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Abstract
Signed graphs encode positive (attractive) and
negative (repulsive) relations between nodes. We
extend spectral clustering to signed graphs via
the one-parameter family of Signed Power Mean
Laplacians, defined as the matrix power mean
of normalized standard and signless Laplacians
of positive and negative edges. We provide a
thorough analysis of the proposed approach in
the setting of a general Stochastic Block Model
that includes models such as the Labeled Stochas-
tic Block Model and the Censored Block Model.
We show that in expectation the signed power
mean Laplacian captures the ground truth clus-
ters under reasonable settings where state-of-the-
art approaches fail. Moreover, we prove that the
eigenvalues and eigenvector of the signed power
mean Laplacian concentrate around their expec-
tation under reasonable conditions in the general
Stochastic Block Model. Extensive experiments
on random graphs and real world datasets confirm
the theoretically predicted behaviour of the signed
power mean Laplacian and show that it compares
favourably with state-of-the-art methods.

1. Introduction
The analysis of graphs has received a significant amount of
attention due to their capability to encode interactions that
naturally arise in social networks. Yet, the vast majority of
graph methods has been focused on the case where inter-
actions are of the same type, leaving aside the case where
different kinds of interactions are available (Leskovec et al.,
2010b). Graphs and networks with both positive and neg-
ative edge weights arise naturally in a number of social,
biological and economic contexts. Social dynamics and
relationships are intrinsically positive and negative: users of
online social networks such as Slashdot and Epinions, for
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example, can express positive interactions, like friendship
and trust, and negative ones, like enmity and distrust. Other
important application settings are the analysis of gene ex-
pressions in biology (Fujita et al., 2012) or the analysis of
financial and economic time sequences (Ziegler et al., 2010;
Pavlidis et al., 2006), where similarity and variable depen-
dence measures commonly used may attain both positive
and negative values (e.g. the Pearson correlation coefficient).

Although the majority of the literature has focused on
graphs that encode only positive interactions, the analy-
sis of signed graphs can be traced back to social balance
theory (Cartwright & Harary, 1956; Harary, 1953; Davis,
1967), where the concept of a k-balance signed graph is
introduced. The analysis of signed networks has been then
pushed forward through the study of a variety of tasks in
signed graphs, as for example edge prediction (Kumar et al.,
2016; Leskovec et al., 2010a; Falher et al., 2017), node
classification (Bosch et al., 2018; Tang et al., 2016a), node
embeddings (Chiang et al., 2011; Derr et al., 2018; Kim
et al., 2018; Wang et al., 2017; Yuan et al., 2017), node
ranking (Chung et al., 2013; Shahriari & Jalili, 2014), and
clustering (Chiang et al., 2012; Kunegis et al., 2010; Mer-
cado et al., 2016; Sedoc et al., 2017; Doreian & Mrvar, 2009;
Knyazev, 2018; Kirkley et al., 2018; Cucuringu et al., 2019;
Cucuringu et al., 2018). See (Tang et al., 2016b; Gallier,
2016) for recent surveys on the topic.

In this paper we present a novel extension of spectral cluster-
ing for signed graphs. Spectral clustering (Luxburg, 2007)
is a well established technique for non-signed graphs, which
partitions the set of the nodes based on a k-dimensional node
embedding obtained using the first eigenvectors of the graph
Laplacian. Our contributions are as follows: We intro-
duce the family of Signed Power Mean (SPM) Laplacians:
a one-parameter family of graph matrices for signed graphs
that blends the information from positive and negative inter-
actions through the matrix power mean, a general class of
matrix means that contains the arithmetic, geometric, and
harmonic mean as special cases. This is inspired by recent
extensions of spectral clustering which merge the informa-
tion encoded by positive and negative interactions through
different types of arithmetic (Chiang et al., 2012; Kunegis
et al., 2010) and geometric (Mercado et al., 2016) means
of the standard and signless graph Laplacians. We analyze
the performance of the signed power mean Laplacian in a
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general Signed Stochastic Block Model. We first provide an
anlysis in expectation showing that the smaller is the param-
eter of the signed power mean Laplacian, the less restrictive
are the conditions that ensure to recover the ground truth
clusters. In particular, we show that the limit cases +∞
and −∞ are related to the boolean operators AND and OR,
respectively, in the sense that for the limit case +∞ clusters
are recovered only if both positive and negative interactions
are informative, whereas for −∞ clusters are recovered if
positive or negative interactions are informative. This is
consistent with related work in the context of unsigned mul-
tilayer graphs (Mercado et al., 2018). Second, we show that
the eigenvalues and eigenvectors of the signed power mean
Laplacian concentrate around their mean, so that our results
hold also for the case where one samples from the stochastic
block model. Our result extends with minor changes to the
unsigned multilayer graph setting considered in (Mercado
et al., 2018), where just the expected case has been studied.
To our knowledge these are the first concentration results
for matrix power means under any stochastic block model
for signed graphs. Finally, we show that the signed power
mean Laplacian compares favorably with state-of-the-art
approaches through extensive numerical experiments on di-
verse real world datasets. All the proofs have been moved
to the supplementary material.

