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Abstract
Our work focuses on stochastic gradient methods
for optimizing a smooth non-convex loss func-
tion with a non-smooth non-convex regularizer.
Research on this class of problem is quite lim-
ited, and until recently no non-asymptotic conver-
gence results have been reported. We present two
simple stochastic gradient algorithms, for finite-
sum and general stochastic optimization problems,
which have superior convergence complexities
compared to the current state-of-the-art. We also
compare our algorithms’ performance in practice
for empirical risk minimization.

1. Introduction
In this work we consider regularized optimization problems
of the form

min
w∈Rd

h(w) := f(w) + g(w), (1)

where f(w) has a Lipschitz continuous gradient and g(w)
has a proximal operator that can be efficiently computed. In
addition, we assume that

f(w) := Eξ[F (w, ξ)], (2)

where ξ ∈ Rp is a random vector following a probability dis-
tribution P from which i.i.d. samples can be generated. We
will also consider what is known as the finite-sum problem,
where the expectation of F (w, ξ) is taken over an empirical
distribution function created by taking n samples of ξ, ξj
for j = 1, ..., n:

f(w) :=
1

n

n∑
j=1

fj(w), (3)
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where fj(w) = F (w, ξj) and has a Lipschitz continuous
gradient.

Our motivation for studying this problem is empirical risk
minimization in machine learning. The purpose of g(w),
as a regularizer, is to induce a sparse solution when mini-
mizing f(w). Non-convex regularizers have been shown to
outperform their convex counterparts with reduced bias in
parameter estimation, including smoothly clipped absolute
deviation (SCAD) (Fan & Li, 2001) and minimax concave
penalty (MCP) (Zhang, 2010), as well as possess enhanced
sparse signal recovery, such as the log-sum penalty (Candes
et al., 2008). In addition, improved generalization accu-
racy has been found using non-convex instead of convex
loss functions (Shen et al., 2003), with better robustness to
outliers and noisy sample data (Wu & Liu, 2007; Chapelle
et al., 2009). Smooth non-convex loss functions exhibiting
these beneficial qualities include the sigmoid loss, Lorenz
loss (Barbu et al., 2017), and Savage loss (Masnadi-Shirazi
& Vasconcelos, 2009).

The literature concerning first-order stochastic methods for
regularized optimization is vast, so we restrict our attention
to algorithms achieving non-asymptotic rates of conver-
gence for a non-convex function f(w). Stochastic gradient
methods for the case of a convex regularizer has been an
active research area where algorithms with non-asymptotic
convergence results were first achieved in (Ghadimi et al.,
2016). For finite-sum problems, Reddi et al. (2016) were
the first to develop a proximal algorithm using the stochastic
variance reduced gradient approach of Johnson & Zhang
(2013). The current state-of-the-art for the finite-sum prob-
lem seems to be the work of Li & Li (2018) where one
can also find a table of the convergence complexities of
competing algorithms.

In the pursuit of solving (1) where neither function f(w)
nor g(w) are convex, the current body of research is quite
limited. A generalization of (Ghadimi et al., 2016) with
g(w) being quasi-convex can be found in (Kawashima &
Fujisawa, 2018), where the same convergence complexity is
achieved. The only other work for non-convex regularizers
to our knowledge is that of Xu et al. (2018), which
recently improved upon the stochastic difference of convex
(DC) algorithm of Nitanda & Suzuki (2017), considering



Simple Stochastic Gradient Methods for Non-Smooth Non-Convex Regularized Optimization

an objective of the form c1(w) − c2(w) + g(w) where
c1(w) := Eξ[C1(w, ξ)] and c2(w) := Eς [C2(w, ς)] are
convex functions. It is assumed that c1(w) has a Lipschitz
continuous gradient and c2(w) has a Hölder continuous
gradient, and the proximal mapping of g(w) can be
efficiently computed. In their algorithms, a sequence of
subproblems must be solved with increasing accuracy using
a first-order stochastic algorithm, where convergence to
a nearly ε-critical point in a finite number of iterations is
proved. The best convergence complexities in their work
are achieved when it is assumed that g(w) is Lipschitz
continuous and c2(w) has a Lipschitz continuous gradient,
which we will assume when discussing their work.

