
Reinforcement Learning in Configurable Continuous Environments

Alberto Maria Metelli 1 Emanuele Ghelfi 1 Marcello Restelli 1

Abstract
Configurable Markov Decision Processes (Conf-
MDPs) have been recently introduced as an ex-
tension of the usual MDP model to account for
the possibility of configuring the environment to
improve the agent’s performance. Currently, there
is still no suitable algorithm to solve the learning
problem for real-world Conf-MDPs. In this pa-
per, we fill this gap by proposing a trust-region
method, Relative Entropy Model Policy Search
(REMPS), able to learn both the policy and the
MDP configuration in continuous domains with-
out requiring the knowledge of the true model of
the environment. After introducing our approach
and providing a finite-sample analysis, we empir-
ically evaluate REMPS on both benchmark and
realistic environments by comparing our results
with those of the gradient methods.

1. Introduction
The overall goal of Reinforcement Learning (RL, Sutton &
Barto, 1998) is to make an agent learn a behavior that maxi-
mizes the amount of reward it collects during its interaction
with the environment. Most of the problems tackled by RL
are typically modeled as a Markov Decision Process (MDP,
Puterman, 2014) in which the environment is considered a
fixed entity and cannot be adjusted. Nevertheless, there exist
several real-world motivational examples in which partial
control over the environment can be exercised by the agent
itself or by an external supervisor (Metelli et al., 2018). For
instance, in a car racing problem, the vehicle can be set up
to better suit the driver’s needs. The entity that performs
the configuration can be either the driver itself (agent) or a
track engineer (supervisor). With the phrase environment
configuration, we refer to the activity of altering some en-
vironmental parameters to improve the performance of the
agent’s policy. This scenario has been recently formalized

1Politecnico di Milano, 32, Piazza Leonardo da Vinci,
Milan, Italy. Correspondence to: Alberto Maria Metelli
<albertomaria.metelli@polimi.it>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

as a Configurable Markov Decision Process (Conf-MDP,
Metelli et al., 2018). As in traditional RL, in a Conf-MDP
the agent looks for the best policy but, in the meantime,
there exists an entity entitled to configure the environment
with the shared goal of maximizing the final performance of
the policy. The nature of this new kind of interaction with
the environment cannot be modeled either within the agent’s
action space or with a multi-agent framework. Indeed, the
configuration activity cannot be placed at the same level as
the agent’s learning process. Configuring the environment
may be more expensive and dangerous than updating the
agent’s policy and may occur on a different time scale w.r.t.
the agent’s learning process. Furthermore, while the entity
that configures the environment must be aware of the pres-
ence of the agent (in order to wisely choose the environment
configuration), the agent may not be aware of the fact that
the configuration is taking place, perceiving the changes in
the environment just as a non-stationarity. It is worth noting
that the configuration process is rather different from the
idea of changing the environment just to encourage learning
in the original environment. While in the Conf-MDP frame-
work the environment is altered because we can decide to
change it (e.g., when a Formula 1 driver selects a car that
better fits their driving abilities), in other works, like Ciosek
& Whiteson (2017) and Florensa et al. (2017), the configu-
ration is limited to a simulator and does not affect the real
environment. Recently, an approach similar to Conf-MDPs,
including also and explicit cost for altering the environment,
has been proposed (Silva et al., 2018).

Learning in a Conf-MDP, therefore, means finding an
agent’s policy π together with an environment configuration
p that, jointly, maximize the total reward. In Metelli et al.
(2018), a safe-learning algorithm, Safe Policy Model Itera-
tion (SPMI), is presented to solve the learning problem in
the Conf-MDP framework. The basic idea is to optimize
a lower bound of the performance improvement to ensure
a monotonic increase of the total reward (Kakade & Lang-
ford, 2002; Pirotta et al., 2013). Although this approach
succeeded in showing the benefits of configuring the envi-
ronment in some illustrative examples, it is quite far from
being applicable to real-world scenarios. We believe there
are two significant limitations of SPMI. First of all, it is
only applicable to problems with a finite state-action space,
while the most interesting Conf-MDP examples have, at

mailto:albertomaria.metelli@polimi.it

Reinforcement Learning in Configurable Continuous Environments

least, a continuous state space (e.g., the car configuration
problem). Second, it requires full knowledge of the environ-
ment dynamics. This latter limitation is the most relevant
as, in reality, we almost never know the true environment
dynamics, and even if a model is available it could be too
approximate or too complex and computationally expensive
(e.g., the fluid-dynamic model of a car).

In this paper, we propose a new learning algorithm for the
Conf-MDP problem that overcomes the main limitations
of SPMI. Relative Entropy Model Policy Search (REMPS)
belongs to the trust-region class of methods (Schulman
et al., 2015) and takes inspiration from REPS (Peters et al.,
2010). REMPS operates with parametric policies πθ and
configurations pω and can be endowed with an approximate
configuration model p̂ω that can be estimated from inter-
action with the environment. At each iteration, REMPS
performs two phases: optimization and projection. In the
optimization phase, we aim at identifying a new stationary
distribution for the Conf-MDP that maximizes the total re-
ward in a neighborhood of the current stationary distribution.
This notion of neighborhood is encoded in our approach as
a KL–divergence constraint. However, this distribution may
fall outside the space of representable distributions, given
the parametrization of the policy and of the configuration.
Thus, the projection phase performs a moment projection in
order to find an approximation of this stationary distribution
in terms of representable policies and configurations.