Notation. A signed graph is a pairG± = (G+, G−), where
G+ = (V,W+) and G− = (V,W−) encode positive and
negative edges, respectively, with positive symmetric ad-
jacency matrices W+ and W−, and a common vertex set
V = {v1, . . . , vn}. Note that this definition allows the
simultaneous presence of both positive and negative interac-
tions between the same two nodes. This is a major difference
with respect to the alternative point of view where G± is
associated to a single symmetric matrix W with positive
and negative entries. In this case W = W+ −W−, with
W+
ij = max{0,Wij} and W−ij = −min{0,Wij}, imply-

ing that every interaction is either positive or negative, but
not both at the same time. We denote by D+

ii =
∑n
j=1 w

+
ij

and D−ii =
∑n
j=1 w

−
ij the diagonal matrix of the degrees of

G+ and G−, respectively, and D = D+ +D−.

2. Related work
The study of clustering of signed graphs can be traced back
to the theory of social balance (Cartwright & Harary, 1956;
Harary, 1953; Davis, 1967), where a signed graph is called
k-balanced if the set of vertices can be partitioned into k sets
such that within the subsets there are only positive edges,
and between them only negative.

Inspired by the notion of k-balance, different approaches
for signed graph clustering have been introduced. In par-
ticular, many of them aim to extend spectral clustering to
signed graphs by proposing novel signed graph Laplacians.

A related approach is correlation clustering (Bansal et al.,
2004). Unlike spectral clustering, where the number of clus-
ters is fixed a-priori, correlation clustering approximates the
optimal number of clusters by identifying a partition that
is as close as possible to be k-balanced. In this setting, the
case where the number of clusters is constrained has been
considered in (Giotis & Guruswami, 2006).

We briefly introduce the standard and signless Laplacian and
review different definitions of Laplacians on signed graphs.
The final clustering algorithm to find k clusters is the same
for all of them: compute the smallest k eigenvectors of the
corresponding Laplacian, use the eigenvectors to embed the
nodes into Rk, obtain the final clustering by doing k-means
in the embedding space. However, we will see below that
in some cases we have to slightly deviate from this generic
principle by using the k − 1 smallest eigenvectors instead.

Laplacians of Unsigned Graphs: In the following all
weight matrices are non-negative and symmetric. Given
an assortative graph G = (V,W ), standard spectral clus-
tering is based on the Laplacian and its normalized version
defined as:

L = D −W Lsym = D−1/2LD−1/2

where Dii =
∑n
j=1 wij is the diagonal matrix of the de-

grees ofG. Both Laplacians are symmetric positive semidef-
inite and the multiplicity of the eigenvalue 0 is equal to the
number of connected components in G.

For disassortative graphs, i.e. when edges carry only dis-
similarity information, the goal is to identify clusters such
that the amount of edges between clusters is larger than the
one inside clusters. Spectral clustering is extended to this
setting by considering the signless Laplacian matrix and
its normalized version (see e.g. (Liu, 2015; Mercado et al.,
2016)), defined as:

Q = D +W Qsym = D−1/2QD−1/2

Both Laplacians are positive semi-definite, and the smallest
eigenvalue is zero if and only if the graph has a bipartite
component (Desai & Rao, 1994).

Laplacians of Signed Graphs: Signed graphs encode both
positive and negative interactions. In the ideal k-balanced
case positive interactions present an assortative behaviour,
whereas negative interactions present a disassortative be-
haviour. With this in mind, several novel definitions of
signed Laplacians have been proposed. We briefly review
them for later reference.

In (Chiang et al., 2012) the balance ratio Laplacian and its
normalized version are defined as:

LBR = D+−W++W−, LBN = D
−1/2

LBRD
−1/2

whereas in (Kunegis et al., 2010) the signed ratio Laplacian
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and its normalized version have been defined as:

LSR = D −W+ +W−, LSN = D
−1/2

LSRD
−1/2

The signed Laplacians LBR and LBN need not be positive
semidefinite, while the signed Laplacians LSR and LSN are
positive semidefinite with eigenvalue zero if and only if the
graph is 2-balanced.