We now summarize the two main contributions of this paper:

• Two algorithms are presented, a mini-batch stochastic
gradient algorithm for general stochastic objectives of
the form (2), and a variance reduced stochastic gradi-
ent algorithm for finite-sum problems of the form (3).
We are aware of only one other work, (Xu et al., 2018),
which has proven non-asymptotic convergence for the
class of problem we focus on in this paper. We at-
tain superior convergence results under both objective
assumptions, which are summarized in Table 1. The
complexities are in terms of the number of gradient
calls and proximal operations, see Section 2.

• No numerical experiments were conducted in (Xu et al.,
2018). We implemented all algorithms for an appli-
cation in empirical risk minimization and found the
simplest algorithm to implement also performed the
best in practice.

Remark: In a subsequent revision uploaded after submis-
sion of this work, Xu et al. (2019) present improved com-
plexity results, as well as numerical experiments. The first
row of Table 1 would be O(ε−5) and O(ε−5), and the sec-
ond row would be Õ(nε−3) and Õ(ε−3) following the latest
version of their work.

2. Preliminaries
We assume that f(w) has a Lipschitz continuous gradient
with parameter L,

||∇f(w)−∇f(x)||2 ≤ L||w − x||2,

which we will denote as being an L-smooth function. In
the finite-sum case, we assume that each fj(w) is also L-
smooth. Given a sample ξk ∼ P , generated in iteration k
of an algorithm, we assume we can generate an unbiased
stochastic gradient∇F (w, ξk) such that

E[∇F (w, ξk)] = ∇f(w), (4)

and for some constant σ,

E||∇F (w, ξk)−∇f(w)||22 ≤ σ2. (5)

Let ∂h(w) denote the limiting subdifferential of our objec-
tive, defined as

∂h(w) := {v : ∃wk h−→ w, vk ∈ ∂̂h(wk) with vk → v},

where ∂̂h(w) := {v : lim inf
x→w,x6=w

h(x)−h(w)−〈v,x−w〉
||x−w||2 ≥ 0},

and wk
h−→ w signifies wk → w with h(wk) → h(w).

The limiting subdifferential coincides with the gradient and
subdifferential when the function is continuously differen-
tiable and proper convex, respectively. We make use of the
property that

∂h(w) = ∇f(w) + ∂g(w), (6)

for finite g(w) (Rockafellar & Wets, 2009, Exercise 8.8 (c)).
We also assume the proximal operator of g(w) is nonempty
for all w ∈ Rd and λ > 0, and can be efficiently computed,

proxλg(w) := argmin
x∈Rd

{
1

2λ
||w − x||22 + g(x)

}
.

In particular, let us denote an element as

ζλ(w) ∈ proxλg(w). (7)

We are interested in the convergence complexity of finding
an ε-stationary solution, such that for an algorithm solution
w,

E [dist(0, ∂h(w))] ≤ ε. (8)

We will measure algorithm complexity in terms of the num-
ber of gradient calls and proximal operations. For any w, a
gradient call is either computing∇F (w, ξk) given a sample
ξk, or in the finite-sum case, returning∇fj(w) for a given
j.

3. Auxiliary functions of h(w)
Our convergence results rely on bounding the gradient of a
sequence of majorant functions of the auxiliary function

h̃λ(w) := f(w) + eλg(w)

in expectation, where

eλg(w) := inf
x∈Rd

{
1

2λ
||w − x||22 + g(x)

}
is the Moreau envelope of g(w). By considering x = w, we
observe that

eλg(w) ≤ g(w). (9)
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Table 1. Comparison of convergence complexities obtained in (Xu et al., 2018) and this paper.

Algorithm Reference
Finite-sum

Assumption
Gradient Call
Complexity

Proximal Operator
Complexity

SSDC-SPG
Theorem 7 a,

Xu et al. (2018) × O(ε−8) O(ε−8)

SSDC-SVRG
Theorem 7 c,

Xu et al. (2018)
√

O(nε−4) O(ε−4)

MBSGA Corollary 6 × O(ε−5) O(ε−4)
VRSGA Corollary 9

√
O(n2/3ε−3) O(ε−3)

The Moreau envelope can be written as a DC function,

eλg(w) =
1

2λ
||w||22 −Dλ(w), (10)

where Dλ(w) = supx∈Rd
(
1
λw

Tx− 1
2λ ||x||

2
2 − g(x)

)
. We

note that as the supremum of a set of affine functions,Dλ(w)
is convex, and we see from (7) that ζλ(w) attains the supre-
mum of Dλ(w). We can write down a smooth majorant of
h̃λ(w) as

Ekλ(w) := f(w) + Ukλ (w)

in iteration k, where
Ukλ (w) = 1

2λ ||w||
2
2 −

(
Dλ(wk) + 1

λζ
λ(wk)T (w − wk)

)
.

