The relation between the logistic loss and the maximum en-

tropy principle is well-known. Building upon a generaliza-

tion of the Shannon entropy originating from entropy reg-

ularized optimal transport (Feydy et al., 2019) and Fenchel

duality between measures and continuous functions, we

propose a generalization of the logistic loss that takes into

account a metric or cost between classes. Unlike previous

attempts to use optimal transport distances for learning, our

loss is convex, and naturally defines a geometric general-

ization of the softmax operator. Besides providing novel

insights in the logistic loss, our loss is theoretically sound,

even when learning and predicting continuous probability

distributions over a potentially infinite number of classes.

To sum up, our contributions are as follows.

Organization and contributions.

• We introduce the distribution learning setting, review

existings losses leveraging a cost between classes and

point out their shortcomings (§2).

• Building upon entropy-regularized optimal transport,

we present a novel cost-sensitive distributional learning

loss and its corresponding softmax operator. Our pro-

posal is theoretically sound even in continuous measure

spaces (§3).

• We study the theoretical properties of our loss, such as

its Fisher consistency (§4). We derive tractable methods

to compute and minimize it in the discrete distribution

setting. We propose an abstract Frank-Wolfe scheme

for computations in the continuous setting.

• Finally, we demonstrate its effectiveness on two dis-

crete prediction tasks involving a geometric cost: ordi-

nal regression and drawing generation using VAEs (§5).
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Notation. We denote X a finite or infinite input space,

and Y a compact potentially infinite output space. When Y
is a finite set of d classes, we write Y = [d] , {1, . . . , d}.

We denote C(Y), M(Y), M+(Y) and M+
1 (Y) the sets

of continuous (bounded) functions, Radon (positive) mea-

sures and probability measures on Y . Note that in finite

dimensions, M+
1 ([d]) = △d is the probability simplex

and C([d]) = R
d. We write vectors in R

d and continu-

ous functions in C(Y) with small normal letters, e.g., f, g.

In the finite setting, where Y = {y1, . . . , yd}, we define

fi , f(yi). We write elements of △d and measures in

M(Y) with greek letters α, β. We write matrices and op-

erators with capital letters, e.g., C. We denote by ⊗ and ⊕
the tensor product and sum, and 〈·, ·〉 the scalar product.

2. Background

In this section, after introducing distributional learning in a

discrete setting, we review two lines of work for taking into

account a cost C between classes: cost-augmented losses,

and geometric losses based on Wasserstein and energy dis-

tances. Their shortcomings motivate the introduction of a

new geometric loss in §3.

2.1. Discrete distribution prediction and learning

We consider a general predictive setting in which an input

vector x ∈ X is fed to a parametrized model gθ : X → R
d

(e.g., a neural network), that predicts a score vector f =
gθ(x) ∈ R

d. At test time, that vector is used to predict the

most likely class ŷ = argmaxy∈[d] fy . In order to predict

a probability distribution α ∈ △d, it is common to com-

pose gθ with a link function ψ(f), where ψ : R
d → △d. A

typical example of link function is the softmax.

To learn the model parameters θ, it is necessary to de-

fine a loss ℓ(α, f) between a ground-truth α ∈ △d and

the score vector f ∈ R
d. Composite losses (Reid &

Williamson, 2010; Williamson et al., 2016) decompose that

loss into a loss ℓ△(α, β), where ℓ△ : △d × △d → R and

ψ: ℓ(α, f) , ℓ△(α, ψ(f)). Note that depending on ℓ△ and

ψ, ℓ is not necessarily convex in f . More recently, Blon-

del et al. (2018; 2019) introduced Fenchel-Young losses, a

generic way to directly construct a loss ℓ and a correspond-

ing link ψ. We will revisit and generalize that framework

to the continuous output setting in the sequel of this paper.

Given a loss ℓ and a training set of input-distribution pairs,

(xi, αi), where xi ∈ X and αi ∈ △d, we then minimize
∑

i ℓ(αi, gθ(xi)), potentially with regularization on θ.

2.2. Cost-augmented losses

Before introducing a new geometric cost-sensitive loss in

§3, let us now review classical existing cost-sensitive loss

functions. Let C be a d × d matrix, such that cy,y′ ≥ 0 is

the cost of misclassifying class y ∈ [d] as class y′ ∈ [d].
We assume cy,y = 0 for all y ∈ [d]. To take into account

the cost C, in the single label setting, it is natural to define

a loss L : [d]× R
d → R as follows

L(y, f) = cy,y′ where y′ ∈ argmax
i∈[d]

fi. (1)

To obtain a loss ℓ : △d × R
d → R, we simply define

ℓ(δy, f) , L(y, f), where δy is the one-hot representation

of y ∈ [d]. Note that choosing cy,y′ = 1 when y 6= y′ and

cy,y′ = 0 otherwise (i.e., C = 1 − Id×d) reduces to the

zero-one loss. To obtain a convex upper-bound, (1) is typi-

cally replaced with a cost-augmented hinge loss (Crammer

& Singer, 2001; Tsochantaridis et al., 2005):

L(y, f) = max
i∈[d]

cy,i + fi − fy.