In the context of correlation clustering, in (Saade et al.,
2015) the Bethe Hessian matrix is defined as:

H = (α− 1)I −
√
α(W+ −W−) +D

where α is the average node degree α = 1
n

∑n
i=1Dii. The

Bethe Hessian H need not be positive definite. In fact,
eigenvectors with negative eigenvalues bring information of
clustering structure (Saade et al., 2014).

LetL+ = D+−W+ andQ− = D−+W− be the Laplacian
and signless Laplacian of G+ and G−, respectively. As
noted in (Mercado et al., 2016), LSR = L+ + Q− i.e. it
coincides with twice the arithmetic mean of L+ and Q−.
Note that the same holds for H when the average degree α
is equal to one, i.e. H = LSR when α = 1. In (Mercado
et al., 2016), the arithmetic mean and geometric mean of
the normalized Laplacian and its signless version are used
to define new Laplacians for signed graphs:

LAM = L+
sym +Q−sym, LGM = L+

sym#Q
−
sym

where A#B = A−1/2(A1/2BA1/2)1/2A−1/2 is the geo-
metric mean of A and B, L+

sym = (D+)−1/2L+(D+)−1/2

and Q−sym = (D−)−1/2Q−(D−)−1/2. While the computa-
tion of LGM is more challenging, in (Mercado et al., 2016)
it is shown that the clustering assignment obtained with
the geometric mean Laplacian LGM outperforms all other
signed Laplacians.

Both the arithmetic and the geometric means are special
cases of a much richer one-parameter family of means
known as power means. Based on this observation, we
introduce the Signed Power Mean Laplacian in Section 2.2,
defined via a matrix version of the family of power means
which we briefly review below.

2.1. Matrix Power Means

The scalar power mean of two non-negative scalars a, b
is a one-parameter family of means defined for p ∈ R
as mp(a, b) =

(
ap+bp

2

)1/p
. Particular cases are the arith-

metic, geometric and harmonic means, as shown in Ta-
ble 1. Moreover, the scalar power mean is monotone in
the parameter p, i.e. mp(a, b) ≤ mq(a, b) when p ≤ q
(see (Bullen, 2013) , Ch. 3, Thm. 1), which yields the
well known arithmetic-geometric-harmonic mean inequality
m−1(a, b) ≤ m0(a, b) ≤ m1(a, b). As matrices do not
commute, several matrix extensions of the scalar power

Table 1 Particular cases of scalar power means

p mp(a, b) name

p→∞ max{a, b} maximum
p = 1 (a+ b)/2 arithmetic mean
p→ 0

√
ab geometric mean

p = −1 2
(
1
a
+ 1

b

)−1 harmonic mean
p→ −∞ min{a, b} minimum

mean have been introduced, which typically agree if the
matrices commute, see e.g. Chapter 4 in (Bhatia, 2009). We
consider the following matrix extension of the scalar power
mean:

Definition 1 ((Bhagwat & Subramanian, 1978)). Let A,B
be symmetric positive definite matrices, and p ∈ R. The
matrix power mean of A,B with exponent p is

Mp(A,B) =

(
Ap +Bp

2

)1/p

where Y 1/p is the unique positive definite solution of the
matrix equation Xp = Y .

Please note that this definition can be extended to positive
semidefinite matrices (Bhagwat & Subramanian, 1978) for
p > 0, as Mp(A,B) exists, whereas for p < 0 a diago-
nal shift is necessary to ensure that the matrices A,B are
positive definite.

2.2. The Signed Power Mean Laplacian

Given a signed graphG± = (G+, G−) we define the Signed
Power Mean (SPM) Laplacian Lp of G± as

Lp =Mp(L
+
sym, Q

−
sym). (1)

For the case p < 0 the matrix power mean requires positive
definite matrices, hence we use in this case the matrix power
mean of diagonally shifted Laplacians, i.e. L+

sym + εI and
Q−sym + εI . Our following theoretical analysis holds for
all possible shifts ε > 0, whereas we discuss in the sup-
plementary material the numerical robustness with respect
to ε. The clustering algorithm for identifying k clusters
in signed graphs is given in Algorithm 1. Please note that
for p ≥ 1 we deviate from the usual scheme and use the
first k − 1 eigenvectors rathen than the first k. The reason
is a result of the analysis in the stochastic block model in
Section 3. In general, the main influence of the parameter p
of the power mean is on the ordering of the eigenvalues. In
Section 3 we will see that this significantly influences the
performance of different instances of SPM Laplacians, in
particular, the arithmetic and geometric mean discussed in
(Mercado et al., 2016) are suboptimal for the recovery of
the ground truth clusters. For the computation of the matrix
power mean we adapt the scalable Krylov subspace-based
algorithm proposed in (Mercado et al., 2018).
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Algorithm 1: Spectral clustering of signed graphs with Lp

Input: Symmetric matrices W+,W−, number k of clusters to
construct.