The gradient of Ekλ(w) is

∇Ekλ(w) = ∇f(w) +
1

λ
(w − ζλ(wk)). (11)

Property 1. The following holds for Ekλ(w).

Ekλ(w) ≥ h̃λ(w) for all w ∈ Rd (12)

Ekλ(wk) = h̃λ(wk) (13)

Ekλ(w) is LEλ :=

(
L+

1

λ

)
− smooth. (14)

Proof. Given that both functions contain f(w), it is suffi-
cient to show that (12) and (13) hold between the second
terms Ukλ (w) and eλg(w).

(12): As found in (Liu et al., 2017), for any w, z ∈ Rd,

Dλ(w)−Dλ(z)

= sup
x∈Rd

(
1

λ
wTx− 1

2λ
||x||2 − g(x)

)
− sup
x∈Rd

(
1

λ
zTx− 1

2λ
||x||2 − g(x)

)
≥ 1

λ
wT ζλ(z)− 1

2λ
||ζλ(z)||2 − g(ζλ(z))

−
(

1

λ
zT ζλ(z)− 1

2λ
||ζλ(z)||2 − g(ζλ(z))

)
=

1

λ
ζλ(z)(w − z).

Setting z = wk,

eλg(w) =
1

2λ
||w||2 −Dλ(w)

≤ 1

2λ
||w||2 − (Dλ(wk) +

1

λ
ζλ(wk)T (w − wk))

= Ukλ (w).

(13): Ukλ (wk) = 1
2λ ||w

k||22 − Dλ(wk) = eλg(wk) from
(10).

(14): ∥∥∇Ekλ(w)−∇Ekλ(w′)
∥∥
2

=‖∇f(w) +
1

λ

(
w − ζλ(wk)

)
−
(
∇f(w′) +

1

λ

(
w′ − ζλ(wk)

))
‖2

≤(L+
1

λ
)‖w − w′‖2.

We note that the Moreau envelope of a convex function is
also 1

λ -smooth (Beck, 2017, Theorem 6.60), so there is no
increase in the smoothness parameter for non-convex func-
tions by taking a first-order approximation of the Moreau
envelope.

4. Mini-batch stochastic gradient algorithm

4.1. Convergence analysis

The convergence analysis of MBSGA follows the technique
of Ghadimi & Lan (2013) adapted to our problem. The
following lemma bounds E||∇ERλ (wR)||22, with which we
will ultimately bound E

[
dist(0, ∂h(w̄R)

]
in Theorem 5.

Lemma 2. For an initial value w1 ∈ Rd, N ∈ Z>0, and
α, θ ∈ R, MBSGA generates wR satisfying the following
bound.

E||∇ERλ (wR)||22 ≤
∆̃

N
(L+Nθ) +

σ√
N

(
∆̃ +

L+Nθ

dNαe

)
,
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Algorithm 1 Mini-batch stochastic gradient algorithm
(MBSGA)

Input: w1 ∈ Rd, N ∈ Z>0, α, θ ∈ R
M := dNαe, λ = 1

Nθ

LEλ = L+ 1
λ

γ = min
{

1
LEλ

, 1
σ
√
N

}
R ∼ uniform{1, ..., N}
for k = 1, 2, ..., R− 1 do
ζλ(wk) ∈ proxλg(w

k)

Sample ξk ∼ PM
∇AkλM (wk, ξk) = 1

M

∑M
j=1∇F (wk, ξkj ) + 1

λ (wk −
ζλ(wk))
wk+1 = wk − γ∇AkλM (wk, ξk)

end for
Output: w̄R ∈ proxλg(w

R)

where ∆̃ = 2(h̃λ(w1)− h̃λ(w∗λ)) and w∗λ is a global mini-
mizer of h̃λ(·).

Due to a lack of space, the proof of Lemma 2 can be found
in Section 1 of the supplementary material. In order to prove
the convergence of E

[
dist(0, ∂h(w̄R)

]
, we will require the

following two properties.

Property 3. Assume that g(w) is Lipschitz continuous with
parameter l,

dist(0, ∂h(ζλ(wk))) ≤ ||∇Ekλ(wk)||2 + 2lλL.