Replacing the max above with a log-sum-exp leads to a

cost-augmented version of the logistic (or conditional ran-

dom field) loss (Gimpel & Smith, 2010). Another convex

relaxation is the cost-sensitive pairwise hinge loss (Weston

& Watkins, 1999; Duchi et al., 2018). Remarkably, all these

losses use only one row of C, the one corresponding to the

ground truth y. Because of this dependency on y, it is not

clear how to define a probabilistic mapping at test time. In

this paper, we propose a loss which comes with a geometric

generalization of the softmax operator. That operator uses

the entire cost matrix C.

2.3. Wasserstein and energy distance losses

Wasserstein or optimal transport distances recently gained

popularity as a loss in machine learning for their ability to

compare probability distributions in a geometrically faith-

ful manner. As a representative application, Frogner et al.

(2015) proposed to use entropy-regularized optimal trans-

port (Cuturi, 2013) for cost-sensitive multi-label classifica-

tion. Effectively, optimal transport lifts a distance or cost

C : Y × Y → R+ to a distance between probability dis-

tributions over Y . Following Genevay et al. (2016), given

a ground-truth probability distribution α ∈ △d and a pre-

dicted probability distribution β ∈ △d, we define

OTC,ǫ(α, β) , min
π∈U(α,β)

〈π,C〉+ εKL(π|α⊗ β), (2)

where U is the transportation polytope, a subset of △d×d

whose elements π have constrained marginals: π1 = α
and π⊤1 = β. KL is the Kullback–Leibler divergence

(a.k.a. relative entropy). Because β needs to be a valid

probability distribution, Frogner et al. (2015) propose to

use β = ψ(f) = softmax(f), where f ∈ R
d is a vector of

prediction scores. Unfortunately, the resulting composite

loss, ℓ(α, f) = OTC,ǫ(α, softmax(f)), is not convex w.r.t.

f . Another class of divergences between measures α and β
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stems from energy distances (Székely & Rizzo, 2013) and

maximum mean discrepancies. However, composing these

divergences with a softmax again breaks convexity in f . In

contrast, our proposal is convex in f and defines a natural

geometric softmax.

3. Continuous and cost-sensitive

distributional learning and prediction

In this section, we construct a loss between probability

measures and score functions, canonically associated with

a link function. Our construction takes into account a cost

function C : Y × Y → R between classes. Unlike ex-

isting methods reviewed in §2.2, our loss is well defined

and convex on compact, possibly infinite spaces Y . We

start by extending the setting of §2.1 to predicting arbitrary

probabilities, for instance having continuous densities with

respect to the Lebesgue measure or singular distributions

supported on curves or surfaces.

3.1. Continuous probabilities and score functions

We consider a compact metric space of outputs Y , endowed

with a symmetric cost function C : Y × Y → R. We wish

to predict probabilities over Y , that is, learn to predict dis-

tributions α ∈ M+
1 (Y). The space of probability mea-

sures forms a closed subset of the space of Radon measures

M(Y), i.e., M+
1 (Y) ⊆ M(Y). From the Riesz represen-

tation theorem, M(Y) is the topological dual of the space

of continuous measures C(Y), endowed with the uniform

convergence norm ‖ · ‖∞. The topological duality between

the primal M(Y) and the dual C(Y) defines a pairing, sim-

ilar to a “scalar product”, between these spaces:

〈α, f〉 ,

∫

Y

f(y)dα(y) = E[f(Y )],

for all α ∈ M(Y) and f ∈ C(Y), where Y is a ran-

dom variable with law α. This pairing also defines the

natural topology to compare measures and to differentiate

functionals depending on measures. This is the so-called

weak⋆ topology, which corresponds to the convergence in

law of random variables. A sequence αn is said to converge

weak⋆ to some α if for all functions f ∈ C(Y), 〈αn, f〉 →
〈α, f〉. Note that when endowing M(Y) with this weak⋆

topology, the dual of M(Y) is C(Y), which is the key to

be able to use duality (and in particular Legendre-Fenchel

transform) from convex optimization. Using this topology

is fundamental to define geometric losses that can cope

with arbitrary, possibly highly localized or even singular

distributions (for instance sparse sums of Diracs or mea-

sures concentrated on thin sets such as 2-D curves or 3-D

surfaces).

