Simple Stochastic Gradient Methods for Non-Smooth
Non-Convex Regularized Optimization: Supplementary Material

1. Proof of Lemma 2

Lemma 2. For an initial value wy € R, N € Z~q, and o, 0 € R, MBSGA generates w' satisfying the following bound.

A o ~ L+ N?
E||VEF (w3 < =(L+ N’ +(A+>,
|| )\( )H2—N( ) \/ﬁ |'Na“
where A = 2(hy(w") — hy(w})) and w3 is a global minimizer of hy(-).
In order to prove this result, we require the following property.

Property 13.

2
||V Ay (w0, €%) — VES ()| < T

Proof. From the definition of VA%, (w* ) found in Algorithm 1 and (11), VA%, (w* &%) — VEF(wF) =
i Zﬁl VF(w*, £F) — V f(w"). Taking the expectation of its squared norm,

E||VAL,, (wF, €5) — VEY (wh)|2 = E||— ZVF w*, &5) = V f(w*))[[3

IEZ (ZVF kb Vf(wk)i).

For j # I, VF(w*,£F); — V f(w); and VF(w*, &F); — V f(w*); are independent random variables with zero mean. It
follows that

E[(VF(w",&5); = V(")) (VF (", )i = Vf(w"):)] =
E[(VF (", )i = V(wh))E[(VEW, &) = Vf(wh):)] = 0,

and
2 n M
EZ(ZW - Vit ) B S (VR €, - Vi)
=1 =1 i=1 j=1
1 U o2
= 3z 2 BIVF(h &) = Viwh)3 < 3
j=1
using (5). 0

Proof of Lemma 2. Given the smoothness of EX (w) as shown in Property 1,

, , , L , ,
Ef (0 < Bf (w?) + (VE§ ("), whH! —wh) + 22w — w3

L
= By (") + (VE§ ("), VAL (w®,€9)) + =25 =7V Af s (", €9)] 3.
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Using (12) and (13),

- - L

w1y < h(w") — y(VEE (wF), VAL (w, €9)) + 2242w Ak (w”, €9) 3.
Setting 0, = VA%, (w, &%) — VE (wh),

h(w* ) <h(w®) = (IIVES ()13 + (VEX (w*), 61)) + Lo 7 (IIVEX (@O)13 + 2(VES (w"), 6) + [164]13)

2
- L L
=h<w’“>+( ?”2”)IIVE&(M)H%+<Lm2—v><ws’;< *). 8 + =5 16kl13.
as
(VE§ (u"), VAL (w",€9) = [V ES (w?)|3 + (VES (w"), 61)
and

IV AS (w*, €915 = || VEX (w*)[3 + 2(VEY (w*), k) + ||6k|I3-
After N iterations,

M=

N N
L . . L
(7= 52292 ) L IVBR@AIE <hw) - Hw™*) 4 (Lonr? =) D (VERwH).00) + Z5297 3 603
k=1 k=1

=~
Il

1

N
L
(VE§(w*), 8c) + =577 D116kl
k=1

<ha(w") = hx(w}) + (Lexy? —7)

] =

ES
Il

1

It follows from (4) that for w independent of ¥, EV A%,/ (w, £*) = VE%(w), and so E[0;] = 0. Taking the expectation of
both sides,

N N
L - =« LEx
(7= 52292 ) L BIVER @I <hw) - iws) + ZE29* S Bl
=1 k=1

. Ly o N
<h(w") — h(w}) + TV2M02,

where the second inequality uses Property 13. Choosing R uniformly over {1, ..., N},

E||VEX (w5 = = ZEHVE/\ )3
1 TN Tooox Lex o N
SN('y Les,7) (h(w)—h(w) 5 7 77
Since v < 71, it holds that 2> 27, and
1 A Lpyx N 1/« s N
S o 2 o Ay L
N("}’ LEA,YZ) (2 T 2 v M _N")/ + BEXY MU
A
=— + Lpy——0?
N7+ E,\MO'
Sé {LEA,U\ﬁ}-FLE,\ 7
N M+vVN
ALg o (%, Lgex
9 (A ZEX
= +\/N< Lz
A o (~ L+N°
=—(L+ N’ —|—(A >
NI IR A T
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2. Proof of Lemma 7

Lemma 7. For an initial value @, € R?, N € Zg, a, € R, VRSGA generates w? satisfying the following bound.

~ L+ (Sm)®
E ER (w2 < A—2"
[HV T)\(wT)HZ] > Sm )

where A = 36(hy(0") — ha(w?})) and w¥ is a global minimizer of hy(-).

In order to prove this result, we require the following lemmas.