Proof. Given that ζλ(w) is a minimizer of
1
2λ ||w − x||

2
2 + g(x) from (7),

1

λ
(w − ζλ(w)) ∈ ∂g(ζλ(w))

and

∇f(ζλ(wk)) +
1

λ
(wk − ζλ(wk)) ∈ ∂h(ζλ(wk))

using (6). It follows that

dist(0, ∂h(ζλ(wk)))

≤||∇f(ζλ(wk)) +
1

λ
(wk − ζλ(wk))||2

=||∇f(wk)−∇f(wk) +∇f(ζλ(wk))

+
1

λ
(wk − ζλ(wk))||2

≤||∇f(wk) +
1

λ
(wk − ζλ(wk))||2

+ ||∇f(ζλ(wk))−∇f(wk)||2
≤||∇Ekλ(wk)||2 + L||wk − ζλ(wk)||2.

In order to bound ||wk − ζλ(wk)||2, recall from (9) that

g(w) ≥ eλg(w)

=
1

2λ
||w − ζλ(w)||22 + g(ζλ(w)).

Rearranging and using the Lipschitz continuity assumption,

1

2λ
||w − ζλ(w)||22 ≤ g(w)− g(ζλ(w))

≤ l||w − ζλ(w)||2
||w − ζλ(w)||2 ≤ 2lλ.

Property 4. Let w∗ be a global minimizer of h(·) and let
w∗λ be a global minimizer of h̃λ(·). Assume that g(w) is
Lipschitz continuous with parameter l, then

h̃λ(w)− h̃λ(w∗λ) ≤ h(w)− h(w∗) +
l2λ

2
.

Proof.

h̃λ(w)− h̃λ(w∗λ)− (h(w)− h(w∗))

=eλg(w)− f(w∗λ)− eλg(w∗λ)

− (g(w)− f(w∗)− g(w∗))

≤− f(w∗λ)− eλg(w∗λ) + f(w∗) + g(w∗)

≤− f(w∗λ)− eλg(w∗λ) + f(w∗λ) + g(w∗λ)

=g(w∗λ)− eλg(w∗λ),

where the first inequality follows from (9). For any w, by
the definition of the Moreau envelope,

eλg(w) =
1

2λ
||w − ζλ(w)||22 + g(ζλ(w))

g(w)− eλg(w) = g(w)− g(ζλ(w))− 1

2λ
||w − ζλ(w)||22

≤ l||w − ζλ(w)||2 −
1

2λ
||w − ζλ(w)||22.

The right-hand side is maximized when ||w−ζλ(w)||2 = lλ,
giving the desired result,

g(w)− eλg(w) ≤ l2λ

2
. (15)

We note that (15) cannot be improved under the further
assumption that g(w) is convex, which can be found in
(Beck, 2017, Theorem 10.51).
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Theorem 5. Assume that g(w) is Lipschitz continuous with
parameter l. The output w̄R of MBSGA satisfies

E
[
dist(0, ∂h(w̄R))

]
≤
√

(∆ + l2N−θ)(L+Nθ)

N

+

√
σ√
N

(
∆ +

l2

Nθ
+
L+Nθ

dNαe

)
+

2lL

Nθ
,

where ∆ = 2(h(w1)−h(w∗)) andw∗ is a global minimizer
of h(·).

Proof. From Property 3, choosing ζλ(wR) = w̄R,

dist(0, ∂h(w̄R)) ≤ ||∇ERλ (wR)||2 + 2lλL.

Taking its expectation,

E
[
dist(0, ∂h(w̄R))

]
≤E[||∇ERλ (wR)||2] + 2lλL

≤
√

E
[
||∇ERλ (wR)||22

]
+

2lL

Nθ

≤

√
∆̃(L+Nθ)

N
+

√
σ√
N

(
∆̃ +

L+Nθ

dNαe

)
+

2lL

Nθ
,

where the second inequality follows from Jensen’s inequal-
ity and the third inequality uses Lemma 2. The result then
follows using Property 4 as

∆̃ = 2(h̃λ(w1)− h̃λ(w∗λ)) ≤ 2(h(w1)− h(w∗)) + l2λ

= ∆ +
l2

Nθ

Now that we have bounded the expected distance of ∂h(w̄R)
from the origin, we prove an ε-stationary point convergence
complexity.
Corollary 6. Assume that g(w) is Lipschitz continuous with
parameter l. To obtain an ε-stationary solution (8) using
MBSGA, the gradient call complexity is O(ε−5) and the
proximal operator complexity is O(ε−4) when α = θ =
0.25.