Similarly to the discrete setting reviewed in §2.1, in the

continuous setting, we now wish to predict a distribution

α ∈ M+
1 (Y) by setting α = ψ(f), where f = gθ(x) ∈

C(Y), gθ : X → C(Y) (i.e., gθ is unconstrained), and

ψ : C(Y) → M+
1 (Y) is a link function. We propose to

use maps between the primal M+
1 (Y) and the dual score

space C(Y) as link functions. As we shall see, such mir-

ror maps are naturally defined by continuous convex func-

tion on the primal space, through Fenchel-Legendre dual-

ity. Our framework recovers the discrete case Y = [d] as a

particular case, with △d corresponding to M+
1 ([d]) and R

d

to C([d]), though the isomorphisms α →
∑d

i=1 αiδi and

for all i ∈ [d], f(i) = fi.

Regularization of optimal transport is our key tool to con-

struct entropy functions which are continuous with respect

to the weak⋆ topology, and that can be conjugated to define

a C(Y) → M+
1 (Y) link function. It allows us to naturally

leverage a cost C : Y × Y → R between classes.

3.2. An entropy function for continuous probabilities

The regularized optimal transport cost (2) remains well de-

fined when α and β belong to a continuous measure space

M+
1 (Y), with U now being a subset of M+

1 (Y × Y) with

marginal constraints. It induces the self-transport func-

tional (Feydy et al., 2019), that we reuse for our purpose:

ΩC(α) ,

{

− 1
2OTC,ε=2(α, α) for α∈M+

1 (Y)
+∞ otherwise.

(3)

We will omit the dependency of Ω on C when clear from

context. It is shown by Feydy et al. (2019) that Ω is

continuous and convex on M(Y), and strictly convex on

M+
1 (Y), where continuity is taken w.r.t. the weak⋆ topol-

ogy. We call Ω, the Sinkhorn negentropy. As a negative

entropy function, it can be used to measure the uncertainty

in a probability distribution (lower is more uncertain), as

illustrated in Figure 2. It will prove crucial in our loss con-

struction. In the above, we have set w.l.o.g. ε = 2 to re-

cover simple asymptotical behavior of Ω, as will be clear

in Prop. 1.

We first recall some known results from Feydy et al.

(2019). Using Fenchel-Rockafellar duality theorem (Rock-

afellar, 1966), the function Ω rewrites as the solution to

a Kantorovich-type dual problem (see e.g., Villani, 2008).

For all α ∈ M+
1 (Y), we have that

−ΩC(α) = max
f∈C(Y)

〈α, f〉 − log〈α⊗ α, e
f⊕f−C

2 〉, (4)

where we use the homogeneous dual (i.e. with a log in the

maximization), as explained in Cuturi & Peyré (2018).

Gradient and extrapolation. Ω is differentiable in the

sense of measures (Santambrogio, 2015), meaning that

there exists a continuous function ∇Ω(α) such that, for all
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ξ1, ξ2 ∈ M+
1 (Y), t > 0,

Ω(α+t(ξ2−ξ1)) = Ω(α)+t〈ξ2−ξ1,∇Ω(α)〉+o(t). (5)

As shown in Feydy et al. (2019), this function f = ∇Ω(α),
that we call the symmetric Sinkhorn potential, is a partic-

ular solution of the dual problem. It is the only function

in C(Y) such that −f = T (−f, α), where the soft C-

transform operator (Cuturi & Peyré, 2018) is defined as

T (f, α)(y) , −2 log〈α, e
f−C(y,·)

2 〉.

This operator can be understood as the log-convolution

of the measure αe
f
2 with the Sinkhorn kernel e−

C
2 . The

Sinkhorn potential f has the remarkable property of be-

ing defined on all Y , even though the support of α may be

smaller. Given any dual solution g to (4), which is defined

α-almost everywhere, we have f = −T (−g, α), i.e. f ex-

trapolates the values of g on the support of α, using the

Sinkhorn kernel.

Special cases. The following proposition, which is an

original contribution, shows that the Sinkhorn negentropy

asymptotically recovers the negative Shannon entropy and

Gini index (Gini, 1912) when rescaling the cost. The

Sinkhorn negentropy therefore defines a parametric family

of negentropies, recovering these important special cases.

Note however that on continuous spaces Y , the Shannon

entropy is not weak⋆ continuous and thus cannot be used to

define geometric loss and link functions, the softmax link

function being geometry-oblivious. Similarly, the Gini in-

dex is not defined on M+
1 (Y), as it involves the squared

values of α in a discrete setting.

Proposition 1 (Asymptotics of Sinkhorn negentropies).

For Y compact, the rescaled Sinkhorn negentropy con-

verges to a kernel norm for high regularization ε. Namely,

for all α ∈ M+
1 (Y), we have

εΩC/ε(α)
ε→+∞
−→

1

2
〈α⊗ α,−C〉.

Let Y = [d] be discrete and choose C = 1 − Id×d. The

Sinkhorn negentropy converges to the Shannon negentropy

for low-regularization, and into the negative Gini index for

high regularization:

ΩC/ε(α)
ε→0
−→ 〈α, logα〉, εΩC/ε(α)

ε→+∞
−→

1

2
(‖α‖22 − 1).