Output: Clusters C1, . . . , Ck.
1 Let k′ = k − 1 if p ≥ 1 and k′ = k if p < 1.
2 Compute eigenvectors u1, . . . ,uk′ corresponding to the k′

smallest eigenvalues of Lp.
3 Set U = (u1, . . . ,uk′) and cluster the rows of U with k-means

into clusters C1, . . . , Ck.

3. Stochastic Block Model Analysis of the
Signed Power Mean Laplacian

In this section we analyze the signed power mean Laplacian
Lp under a general Signed Stochastic Block Model. Our
results here are twofold. First, we derive new conditions in
expectation that guarantee that the eigenvectors correspond-
ing to the smallest eigenvalues of Lp recover the ground
truth clusters. These conditions reveal that, in this setting,
the state-of-the-art signed graph matrices are suboptimal as
compared to Lp for negative values of p. Second, we show
that our result in expectation transfer to sampled graphs as
we prove conditions that ensure that both eigenvalues and
eigenvectors of Lp concentrate around their expected value
with high probability. We verify our results by several exper-
iments where the clustering performance of state-of-the-art
matrices and Lp are compared on random graphs following
the Signed Stochastic Block Model.

All proofs hold for an arbitrary diagonal shift ε > 0,
whereas the shift is set to ε = log10(1 + |p|) + 10−6 in
the numerical experiments. Numerical robustness with re-
spect to ε is discussed in the supplementary material.

The Stochastic Block Model (SBM) is a well-established
generative model for graphs and a canonical tool for study-
ing clustering methods (Holland et al., 1983; Rohe et al.,
2011; Abbe, 2018). Graphs drawn from the SBM show
a prescribed clustering structure, as the probability of an
edge between two nodes depends only on the clustering
membership of each node. We introduce our SBM for
signed Graphs (SSBM): we consider k ground truth clusters
C1, . . . , Ck, all of them of size |C| = n

k , and parameters
p+in, p

+
out, p

−
in, p

−
out ∈ [0, 1] where p+in (resp. p−in) is the prob-

ability of observing an edge inside clusters inG+ (resp. G−)
and p+out (resp. p−out) is the probability of observing an edge
between clusters in G+ (resp. G−). Calligraphic letters are
used for the expected adjacency matrices: W+ and W−
are the expected adjacency matrix of G+ and G−, respec-
tively, whereW+

i,j = p+in andW−i,j = p−in if vi, vj belong to
the same cluster, whereasW+

i,j = p+out andW−i,j = p−out if
vi, vj belong to different clusters.

Other extensions of the SBM to the signed setting have
been considered. Particularly relevant examples are the La-
belled Stochastic Block Model (LSBM) (Heimlicher et al.,

2012) and the Censored Block Model (CBM) (Abbe et al.,
2014). In the context of signed graphs, both LSBM and
CBM assume that an observed edge can be either posi-
tive or negative, but not both. Our SSBM, instead, allows
the simultaneous presence of both positive and negative
edges between the same pair of nodes, as the parameters
p+in, p

+
out, p

−
in, p

−
out in SSBM are independent. Moreover, the

edge probabilities defining both the LSBM and the CBM
can be recovered as special cases of the SSBM. In particular,
the LSBM corresponds to the SSBM for the choices
p+in = pinµ

+, p−in = pinµ
− (within clusters)

p+out = poutν
+, p−out = poutν

− (between clusters)
where pin and pout are edge probabilities within and be-
tween clusters, respectively, whereas µ+ and µ− = 1− µ+

(resp. ν+ and ν− = 1 − ν+) are the probabilities of as-
signing a positive and negative label to an edge within (resp.
between) clusters. Similarly, the CBM corresponds to the
SSBM for the particular choices pin = pout, µ

+ = ν− =
(1− η) and µ− = ν+ = η where η is a noise parameter.