Proof. From Theorem 5,

E
[
dist(0, ∂h(w̄R))

]
≤
√

(∆ + l2N−θ)(L+Nθ)

N

+

√
σ√
N

(
∆ +

l2

Nθ
+
L+Nθ

dNαe

)
+

2lL

Nθ

=O(N0.5θ−0.5) +O(N−0.25 +N0.5θ−0.5α−0.25)

+O(N−θ).

Algorithm 2 Variance reduced stochastic gradient algorithm
(VRSGA)

Input: w̃1 ∈ Rd, N ∈ Z>0, α, θ ∈ R
m = dnαe, b = m2

S = dNme, λ = (Sm)−θ

LEλ = L+ 1
λ , γ = 1

6LEλ
R ∼ uniform{1, ..., S}
for k = 1, 2, ..., R do
wk1 = w̃k

Gk = ∇f(w̃k)
for t = 1, 2, ...,m do
ζλ(wkt ) ∈ proxλg(w

k
t )

I ∼ uniform{1, ..., n}b
V kt = 1

b

∑
j∈I
(
∇fj(wkt )−∇fj(w̃k)

)
+ Gk +

1
λ (wkt − ζλ(wkt ))
wkt+1 = wkt − γV kt

end for
w̃k+1 = wkm+1

end for
T ∼ uniform{1, ...,m}
Output: w̄RT ∈ proxλg(w

R
T )

Setting θ = α = 0.25,

E
[
dist(0, ∂h(w̄R))

]
≤ O(N−0.25).

An ε-stationary solution will require less than N = O(ε−4)
iterations. One proximal operation is done per iteration,
which establishes the proximal operator complexity of
O(ε−4). The number of gradient calls per iteration is
dNαe = O(ε−1). The number of gradient calls to get an
ε-stationary solution is then less than

NdNαe = O(ε−5).

5. Variance reduced method for finite-sum
problems

In this section we assume that

f(w) =
1

n

n∑
j=1

fj(w),

where each fj(w) is L-smooth.

5.1. Convergence analysis

In our convergence analysis, we make use of the function
Ektλ(w), which is constructed in the same manner asEkλ(w),
using wkt instead of wk. This function possesses the same
characteristics as found in Property 1. The convergence anal-
ysis follows closely to the work of Li & Li (2018) adapted
to our problem.
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Lemma 7. For an initial value w̃1 ∈ Rd, N ∈ Z>0, and
α, θ ∈ R, VRSGA generates wRT satisfying the following
bound.

E
[
||∇ERTλ(wRT )||22

]
≤ ∆̃

L+ (Sm)θ

Sm
,

where ∆̃ = 36(h̃λ(w̃1) − h̃λ(w∗λ)) and w∗λ is a global
minimizer of h̃λ(·).

The proof of Lemma 7 can be found in Section 2 of the
supplementary material.

Theorem 8. Assume that g(w) is Lipschitz continuous with
parameter l. The output w̄RT of VRSGA satisfies

E
[
||dist(0, ∂h(w̄RT ))||2

]
≤
√

(L+ (Sm)θ) (∆ + 18l2(Sm)−θ)

Sm
+

2lL

(Sm)θ
,

where ∆ = 36(h(w1) − h(w∗)) and w∗ is a global mini-
mizer of h(·).

Proof. The proof follows what was done to prove Theorem
5. From Property 3,

dist(0, ∂h(w̄RT )) ≤ ||∇ERTλ(wRT )||2 + 2lλL.

Taking its expectation,

E
[
|| dist(0, ∂h(w̄RT ))||2

]
≤E[||∇ERTλ(wRT )||2] + 2lλL

≤
√

E
[
||∇ERTλ(wRT )||22

]
+

2lL

(Sm)θ

≤

√
(L+ (Sm)θ) ∆̃

Sm
+

2lL

(Sm)θ

≤
√

(L+ (Sm)θ) (∆ + 18l2(Sm)θ)

Sm
+

2lL

(Sm)θ
,

where the third inequality follows from Lemma 7. The
fourth inequality holds using Property 4,

∆̃ = 36(h̃λ(w1)− h̃λ(w∗λ)) ≤ 36(h(w1)− h(w∗)) + 18l2λ

= ∆ +
18l2

(Sm)θ
.