Proof is provided in §A.1. The first part of the proposition

shows that the Sinkhorn negentropies converge to a kernel

norm (see e.g., Sriperumbudur et al., 2011). This is sim-

ilar to the regularized Sinkhorn divergences converging to

an Energy Distance (Székely & Rizzo, 2013) for ε → ∞
(Genevay et al., 2018; Feydy et al., 2019).

Figure 1. The symmetric Sinkhorn potentials form a distance field

to a weighted measure. The link function ψ = ∇Ω⋆(f) allows to

go back from this field in C(Y) to a measure α ∈ M
+

1 (Y).

From probabilities to potentials. The symmetric

Sinkhorn potential f = ∇Ω(α) is a continuous function,

or a vector in the discrete setting. It can be interpreted as a

distance field to the distribution α. We visualize this field

on a 2D space in Figure 1, where Y is the set of h × w
pixels of an image, and we wish to predict a 2-dimensional

probability distribution in M+
1 (Y) = △h×w. Predicting a

distance field f ∈ C(Y) to a measure is more convenient

than predicting a distribution directly, as it has uncon-

strained values and is therefore easier to optimize against.

For this reason, we propose to learn parametric models that

predict a “distance field” f = gθ(x) given an input x ∈ X .

In the following section, we construct a link function

ψ : C(Y) → M+
1 (Y), for general probability measure

and function spaces M+
1 (Y) and C(Y), so to obtain a

distributional estimator αθ = ψ ◦ gθ : X → M+
1 (Y).

3.3. Fenchel-Young losses in continuous setting

To that end, we generalize in this section the recently-

proposed Fenchel-Young (FY) loss framework (Blondel

et al., 2018; 2019), originally limited to discrete cost-

oblivious measure spaces, to infinite measure spaces. In-

spired by that line of work, we use Legendre-Fenchel dual-

ity to define loss and link functions from Sinkhorn negative

entropies, in a principled manner. We define the Legendre-

Fenchel conjugate Ω⋆ : C(Y) → R of Ω as

Ω⋆(f) , max
α∈M+

1 (Y)
〈α, f〉 − Ω(α).

Rigorously, Ω⋆(f) is a pre-conjugate, as Ω is defined on

M(Y), the topological dual of continuous functions C(Y).
For a comprehensive and rigorous treatment of the theory

of conjugation in infinite spaces, and in particular Banach

spaces as is the case of C(Y), see Mitter (2008).

As Ω is strictly convex, Ω⋆ is differentiable everywhere and

we have, from a Danskin theorem (Danskin, 1966) with

left Banach space and right compact space (Bernhard &

Rapaport, 1995, Theorem C.1):

∇Ω⋆(f) , argmax
α∈M+

1 (Y)

〈α, f〉 − Ω(α) ∈ C(Y).

That gradient can be used as a link ψ from f ∈ C(Y) to

α ∈ M+
1 (Y). It can also be interpreted as a regularized
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prediction function (Blondel et al., 2018; Mensch & Blon-

del, 2018). Following the FY loss framework, we define

the loss associated with ∇Ω⋆ by

ℓΩ(α, f) , Ω⋆(f) + Ω(α)− 〈α, f〉. (6)

In the discrete single-label setting, that loss is also re-

lated to the construction of Duchi et al. (2018, Proposition

3). From the Fenchel-Young theorem (Rockafellar, 1970),

ℓΩ(α, f) ≥ 0, with equality if and only if α = ∇Ω⋆(f).
The loss ℓΩ is thus positive, convex and differentiable in

its second argument, and minimizing it amounts to find the

pre-image f⋆ of the target distribution α with respect to the

link (mapping) ∇Ω⋆.

Our construction is a generalization of the Fenchel-Young

loss framework (Blondel et al., 2018; 2019), in the sense

that it relies on topological duality between C(Y) and

M+
1 (Y), instead of the Hilbertian structure of R

d and △d,

to construct the loss ℓΩ and link function ∇Ω⋆. We now

instantiate the Fenchel-Young loss (6) with Sinkhorn ne-

gentropies in order to obtain a novel cost-sensitive loss.

3.4. A new geometrical loss and softmax

The key ingredients to derive a Fenchel-Young loss ℓΩ and

a link ∇Ω⋆ are the conjugate Ω⋆ and its gradient. Remark-

ably, they enjoy a simple form with Sinkhorn negentropies,

as shown in the following proposition.

Proposition 2 (Conjugate of the Sinkhorn negentropy).