Our goal is to identify conditions in terms of k, p+in, p
+
out, p

−
in,

and p−out, such that C1, . . . , Ck are recovered by the smallest
eigenvectors of the signed power mean Laplacian. Consider
the following k vectors:

χ1 = 1, χi = (k − 1)1Ci − 1Ci .

i = 2, . . . , k. The node embedding given by {χi}ki=1 is
informative in the sense that applying k-means on {χi}ki=1

trivially recovers the ground truth clusters C1, . . . , Ck as
all nodes of a cluster are mapped to the same point. Note
that the constant vector χ1 could be omitted as it does not
add clustering information. We derive conditions for the
SSBM such that {χi}ki=1 are the smallest eigenvectors of
the signed power mean Laplacian in expectation.

Theorem 1. Let Lp = Mp(L+
sym,Q−sym) and let ε > 0 be

the diagonal shift.

• If p ≥ 1, then {χi}ki=2 correspond to the (k-1)-smallest
eigenvalues of Lp if and only if mp(ρ

+
ε , ρ

−
ε ) < 1 + ε;

• If p < 1, then {χi}ki=1 correspond to the k-smallest
eigenvalues of Lp if and only if mp(ρ

+
ε , ρ

−
ε ) < 1 + ε;

with ρ+ε = 1 − (p+in − p
+
out)/(p

+
in + (k − 1)p+out) + ε and

ρ−ε = 1 + (p−in − p
−
out)/(p

−
in + (k − 1)p−out) + ε.

Note that Theorem 1 is the reason why Alg. 1 uses only
the first k − 1 eigenvectors for p ≥ 1. The problem is
that the constant eigenvector need not be among the first
k eigenvectors in the SSBM for p ≥ 1. However, as it is
constant and thus uninformative in the embedding, this does
not lead to any loss of information. The following Corollary
shows that the limit cases of Lp are related to the boolean
operators AND and OR.

Corollary 1. Let Lp =Mp(L+
sym,Q−sym).

• {χi}ki=2 correspond to the (k-1)-smallest eigenvalues of
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L∞ if and only if p+in > p+out and p−in < p−out,
• {χi}ki=1 correspond to the k-smallest eigenvalues of
L−∞ if and only if p+in > p+out or p−in < p−out.

The conditions for L∞ are the most conservative ones, as
they require that G+ and G− are informative, i.e. G+ has
to be assortative and G− disassortative. Under these con-
ditions every clustering method for signed graphs should
be able to identify the ground truth clusters in expectation.
On the other hand, the less restrictive conditions for the
recovery of the ground truth clusters correspond to the limit
case L−∞. If G+ or G− are informative, then the ground
truth clusters are recovered, that is, L−∞ only requires that
G+ is assortative or G− is disassortative. In particular, the
following corollary shows that smaller values of p require
less restrictive conditions to ensure the identification of the
informative eigenvectors.

Corollary 2. Let q ≤ p. If {χi}ki=θ(p) correspond to the k-
smallest eigenvalues of Lp, then {χi}ki=θ(q) correspond to
the k-smallest eigenvalues of Lq, where θ(x) = 1 if x ≤ 0
and θ(x) = 2 if x > 0.

To better understand the different conditions we have de-
rived, we visualize them in Fig. 1, where the x-axis cor-
responds to how assortative G+ is, while the y-axis corre-
sponds to how disassortative G− is. The conditions of the
limit case L∞, i.e. the case where G+ and G− have to be
informative, correspond to the upper-right region, dark blue
region in Fig. 1c, and correspond to the 25% of all possible
configurations of the SBM. The conditions for the limit case
L−∞, i.e. the case where G+ or G− has to be informative,
instead correspond to all possible configurations of the SBM
except for the bottom-left region. This is depicted in Fig. 1b
and corresponds to the 75% of all possible configurations
under the SBM.

In Fig. 2 we present the corresponding conditions for recov-
ery in expectation for the cases p ∈ {−10,−1, 0, 1, 10}. We
can visually verify that the larger the value of p the smaller
is the region where the conditions of Theorem 1 hold. In
particular, one can compare the change of conditions as one
moves from the signed harmonic (L−1), geometric (L0), to
the arithmetic (L1) mean Laplacians verifying the ordering
described in Corollary 2. Moreover, we clearly observe
that L−10 and L10 are already quite close to the conditions
necessary for the limit cases L−∞ and L∞, respectively.