Corollary 9. Assume that g(w) is Lipschitz continuous with
parameter l. To obtain an ε-stationary solution (8) using
VRSGA, the gradient call complexity is O(n

2
3 ε−3) and the

proximal operator complexity is O(ε−3) choosing α = θ =
1
3 .

Proof. From Theorem 8 with θ = 1
3 ,

E
[
||dist(0, ∂h(w̄RT ))||2

]
≤

√√√√(L+ (Sm)
1
3

)(
∆ + 18l2(Sm)

−1
3

)
Sm

+
2lL

(Sm)
1
3

= O((Sm)−
1
3 )

An ε-stationary solution will require at most Sm = O(ε−3)
iterations, which establishes the proximal operator complex-
ity. The number of gradient calls after Sm iterations, taking
α = 1

3 is

Sn+ Smb = Sm
n

dn 1
3 e

+ Smdn 1
3 e2 = O(n

2
3 ε−3).

6. Application
In this section we consider the application of binary clas-
sification for a particular choice of loss function and regu-
larizer, which will be used in our numerical experiments.
Non-convex Lipschitz continuous regularizers which have
proximal operators with closed form solutions include the
log-sum penalty, SCAD, MCP, and the capped l1-norm. For
their closed form solutions, see (Gong et al., 2013). All of
these functions are separable, g(w) :=

∑d
i=1 gi(wi). For

κ, ν > 0, the log-sum penalty is

gi(wi) = κ log(1 + |wi|/ν).

Property 10. The log-sum penalty is κ
ν

√
d-Lipschitz con-

tinuous.

Proof. Assume wi ≥ 0 over which gi(wi) is differentiable
and | dgidwi

(wi)| ≤ κ
ν . Using the mean value theorem with

zi ≥ 0, |gi(zi)−gi(wi)| ≤ κ
ν |zi−wi|. Given the symmetry

of gi(wi), this bound holds for general wi and zi. It then
follows that for any w and z,

|g(z)− g(w)| =

∣∣∣∣∣
d∑
i=1

(gi(zi)− gi(wi))

∣∣∣∣∣
≤

d∑
i=1

|gi(zi)− gi(wi)|

≤ κ

ν

d∑
i=1

|zi − wi|

≤ κ

ν

√
d||z − w||2
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Smooth non-convex loss functions, which are known to be
robust to outliers, include the sigmoid loss, 1

1+ev , Lorenz
loss (Barbu et al., 2017), Savage loss (Masnadi-Shirazi &
Vasconcelos, 2009), and the tangent loss (Masnadi-Shirazi
et al., 2010). We will consider the Lorenz loss,

L(v) =

{
0 if v > 1

log(1 + (v − 1)2) otherwise

for v ∈ R, which is differentiable everywhere (Barbu et al.,
2017). For the problem setting of binary classification, we
have a set of training data {x, y}where y = {y1, y2, ..., yn},
yj ∈ {−1, 1}, is the label set, and x = {x1, x2, ..., xn},
xj ∈ Rd, is the feature set. Our loss function is then

f(w) =
1

n

n∑
j=1

fj(w),

where
fj(w) = L(yjwTxj).

Property 11. Using the Lorenz loss function, f(w) is
2
n

∑n
j=1 ||xj ||22-smooth.

Proof. We first consider the function

L̂(v) = log(1 + (v − 1)2).

Its first and second derivatives are

L̂′(v) =
2(v − 1)

1 + (v − 1)2

and

L̂′′(v) =
2

1 + (v − 1)2
−
(

2(v − 1)

1 + (v − 1)2

)2

.

We can see that v = 1 maximizes L̂′′(v), with L̂′′(1) = 2.
Examining the third derivative,

L̂′′′(v) =
−4(v − 1)

(1 + (v − 1)2)
2

(
3− 4(v − 1)2

1 + (v − 1)2

)
,

v = 1±
√

3 minimizes L̂′′(v) with L̂′′(1±
√

3) = −0.25,
so we conclude that

|L̂′′(v)| ≤ |L̂′′(1)| = 2.

Using the mean value theorem, for any v and u,

|L̂′(v)− L̂′(u)| ≤ 2|v − u|.

We now show that L(v) is also 2-smooth. For v > 1,
L′(v) = L̂′(1) = 0. Taking v > 1 and u ≤ 1,

|L′(v)− L′(u)| = |L̂′(1)− L̂′(u)|
≤ 2|1− u|
≤ 2|v − u|.