Lemma 14. Consider arbitrary w,V,z € R% v € R, and wt = w — 4V,

Lgx Lgy 1
B (0SB () + (VER(0) = Vit = 2+ 2wt = wlf + “22]1z = wllf - - (u* - w,0* - 2)

Proof. Adding the following three inequalities proves the result, where the first two come from the smoothness of Ef/\(w)
and —Ef (w), see Property 1, and the third is due to V + > (wt — w) = 0.

. L
Ef\(w") < By (w) + (VEj (w), w" —w) + =2 lw™ —wlf3

LEy
B (2) < Bl ) + (~VE (), 2~ u) + T2 — w3

0=—(V+ l(w+ —w),wt — 2)

Y
O
Lemma 15. For vectors w, x, z, and 3 > 0,
2 2 1 2
llw—2z|lz <A+ B)[lw—=zlz+ {1+ B 1z — =3
Proof.
lw — 2|l = |lw -2z + 2 — 2|3
2
< (llw = z[l2 + |z = 2l]2)
= [lw — 2|13 + 2[[w - z[[2|z — @[> + ||z — «|I3
1
< lw — 2|13 + <ﬂ|lw2|§ + ﬁlllelg) +1z — 23
2 1 2
=1+ B)llw — =z + 1+3 |z — ]2,
where the second inequality uses Young’s inequality.
O

Proof of Lemma 7. Let &), = wy — yVE¥ (w)), withw™ = wf ;, w = wf, V = V¥, and z = @f ; in Lemma 14 to
get the inequality

; ; . Lex, &
Efx(wf’ﬂ)SEfx(wfﬂ) +(VE; (wf) — Vtkawfﬂ - wf+1> + T||w§+1 —wi|l3

Lgy, . 1 .
+ T|‘wi]&€+1 —wfl|3 - ;<wf+1 - wfvwﬁ,—l - wf+1). (16)
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In addition, let wt = @, w = wy, V = VE, (wf), and z = w} in Lemma 14 to get

LEA

Ef/\(wf+1)§EfA(wt) <VEtA(wt) VEt,\(wt) Iz154-1 - wa) ||wt+1 wa%

LE)\ 1 N ~
|| k||§—;<wf+1—wf,wf+1—wf>

Lpx k|2

Ef)\(wt )+ o ||wt+1 wy|[3- )
Adding (16) and (17),
Lgy
Ef)\(wt+1) ( ) (v fx(wf) V;sk’wic-s-l wf+1> + THU’:{C-H - wa%
1 N

= 2fubn — o uley — ob) + (Zea - 2 ) llata - ot ()

Plugging <wf+1—wf,wf+1—wf+1> = % (||wf+1 - wf||§ + ||wf+1 - wt+1||§ - ||“A}f+1 - wi’”\l%) into (18) and rearranging,
. Lgy 1
Ely (b <l (ab) + (VR Gf) = Vi ubs = af) + (Z22 = - ) ok — w3

1 . 1 .
= gollwiiy = W B+ ( Lex — o ) 10F, — will3, (19)
2y 2y

Focusing on the term *%wa—s-l — zi)f+1| 2, we apply Lemma 15 with w = wy, ,, z = w}, and z = ¥}, ;. Rearranging,

. 1 R
(14 Bk — a3 < ety — b3 + (1 n 5) 6k, — w2

1 k ~ 2 1 k k{2 (1+)||

k
*%Hwt%—l*wt—kl‘bS*(1+ﬁ)27||wt+17wt||2 1+ 8)2y t+1 ¢l
Choosing 5 = 3,
1 k N 2 1 k k|2 k2
_7Hwt+1 - wt-&-lHQ < _7||wt+1 — Wy 12 + ||wt+1 Wy I[3-
2y 8y

Using this inequality in (19),

LE 1
5 () < () + (VER () — VE . - wf+1>+(2%)||wf+lwf||§

1 1 .
- oty —wbIB + ot — w3+ (LEA _ ) [

. Lgy, 5
B 0+ (VES () — Vvl = )+ (Z2 = ) llut - ol
1 .
+ (LEA - 37> ||wf+1 — wf||3
_Ek VE Vk: LE}\_E ko _ k(2 L _i ~ko k)2
=Ep (w )+7|| t)\(wt) H2 9 8 Hwt+1 w3 + EX 3y ||wt+1 wy'|[3,

where the last equality holds since wf, | — @y, = v(VE}, (wf) — V). Using (12) and (13), and taking the expectation of
both sides,

Lg) 5
Blia (k) <E [ (wh) 421V E ()~ VA1 + (222 = ) ks — B+ (Lo — 5 ) ok — wfB]