For all f ∈ C(Y), the Legendre-Fenchel conjugate Ω⋆ of

Ω defined in (3) and its gradient read

g-LSE(f) , Ω⋆(f) = − log min
α∈M+

1 (Y)
Φ(α, f)

g-softmax(f) , ∇Ω⋆(f) = argmin
α∈M+

1 (Y)

Φ(α, f)

where Φ(α, f) , 〈α⊗ α, exp(−
f ⊕ f + C

2
)〉

and where g stands for geometric and LSE for log-sum-exp.

The proof can be found in §A.2. ∇Ω⋆(f) is the usual

Fréchet derivative of Ω⋆, that lies a priori in the topolog-

ical dual space of C(Y), i.e. M(Y). From a Danskin theo-

rem (Bernhard & Rapaport, 1995), it is in fact a probability

measure. The probability distribution α = ∇Ω⋆(f) is typ-

ically sparse, as the minimizer of a quadratic on a convex

subspace of M(Y). We call the loss ℓΩ generated by the

Sinkhorn negentropy g-logistic loss.

Special cases. Let Y = [d] and C = 1 − Id×d (0-1 cost

matrix). From Prop. 1, Ω asymptotically recovers the nega-

tive Shannon entropy when Ω = ΩC
ε

as ε→ 0 and the neg-

ative Gini index when Ω = εΩC
ε

, as ε → ∞. ∇Ω∗ is then

equal to softmax(f) ,
exp f∑
i exp fi

, and to sparsemax(f) ,

argminα∈△d ‖α − f‖2 (Martins & Astudillo, 2016), re-

spectively. Likewise, ℓΩ recovers the logistic and sparse-

max losses. When ε → 0, because (Cε )y,y′ = ∞ if y 6= y′

and 0 otherwise, we see that the logistic loss infinitely pe-

nalizes inter-class errors. That is, to obtain zero logistic

loss, the model must assign probability 1 to the correct

class. The limit case ε → 0 is the only case for which g-

softmax always outputs completely dense distributions. In

the continuous case, εΩ⋆
C/ε(f/ε) degenerates into a posi-

tive deconvolution objective with simplex constraint:

max
α∈M+

1 (Y)
〈α, f〉 −

1

2
〈α⊗ α,−C〉.

Fig. 1 shows that ∇Ω⋆ has indeed a deconvolutional effect.

3.5. Computation

Before studying the g-logistic loss ℓΩ and link function

∇Ω⋆(f), we now describe practical algorithms for com-

puting ∇Ω⋆(f) and Ω⋆(f) in the discrete and continuous

cases. The key element in using the g-LSE as a layer in

an arbitrary complex model is to minimize the quadratic

function Φf , Φ(·, f), on M+
1 (Y). We can then use the

minimum value in the forward pass, and the minimizer in

the backward pass, during e.g. SGD training.

Continuous optimisation. In the general case where Y is

compact, we cannot represent α ∈ M+
1 (Y) using a finite

vector. Yet, we can use a Frank-Wolfe scheme to progres-

sively add spikes, i.e. Diracs to an iterate sequence αt. For

this, we need to compute, at each iteration, the gradient of

Φf in the sense of measure (5), i.e. the function in C(Y)

∇Φf (α) = exp(−
f + T (−f, α)

2
),

that simply requires to compute the C-transform of −f on

the measure α, similarly to regularized optimal transport.

The simplest Frank-Wolfe scheme then updates

yt ∈ argmin
Y

∇Φf (αt−1), αt = αt−1+
2

t+ 2
(δyt

−αt−1).

Indeed, for h ∈ C(Y), the minimizer of 〈h, ·〉 on M+
1 (Y)

is the Dirac δy where y ∈ Y minimizes h. This optimiza-

tion scheme may be refined to ensure a geometric conver-

gence of Φf (αt). It can be used to identify Diracs from a

continuous distance field f , similar to super-resolution ap-

proaches proposed in Bredies & Pikkarainen (2013); Boyd

et al. (2017). It requires to work with computer-friendly

representation of f , so that we can obtain an approxima-

tion of yt efficiently, using e.g. non-convex optimization.

Another approach is to rely on a deep parametrization of

a particle swarm, as proposed by Boyd et al. (2018). We

leave such an application for future work, and focus on an

efficient discrete solver for the g-LSE and g-softmax.
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Figure 2. Left: Geometric softmax and Sinkhorn entropy, for symmetric cost matrices, in the binary case. Predictions from the g-softmax

are sparse, as the minimizer of a convex quadratic on the simplex. Right: Level sets of the geometric conjugate. Introducing a cost matrix

induces a deformation △2, the level-set of the log-sum-exp operator, onto the set of symmetric Sinkhorn potentials F . The geometric

conjugate defines an extrapolation operator f → fE that replaces the score function onto the cylinder F + R1.