In the middle row of Fig. 2 we show the average clustering
error for each power mean Laplacian when sampling 50
times from the SSBM following the diagram presented in
Fig. 1a and fixing the sparsity ofG+ andG− by setting p+in+
p+out = 0.1 and p−in + p−out = 0.1 with two clusters each of
size 100. We observe that the areas with low clustering error
qualitatively match the regions where in expectation we
have recovery of the clusters. However, due to the sampling

which can make one of the graphs G+ and G− quite sparse
and as we just consider graphs with 200 nodes, the area of
low clustering error is smaller in comparison to the region
of guaranteed recovery in expectation due to the sampling
variance in the stochastic block model.

In the bottom row of Fig. 2 we show the clustering error
for the state of the art methods LGM , LSN , LBM and H .
We can see that LGM presents a similar performance as
the signed power mean Laplacian L0. The next Theorem
shows that the geometric mean Laplacian LGM and the
limit p → 0 of the signed power mean Laplacian agree in
expectation for the SSBM. This implies via Corollary 2 that
this operator is inferior to the signed power mean Laplacian
for p < 0. This is why we use in the experiments on real
world graphs later on always p < 0.

Theorem 2. Let LGM = L+
sym#Q−sym and L0 be the

signed power mean Laplacian with p→ 0 of the expected
signed graph. Then, L0 = LGM .

In the bottom row of Fig. 2 we can observe that LSN , LBN
and H present a similar behaviour to the arithmetic mean
Laplacian L1. A quick computation shows that for the
case where both G+, G− have the same node degree in
expectation, the conditions of Theorem 1 for L1 reduce to
p−in + p+out < p+in + p−out. It turns out that this condition is
also required by LSN ,LBN andH, as the following shows.

Theorem 3 ((Mercado et al., 2016)). Let LBN and LSN be
the balanced normalized Laplacian and signed normalized
Laplacian of the expected signed graph. The following
statements are equivalent:

• {χi}ki=1 are the eigenvectors corresponding to the k-
smallest eigenvalues of LBN .

• {χi}ki=1 are the eigenvectors corresponding to the k-
smallest eigenvalues of LSN .

• inequalities p−in + (k − 1)p−out < p+in + (k − 1)p+out and
p−in + p+out < p+in + p−out hold.

Finally, we present conditions in expectation for the Bethe
Hessian to identify the ground truth clustering.

Theorem 4. Let H be the Bethe Hessian of the expected
signed graph. Then {χi}ki=2 are the eigenvectors corre-
sponding to the (k − 1)-smallest negative eigenvalues ofH
if and only if the following conditions hold:

1. max{0, 2(d
++d−)−1√
d++d−|C| } < (p+in − p

+
out)− (p−in − p

−
out)

2. p+out < p−out

Moreover, for the limit case |V | → ∞ the first condition
reduces to p−in + p+out < p+in + p−out.

Please see the supplementary material for a further analysis
in expectation. We can observe that the first condition in
Theorem 4 is related to conditions of L1 and LSN ,LBN
through the inequality p−in+p

+
out < p+in+p

−
out. This explains
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(a) SBM Diagram (b) L−∞ (OR) (c) L∞ (AND)

Figure 1: Stochastic Block
Model (SBM) for signed
graphs. From left to right:
Fig. 1a SBM Diagram. Fig. 1b
SBM for L−∞(OR), Fig. 1c
SBM for L∞(AND). according
to Corollary 1.
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Figure 2: Performance visualization for two clusters for different parameters of the SBM. Top row: In dark blue the settings
where the signed power mean Laplacians Lp identify the ground truth clusters in expectation for the SBM, see Theorem 1,
whereas yellow indicates failure. Middle/Bottom row: average clustering error (dark blue: small error, yellow: large error)
of the signed power mean Laplacian Lp and LGM , LSN , LBN , H for 50 samples from the SBM.

why the performance of the Bethe Hessian H resembles
the one of arithmetic Laplacians LSN , LBN , L1. A more
detailed comparison between the conditions of Theorems 1,
3 and 4 is detailed in the supplementary material.

Note that our analysis in expectation considers the dense
regime where the average degree increases with the num-
ber of nodes and hence our results in expectation are veri-
fied under the SSBM setting here considered, showing that

LSN , LBN , L1, H have a similar performance. However,
in the case of sparse graphs, it is known that the Bethe Hes-
sian is asymptotically optimal in the information-theoretic
transition limit (Saade et al., 2014; 2015). Please see the
supplementary material for an evaluation under the CBM.