An L-smooth function composed with the linear function,
yjwTxj , is L||yjxj ||22-smooth (Shalev-Shwartz & Ben-
David, 2014, Claim 12.9), so fj(w) is 2||xj ||22-smooth and
the result follows.

We also note that the Lorenz loss function is DC-
decomposable, which is required to implement the algo-
rithms of (Xu et al., 2018).

Property 12. The Lorenz loss function is DC-
decomposable,

L(v) = L1(v)− L2(v),

where L1(v) = 1
8v

2 + L(v) and L2(v) = 1
8v

2.

Proof. Since L′′(v) ≥ − 1
4 , from the proof of Property 11,

we write the DC decomposition of L(v) as L(v) = L1(v)−
L2(v), where L1(v) = 1

8v
2 + L(v) and L2(v) = 1

8v
2.

7. Numerical experiments
We conducted experiments comparing our algorithms to
those of (Xu et al., 2018) for the problem of binary clas-
sification as described in Section 6, on datasets a9a (Fan,
2018) and MNIST (LeCun, 1998), as used in (Reddi et al.,
2016; Allen-Zhu & Hazan, 2016; Li & Li, 2018). For the
MNIST dataset, our objective was to learn class 1. The
dimensions of a9a are n = 32, 561 and d = 123, and those
of MNIST are n = 60, 000 and d = 784. All experiments
were conducted using MATLAB 2017b on a Mac Pro with
a 2.7 GHz 12-core Intel Xeon E5 processor and 64GB of
RAM. We compare performance in terms of the log of the
objective function and wall-clock time.

All algorithms’ convergence rates rely on outputting a ran-
dom iteration. In order to fairly compare algorithms we
ignore this step, e.g. for MBSGA, we set R = N . The
algorithms were initially run taking e = 15 effective passes
over the data for a9a and e = 9 for MNIST. These values
were adjusted so that all algorithms ended at approximately
the same time. The regularizer’s parameters were chosen as
κ = 1

d and ν = 1. All parameter values used in MBSGA
and VRSGA were obtained from the theoretical convergence
results, except for the upper bound σ (5) used in MBSGA.
This parameter was estimated by doing 50 iterations of MB-
SGA with step size γ = 1

LEλ
, using a different random

seed than was used for the experiments, and computing
the sample estimate σ̂k each iteration with the M samples
used in the algorithm. An estimate of σ was then taken as
σ̂ = maxk σ̂

k.

The proof of convergence of algorithms VRSGA and SSDC-
SVRG rely on the assumption that each fj(w) is L-smooth,
so for these instances L = 2 maxj ||xj ||22. For algorithms
MBSGA and VRSGA, the final proximal operation at the
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Figure 1. Comparison of algorithms of this paper and (Xu et al.,
2018) (marked with *) using the a9a dataset

output was omitted and can be considered as simply a means
of proving the non-asymptotic convergence of the algo-
rithms.

No experiments were done in (Xu et al., 2018), so we im-
plemented their algorithms following the parameter values
found in their theoretical results and remarks, and recom-
mended in (Xiao & Zhang, 2014), from which their work is
partially based on. Full details of their algorithms’ imple-
mentation can be found in Section 3 of the supplementary
material.

Figures 1 and 2 show the results of the experiments. We
observe that MBSGA outperformed all other algorithms.
MBSGA is also the simplest algorithm to implement, mak-
ing it an appealing choice for use in practice. It appears all
other algorithms would require further parameter tuning in
order for them to possibly perform comparably.

8. Conclusion and future research
We have presented two simple stochastic gradient algorithms
for optimizing a smooth non-convex loss function with a
non-smooth non-convex regularizer. Our work improves
upon the only other known non-asymptotic convergence re-
sults of Xu et al. (2018) for this class of problem. Superior
convergence complexities were shown for the case of a gen-
eral stochastic loss function using a mini-batch stochastic
gradient algorithm, and for the case of a finite-sum loss func-
tion using a variance reduced stochastic gradient algorithm.
In an empirical study we found that the simplest algorithm
to implement was also the best performing, making it the
most appealing algorithm considered for this problem set-
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Figure 2. Comparison of algorithms of this paper and (Xu et al.,
2018) (marked with *) using the MNIST dataset

ting. Future research using the techniques developed in this
work could consider additional regularizers in the objective
to induce desirable properties of the solution in addition to
sparsity.
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