Discrete optimisation. In the discrete case, we can

parametrize log Φ(f, ·) in logarithmic space, by setting

α = exp(l)− LSE(l), with l ∈ R
d. Ω⋆(f) then reads

max
l∈Rd

− log
d

∑

i,j=1

eli+lj−
fi+fj+ci,j

2 + 2LSE(l). (7)

This objective is non-convex on R
d but invariant with trans-

lation and convex on {h ∈ R
d,LSE(l) = 0}. It thus admits

a unique solution, that we can find using an unconstrained

quasi-Newton solver like L-BFGS (Liu & Nocedal, 1989),

that we stop when the iterates are sufficiently stable. For

l that maximizes (7), the gradient ∇Ω⋆(f) = softmax(l)
is used for backpropagation and at test time. As ∇Ω⋆(f)
is sparse, we expect some coordinates li to go to −∞. In

practice, αi then underflows to 0 after a few iterations.

Two-dimensional convolution. In the discrete case,

when dealing with two-dimensional potentials and mea-

sures, the objective function (7) can be written with a

convolution operator, as − log〈el−
f
2 , e−

C
2 ⋆ el−

f
2 〉 where

C ∈ R
(h×w)2 . It is therefore efficiently computable and

differentiable on GPUs, especially when the kernel C is

separable in height and width, e.g. for the ℓ22 norm, in

which case we perform 2 successive one-dimensional con-

volutions. We use this computational trick in our varia-

tional auto-encoder experiments (§5).

4. Geometric and statistical properties

We start by studying the mirror map ∇Ω⋆, that we expect to

invert the mapping α→ ∇Ω(α). This study is necessary as

we cannot rely on typical conjugate inversion results (e.g.,

Rockafellar, 1970, Theorem 26.5), that would stipulate that

∇Ω⋆ = (∇Ω)−1 on the domain of Ω⋆. Indeed, this result

is stated in finite dimension, and requires that Ω and Ω⋆

be Legendre, i.e. be strictly convex and differentiable on

their domain of definition, and have diverging derivative

on the boundaries of these domains (see also Wainwright

& Jordan, 2008). This is not the case of the Sinkhorn ne-

gentropy, which requires novel adjustements. With these

at hands, we show that parametric models involving a final

g-softmax layer can be trained to minimize a certain well-

behaved Bregman divergence on the space of probability

measures. Proofs are reported in §A.3 and §A.4

4.1. Geometry of the link function

We have constructed the link function ∇Ω⋆ in hope that

it would allow to go from a symmetric Sinkhorn potential

f = ∇Ω(α) back to the original measure α. The following

lemma states that this is indeed the case, and derives two

consequences on the space of symmetric Sinkhorn poten-

tials, defined as F , {f ∈ C(Y), f = ∇Ω(α)}.

Lemma 1 (Inversion of the Sinkhorn potentials).

∀α ∈ M+
1 (Y), ∇Ω⋆ ◦ ∇Ω(α) = α.

∀ f ∈ F , ∇Ω ◦ ∇Ω⋆(f) = f, Ω⋆(f) = 0.

The computation of the Sinkhorn potential thus inverts the

g-LSE operator on the space F , which is included in the

0-level set of Ω⋆. This is similar to the set FShannon =
{logα, α ∈ △d} being the 0 level set of the log-sum-exp

function when using the Shannon negentropy as Ω.

This corollary is not sufficient for our purpose, as we want

to characterize the action of ∇Ω⋆ on all continuous func-

tions f ∈ C(Y). For this, note that the g-LSE operator Ω⋆

has the same behavior as the log-sum-exp when composed

with the addition of a constant c ∈ R:

Ω⋆(f + c) = Ω⋆(f) + c, ∇Ω⋆(f + c) = ∇Ω⋆(f). (8)

Therefore, for all f ∈ C(Y), Ω⋆(f − Ω⋆(f)) = 0, which

almost makes f−Ω⋆(f) a part of the space of potentials F .

Yet, in contrast with the Shannon entropy case, the inclu-

sion of (Ω⋆)−1(0) in F is strict. Indeed, following §3.2

f ∈ F implies that there exists α ∈ M+
1 (Y) such that

f = −T (−f, α) is the image of the C-transform opera-

tor. The operator ∇Ω◦∇Ω⋆ has therefore an extrapolation

effect, as it replaces f − Ω⋆(f) onto the set of Sinhorn po-

tentials. This is made clear by the following proposition.
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Proposition 3 (Extrapolation effect of ∇Ω◦∇Ω⋆). For all

f ∈ C(Y), we define the extrapolation of f to be

fE , −T
(

− (f − Ω⋆(f)),∇Ω⋆(f)
)

+Ω⋆(f).

Then, for all f ∈ C(Y), ∇Ω ◦ ∇Ω⋆(f) = fE − Ω⋆(f).