We now zoom in on a particular setting of Fig. 2. Namely,
the case where G+ (resp.G−) is fixed to be informative,
whereas the remaining graph transitions from informative to
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Figure 3: Left: Mean clustering error under the SSBM, with two clusters of size 100 and 50 runs. In Fig. 3a: G+ is
informative, i.e. assortative with p+in = 0.09 and p+out = 0.01. In Fig. 3b: G− is informative, i.e. disassortative with
p−in = 0.01 and p−out = 0.09. Right: Node embeddings induced by eigenvectors of different signed Laplacians for a random
graph drawn from SSBM for 2 clusters of size 100, p+in = 0.025, p+out = 0.075, p−in = 0.01, p−out = 0.09.

uninformative. The corresponding results are in Fig. 3. In
Fig. 3a we consider the case where G+ is informative with
parameters p+in = 0.09 and p+out = 0.01 (this corresponds
to p+in − p

+
out = 0.08 in Fig. 2 ), and G− goes from being

informative (p−in < p−out) to non-informative (p−in ≥ p−out).
We confirm that the power mean Laplacian Lp presents
smaller clustering errors for smaller values of p. Moreover,
it is clear that in the case p < 0, Lp is able to recover clusters
even in the case where G− is not informative, whereas for
p > 0, Lp requires both G+ and G− to be informative. We
observe that the smallest (resp. largest) clustering errors
correspond to L−10 (resp. L10), corroborating Corollary 2.
Further, we can observe that LGM and L0 have a similar
performance, as well as LSN , LBN , L1, H , as observed
before, confirming Theorem 2 and Theorem 4, respectively.
In Fig. 3b similar observations hold for the case where
G− is informative with parameters p−in = 0.01 and p−out =
0.09 (this corresponds to p−in − p

−
out = −0.08 in Fig. 2),

and G+ goes from being non-informative (p+in ≤ p+out) to
informative (p+in > p+out). Within this setting we present
the eigenvector-based node embeddings of each method for
the case p+in = 0.025, p+out = 0.075, p−in = 0.01, p−out =
0.09, in right hand side of Fig. 3. For L−10, L−1, L0 the
embeddings split the clusters properly, whereas remaining
embeddings are not informative, verifying the effectivity of
Lp with p < 0.

3.1. Consistency of the Signed Power Mean Laplacian
for the Stochastic Block Model

In this section we prove two novel concentration bounds
for signed power mean Laplacians of signed graphs drawn
from the SSBM. The bounds show that, for large graphs, our
previous results in expectation transfer to sampled graphs
with high probability. We first show in Theorem 5 that Lp is
close to Lp. Then, in Theorem 6, we show that eigenvalues
and eigenvectors of Lp are close to those of Lp. We derive
this result by tracing back the consistency of the matrix

power mean to the consistency of the standard and signless
Laplacian established in (Chung & Radcliffe, 2011).

The consistency of spectral clustering on unsigned graphs
for the SBM has been studied in (Lei & Rinaldo, 2015;
Sarkar & Bickel, 2015; Rohe et al., 2011) and more recently
consistency of several variants of spectral clustering has
been shown (Qin & Rohe, 2013; Joseph & Yu, 2016; Chaud-
huri et al., 2012; Le et al.; Fasino & Tudisco, 2018; Davis
& Sethuraman, 2018). Moreover, while the case of multi-
layer graphs under the SBM has been previously analyzed
(Han et al., 2015; Heimlicher et al., 2012; Jog & Loh, 2015;
Paul & Chen, 2017; Xu et al., 2014; 2017; Yun & Proutiere,
2016), there are no consistency results for matrix power
means for multilayer graphs as studied in (Mercado et al.,
2018). While our main emphasis is on the analysis of the
SPM Laplacian, our proofs are general enough to cover also
the consistency of the matrix power means for unsigned mul-
tilayer graphs (Mercado et al., 2018). In Thm. 5 we show
that the SPM Laplacian Lp for the SSBM is concentrated
around Lp, with high probability for large n. The following
results hold for general shifts ε.

Theorem 5. Let p be a non-zero integer, let

Cp =

{
(2p)1/p(2 + ε)1−1/p p ≥ 1

|2p|1/|p| ε−(3+1/|p|) p ≤ −1

and choose ε > 0. If nk (p
+
in+(k−1)p

+
out) > 3 ln(8n/ε), and

n
k (p
−
in+(k−1)p−out) > 3 ln(8n/ε), then with probability at

least 1− ε, we have

‖Lp − Lp‖ ≤ Cpm1/|p|
|p|

(√
3 ln(8n/ε)

n
k (p+in+(k−1)p

+
out)

,

√
3 ln(8n/ε)

n
k (p−in+(k−1)p

−
out)