(20)
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Focusing on E [||VEF, (wf) — V/*||3], from (11) and the definition of V;* found in Algorithm 2, VEF, (wf) — V' =
Vf(wf) - (3 dier (Vfj(wf) = V fj(@"*)) + G*). Rearranging, and taking the expectation of its squared norm,

E||VE§ (wy) - Vkl\z—EH*Z(VJ‘}(@'“)—VfJ‘(wI{“)) (G* = Vi) 13

jel

= SEY V@) - Vi (wf) — (G~ Vi) I3
Jjel

< SES V@)~ Vi)l
JjeI

L2
< ZBlla* - w3

As the squared norm of a sum of independent random variables with zero mean, the second equality holds using the same
reasoning as found in Property 13, and the first inequality holds since E||z — E[z]||3 < E||z||3 for any random variable z.
Using this bound in (20),

- i L? Lg 5 X 1 ke
B (k) < Fawl) + 975 10% — whlf + (P22 = 2 ) s = b B+ (Zos - 5 ) ki - ki

B LEA 5 k 13Lpx & k ~k k
<E |hx(w ) || thg_ 1 Hwt+1_thg_LEAHle_wt”%

[~ LEA N 13LE
=E |hx(wf) @ —wr|f — == wy.

+ gl 22 b~ whB - g5 IVEB W] e

13LEx
4

where the last two lines use the fact that v = ﬁ. Focusing on — |wy,, — wy||3, we apply Lemma 15 with

k ~k k
w=wyq, T =w",and z = wy,

- 1 N
(4 B)llwky — wh | > [lkiy — | — (1 n B) ok — |

13L g (1+%)

13LEx,, & RS 13LEx k k112 E o~k|(2
— — < __—oTEA _ — )
Setting § = 2t — 1,
13LE) 13LE) 5 13LEx -
IR b < B k| 34 R g
Applying this bound in (21),
= , = Lgy  13Lgy - 13LEx _
s (ut) < B [in(uf) + (222 + 22 10— wff = LB ok, — M1 - oIV EA (b

Summing over ¢,

Eh(w w),1)<E

" /L 13L _
a(wf +Z( e E;)nwkwm%
t=1

13LE)\ - 1
3Bt -t - gt S v bl

t=1
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Considering that w* = w} and ||wfn_~_1 —a*|)2 >0,

"\ (Lpx 13Lgy .
Eh(w wp41)<E [h/\ wy +Z< +8t—4)|| " — w3
=

m—1

'~ Lpx  13Lgy  13L 1
k EX EX EX ik
M e Z vk wt>|2]

13LE)\ . 1
s — 013 = 55— anﬂwm]

m—1
z Lgx Lg . 1
<E |in(ub)+ 3 (52 - 22wk, — 0M1B - g znvmwf)nz
t=1

<E iLA(wlf 36L ZHVEM wt)|2‘| )

where the last inequality holds since 6b = 6m? > 2(m —1)2 > 2t fort = 1, ...,m — 1. This summation can be equivalently
written as

- 1 m
Ehy (0" ) < Ehy(a*) — E [%LE/\ Z IVES (wi)][3
=1

Z IVES (wi)l[3| < Eha(@") — Eha (@)

S m
l36LEA ;g IV B¢ (wy) |2] < hy(wh) — Ehy (w5 11)
< ha(@') — ha(wy)
36Lp (h)\( 1 — f~l,\(wj‘\)>
Sm :
_ A L+ (Sm)?
A 5m

E[IIVERA ()] <

3. Implementation details of SSD-SPG and SSD-SVRG

In this section we describe all chosen parameter values using the notation found in (Xu et al., 2018). The algorithm
SSDC-SPG calls a stochastic proximal gradient (SPG) algorithm K times. For the k*” iteration, the number of iterations
of SPG equals 7}, = 4k. Each iteration of SPG uses one gradient call. We used the minimum K which ensured at
least en gradient calls were used. The convex majorant parameter v = 3L, and the step size , = 1/(L(t + 1)). The
Moreau envelope parameter 1 = ¢, where K = O(1/¢*), is the only non-explicitly given parameter, which we set to

w=1/ (K i). SSDC-SVRG calls a stochastic variance reduced gradient (SVRG) algorithm K times. We set the inner
loop length T}, = max(2,200L/~), and the outer loop length S, = [log,(k)]. The step size i = 0.05/L. Two parameters
are not explicitly given, similar to in SSDC-SPG, we set u = 1/ (K i). For these parameter settings, there seems to be

no restriction on «y. Their SVRG algorithm is based off of the work of Xiao & Zhang (2014), where empirical testing
of different sizes of T} was done for a binary classification problem. The best performance was found with a choice of
T}, = 2n, from which we were able to determine . Given vy, we were then able to solve for K, ensuring at least en gradient
calls were used.
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