The extrapolation operator translates f to (Ω⋆)−1(0), ex-

trapolates f − Ω⋆(f) so that it becomes a Sinkhorn po-

tential, then translates back the result so that Ω⋆(fE) =
Ω⋆(f). Its effects clearly appears on Figure 2 (right), where

we see that fE is a projection of f onto the cylinder F+R.

4.2. Relation to Hausdorff divergence

Recall that the Bregman divergence (Bregman, 1967) gen-

erated by a strictly convex Ω is defined as

DΩ(α, β) , Ω(α)− Ω(β)− 〈∇Ω(f), α− β).

When Ω is the classical negative Shannon entropy Ω(α) =
〈α, logα〉, it is well-known that DΩ equals the Kullback-

Leibler divergence and it is easy to check that

ℓΩ(α, f) = DΩ(α,∇Ω⋆(f)) = KL(α, softmax(f)).

The equivalence between Fenchel-Young loss ℓΩ(α, f) and

composite Bregman divergenceDΩ(α,∇Ω⋆(f)), however,

no longer holds true when Ω is the Sinkhorn negentropy de-

fined in (3). In that case,DΩ can be interpreted as an asym-

metric Hausdorff divergence (Aspert et al., 2002; Feydy

et al., 2019). It forms a geometric divergence akin to OT

distances, and estimates the distance between distribution

supports. As we now show, ℓΩ provides an upper-bound on

the composition of that divergence with ∇Ω⋆.

Proposition 4 (ℓΩ upper-bounds Hausdorff divergence).

DΩ(α,∇Ω⋆(f)) = ℓΩ(α, f
E)

= ℓΩ(α, f)− 〈α, fE − f〉 ≤ ℓΩ(α, f)

with equality if supp∇Ω⋆(f) = suppα.

In contrast with the KL divergence, the asymmetric Haus-

dorff divergence is finite even when suppα 6= suppβ, a

geometrical property that it shares with optimal transport

divergences. We now use Prop. 4 to derive a new con-

sistency result justifying our loss. Let us assume that in-

put features and output distributions follow a distribution

D ∈ M+
1 (X × M+

1 (Y)). We define the Hausdorff diver-

gence risk and the Fenchel-Young loss risk as

E(β) , E[DΩ(α, β(x))] and R(g) , E[ℓΩ(α, g(x))],

where the expectation is taken w.r.t. (x, α) ∼ D. We define

their associated Bayes estimators as

β⋆ , argmin
β : X→M+

1 (Y)

E(β) and g⋆ , argmin
g : X→C(Y)

R(g).

The next proposition guarantees calibration of ℓΩ with re-

spect to the asymmetric Hausdorff divergence DΩ.

Proposition 5 (Calibration of the g-logistic loss). The g-

logistic loss ℓΩ where Ω is defined in (3) is Fisher consistent

with the Hausdorff divergence DΩ for the same Ω. That is,

E(β⋆) = R(g⋆), with g⋆ = ∇Ω ◦ β⋆.

The excess of risk in the Hausdorff divergence is controlled

by the excess of risk in the g-logistic loss. For all g : X →
C(Y), we have

E(∇Ω⋆ ◦ g)− E(β⋆) ≤ R(g)−R(g⋆).

This result, that follows the terminology of Tewari &

Bartlett (2005), shows that ℓΩ is suitable for learning pre-

dictors that minimize DΩ.

5. Applications

We present two experiments that demonstrate the validity

and usability of the geometric softmax in practical use-

cases. We provide a PyTorch package for reusing the dis-

crete geometric softmax layer1.

5.1. Ordinal regression

We first demonstrate the g-softmax for ordinal regression.

In this setting, we wish to predict an ordered category

among d categories, and we assume that the cost of pre-

dicting ŷ instead of y is symmetric and depends on the

difference between ŷ and y. For instance, when predict-

ing ratings, we may have three categories bad ≺ aver-

age ≺ good. This is typically modeled by a cost-function

C(ŷ, y) = φ(|ŷ − y|), where φ is the ℓ22 or ℓ1 cost. We use

the real-world ordinal datasets provided by Gutierrez et al.

(2016), using their predefined 30 cross-validation folds.

Experiment and results. We study the performance of

the geometric softmax in this discrete setting, where the

score function is assumed to be a linear function of the in-

put features x ∈ R
k, i.e, gW,b(x) = Wx + b, with b ∈ R

d,

x ∈ R
k and W ∈ R

d×k. We compare its performance

to multinomial regression, and to immediate threshold and

all-threshold logistic regression (Rennie & Srebro, 2005),

using a reference implementation provided by Pedregosa

et al. (2017). We use a cross-validated ℓ2 penalty term on

the linear score model gθ. To compute the Hausdorff diver-

gence at test time and the geometric loss during training,

we set C(ŷ, y) = (ŷ − y)2/2.