)
In Thm 5 we take the spectral norm. A more general version
of Theorem 5 for the inhomogeneous Erdős-Rényi model,
where edges are formed independently with probabilities
p+ij , p

−
ij is given in the supplementary material. Theorem 5

builds on top of concentration results of (Chung & Radcliffe,
2011) proven for the unsigned case

∥∥L+
sym − L+

sym

∥∥. We
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(a) L−10 (b) L−5 (c) L−2 (d) L−1 (e) L0 (f) L1

Figure 4: Adjacency matrices W+ and W− sorted through clustering of Wikipedia Elections dataset by the proposed Signed
Power mean Laplacians L−10, L−5, L−2, L−1, L0, L1. Top row: zoom-in visualization of positive edges W+. Bottom
row: zoom-in visualization of negative edges W−. See supplementary material for more details.

can see that the deviation of Lp from Lp depends on the
power mean of the individual deviations of L+

sym and Q−sym
from L+

sym and Q−sym, respectively. Note that the larger the
size n of the graph is, the stronger is the concentration of
Lp around Lp.

The next Theorem shows that the eigenvectors correspond-
ing to the smallest eigenvalues of Lp are close to the corre-
sponding eigenvectors of Lp. This is a key result showing
consistency of our spectral clustering technique with Lp for
signed graphs drawn from the SSBM.

Theorem 6. Let p 6= 0 be an integer. Let Vk,Vk ∈ Rn×k be
orthonormal matrices whose columns are the eigenvectors
of the k smallest eigenvalues of Lp and Lp, respectively.
Let ρ+ε , ρ−ε and Cp be defined as in Theorems 1 and 5,
respectively. Define k̃ = k − 1, if p ≥ 1, and k̃ = k, if
p ≤ −1 and choose ε > 0.
If mp(ρ

+
ε , ρ

−
ε ) < 1 + ε, δ+ := n

k (p
+
in+(k−1)p+out) >

3 ln(8n/ε), and δ− := n
k (p
−
in+(k−1)p−out) > 3 ln(8n/ε),

then there exists an orthogonal matrix Ok̃ ∈ Rk̃×k̃ such
that, with probability at least 1− ε, we have

‖Vk̃ − Vk̃Ok̃‖ ≤

√
8k̃Cpm

1/|p|
|p|

(√
3 ln(8n/ε)

δ+ ,
√

3 ln(8n/ε)
δ−

)
(1 + ε)−mp(ρ

+
ε , ρ

−
ε )

Note that the main difference compared to Thm. 5 is the
spectral gap γp = (1 + ε) −mp(ρ

+
ε , ρ

−
ε ) of Lp, which is

the difference of the eigenvalues corresponding to the infor-
mative versus non-informative eigenvectors of Lp. Thus the
stronger the clustering structure the tighter is the concentra-
tion of the eigenvectors. Moreover, from the monotonicity
of mp we have γp ≥ γq for p < q, and thus for p ≤ −1 the
spectral gap increases with |p|, ensuring a stronger concen-
tration of eigenvectors for smaller values of p.

4. Experiments on Wikipedia-Elections
We now evaluate the Signed Power Mean Laplacian Lp
with p ∈ {−10,−5,−2,−1, 0, 1} on Wikipedia-Elections
dataset (Leskovec & Krevl, 2014). In this dataset each node
represents an editor requesting to become administrator and
positive (resp. negative) edges represent supporting (resp.
against) votes to the corresponding admin candidate.

While (Chiang et al., 2012) conjectured that this dataset
has no clustering structure, recent works (Mercado et al.,
2016; Cucuringu et al., 2019) have shown that indeed there
is clustering structure. As noted in (Mercado et al., 2016),
using the geometric mean Laplacian LGM and looking for
k clusters unveils the presence of a large non-informative
cluster and k − 1 remaining smaller clusters which show
relevant clustering structure.

Our results verify these recent findings. We set the number
of clusters to identify to k = 30 and in Fig. 4 we portray
the portion of adjacency matrices of positive and negative
edges W+ and W− corresponding to k − 1 clusters sorted
according to the corresponding identified clusters. We can
see that when p ≤ 0 the Signed Power Mean Laplacian
Lp identifies clustering stucture, whereas this structure is
overlooked by the arithmetic mean case p = 1. Moreover,
we can see that different powers identify slightly different
clusters: this happens as this dataset does not necessarily
follow the Signed Stochastic Block Model, and hence we do
not fully retrieve the same behaviour studied in Section 3.

Further experiments on UCI datasets are available in the
supplementary material, suggesting that the LGM together
with Lp is a reasonable option under different settings.
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