The results, aggregated over datasets and cross-validation

folds, are reported in Table 1. We observe that the g-logistic

regression performs better than the others for the Haus-

dorff divergence on average. It performs slightly worse

than a simple logistic regression in term of accuracy, but

1github.com/arthurmensch/g-softmax
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Table 1. Performance of geometric loss as a drop-in replacement

in linear models for ordinal regression. Our method performs bet-

ter w.r.t. its natural metric, the Hausdorff divergence.

LR LR(AT) LR(IT) g-logistic

Haus. div. .46±.12 .47±.14 .59±.16 .44±.08
MAE .44±.09 .42±.06 .44±.08 .45±.09
Acc. .66±.07 .65±.06 .65±.06 .65±.07

slightly better in term of mean absolute error (MAE, the

reference metric in ordinal regression). It thus provides

a viable alternative to thresholding techniques, that per-

forms worse in accuracy but better in MAE. It has the fur-

ther advantage of naturally providing a distribution of out-

put given an input x. We simply have, for all y ∈ [d],
p(Y = y|X = x) = (g-softmax(gW,b(x)))y .

Calibration of the geometric loss. We validate Prop. 5

experimentally on the ordinal regression dataset car. Dur-

ing training, we measure the geometric cross-entropy loss

and the Hausdorff divergence on the train and validation

set. Figure 3 shows that ℓΩ is indeed an upper bound of

DΩ, and that the difference between both terms reduces to

almost 0 on the train set. Prop. 5 ensures this finding pro-

vided that the set of scoring function is large enough, which

appears to be approximately the case here.

Figure 3. Training curves for

ordinal regression on dataset

car. The difference between

the g-logistic loss and the

Hausdorff divergence van-

ishes on the train set.

5.2. Drawing generation with variational auto-encoders

The proposed geometric loss and softmax are suitable to

estimate distributions from inputs. As a proof-of-concept

experiment, we therefore focus on a setting in which distri-

butional output is natural: generation of hand-drawn doo-

dles and digits, using the Google QuickDraw (Ha & Eck,

2018) and MNIST dataset. We train variational autoen-

coders on these datasets using, as output layers, (1) the KL

divergence with normalized output and (2) our geometric

loss with normalized output. These approaches output an

image prediction using a softmax/g-softmax over all pixels,

which is justified when we seek to output a concentrated

distributional output. This is the case for doodles and dig-

its, which can be seen as 1D distributions in a 2D space. It

differs from the more common approach that uses a binary

cross-entropy loss for every pixel and enables to capture in-

teractions between pixels at the feature extraction level. We

use standard KL penalty on the latent space distribution.

Using the g-softmax takes into account a cost between pix-
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Figure 4. The g-softmax layer permits to generate and reconstruct

drawing in a more concentrated manner. For a same level of

variational penalty, the g-softmax better and faster minimizes the

asymmetric Hausdorff divergence. See also Figure 6.

els (i, j) and (k, l), that we set to be the Euclidean cost

C/σ, where C is the ℓ22 cost and σ is the typical distance

of interaction—we choose σ = 2 in our experiments. We

therefore made the hypothesis that it would help in re-

constructing the input distributions, forming a non-linear

layer that captures interaction between inputs in a non-

parametric way.

Results. We fit a simple MLP VAE on 28x28 images

from the QuickDraw Cat dataset. Experimental details are

reported in Appendix B (see Figure 6). We also present an

experiment with 64x64 images and a DCGAN architecture,

as well as visualization of a VAE fitted on MNIST. In Fig-

ure 4, we compare the reconstruction and the samples after

training our model with the g-softmax and simple softmax

loss. Using the g-softmax, which has a deconvolutional

effect, yields images that are concentrated near the edges

we want to reconstruct. We compare the training curves

for both the softmax and g-softmax version: using the g-

softmax link function and its associated loss better mini-

mizes the asymmetric Hausdorff divergence. The cost of

computation is again increased by a factor 10.

6. Conclusion

We introduced a principled way of learning distributional

predictors in potentially continuous output spaces, taking

into account a cost function in between inputs. We con-

structed a geometric softmax layer, that we derived from

Fenchel conjugation theory in Banach spaces. The key to

our construction is an entropy function derived from regu-

larized optimal transport, convex and weak⋆ continuous on

probability measures. Beyond the experiments in discrete

measure spaces that we presented, our framework opens

the doors for new applications that are intrinsically off-the-

grid, such as super-resolution.
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A., and Peyré, G. Interpolating between optimal trans-

port and MMD using Sinkhorn divergences. In Proceed-

ings of the International Conference on Artifical Intelli-

gence and Statistics, 2019.

Frogner, C., Zhang, C., Mobahi, H., Araya, M., and Pog-

gio, T. A. Learning with a Wasserstein loss. In Ad-

vances in Neural Information Processing Systems, pp.

2053–2061, 2015.

Genevay, A., Cuturi, M., Peyré, G., and Bach, F. Stochas-
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