Our framework shares some aspects with Utility Maximiz-
ing Design (Keren et al., 2017); although it assumes that the
environment and the applicable modifications are known to
the planner, whereas in our setting the agent only knows
the environment parameters but ignores their effect on the
transition probabilities. Controlling the learning process
by employing the KL-divergence was previously done in
the Linearly Solvable MDPs (Todorov, 2007) and its exten-
sions (Todorov, 2009; Guan et al., 2014; Busic & Meyn,
2018) considering a penalty, rather than a constraint, to
account for the cost of changing the transition probabilities.

In principle, the learning process in a parametric Conf-
MDP can be carried out by a standard stochastic gradient
method (Sutton et al., 2000; Peters & Schaal, 2008). We
can easily adapt the classic REINFORCE (Williams, 1992)
and G(PO)MDP (Baxter & Bartlett, 2001) estimators for
learning the configuration parameters (see Appendix B).
However, we believe that a first-order method does not scale
to relevant situations that are of motivating interest in the
Conf-MDP framework. For instance, it may be convenient
to select a new configuration that makes the performance of
the current policy worse because, in this new configuration,
we have a much better chance of learning high-performing
policies. We argue that this behavior is impossible by using
a gradient method, as the gradient update direction attempts

to improve performance for all parameters, including those
in the transition model. This example justifies the choice of
a trust-region method that allows a closed-form optimiza-
tion in a controlled region. It has been proved empirically
that these methods, also in the policy-search framework, are
able to overcome local maxima (Levine & Koltun, 2013).

The contribution of this paper is threefold: algorithmic,
theoretical and empirical. We start in Section 2 by recalling
the definition of MDP, Conf-MDP and some notions of
RL. Section 3 introduces our algorithm, REMPS, whose
theoretical analysis is provided in Section 4. Section 5
shows how to equip REMPS with an approximation of the
environment, while Section 6 presents the experimental
evaluation. Finally, in Section 7 we discuss the results and
provide some future research directions. The proofs of all
results can be found in Appendix A.

2. Preliminaries
A discrete-time Markov Decision Process (MDP, Puterman,
2014) is defined by the tupleM = (S,A, p, r, µ, γ), where
S andA are the state space and the action space respectively,
p is the transition model that provides, for every state-action
pair (s, a) ∈ S ×A, a probability distribution over the next
state p(·|s, a), r is the reward model defining the reward
collected by the agent r(s, a, s′) when performing action
a ∈ A in state s ∈ S and landing on state s′ ∈ S, µ
is the distribution of the initial state and γ ∈ [0, 1] is the
discount factor. The behavior of an agent is defined by
means of a policy π that provides a probability distribution
over the actions π(·|s) for every state s ∈ S . A Configurable
Markov Decision Process (Conf-MDP, Metelli et al., 2018)
is defined as CM = (S,A, r, µ, γ,P,Π) and extends the
MDP definition by considering a configuration space P
instead of a single transition model p and adds a policy
space Π to account for the possible limitations of the agent.
The performance of a policy-configuration pair (π, p) is
defined in terms of the expected return:

Jπ,p = E
S0∼µ

At∼π(·|St)
St+1∼p(·|St,At)

[
+∞∑
t=0

γtr(St, At, St+1)

]
. (1)

When γ = 1, the previous equation diverges; therefore, we
resort to the expected average reward:

Jπ,p = lim inf
H→+∞

E
S0∼µ

At∼π(·|St)
St+1∼p(·|St,At)

[
1

H

H−1∑
t=0

r(St, At, St+1)

]
. (2)

Sometimes we will refer to the state transition kernel
pπ(s′|s) =

∫
A π(a|s)p(s′|s, a)da. For any policy π ∈ Π

and environment configuration p ∈ P we can define the
(γ-discounted) stationary distribution:

dπ,p(s) = (1− γ)µ(s) + γ

∫
S
dπ,p(s

′)pπ(s|s′)ds′, (3)

Reinforcement Learning in Configurable Continuous Environments

which represents the discounted number of times state s ∈ S
is visited under policy π and configuration p. dπ,p(s) surely
exists for γ < 1. For the case γ = 1, we will assume that
the Markov chain pπ is ergodic for any π ∈ Π and p ∈ P ,
so that a unique stationary distribution dπ,p exists. We de-
fine the state-action stationary distribution as dπ,p(s, a) =
dπ,p(s)π(a|s) and the state-action-next-state stationary dis-
tribution as dπ,p(s, a, s′) = dπ,p(s)π(a|s)p(s′|s, a). In this
way, we can unify Equations (1) and (2) as:

Jπ,p = E
S,A,S′∼dπ,p

[r(S,A, S′)] . (4)

Sometimes, given a stationary distribution d, we will in-
dicate with Jd the corresponding performance. We will
denote with DΠ,P the set of all stationary distributions
dπ,p induced by Π and P . In this paper, we assume
that the agent policy belongs to a parametric policy space
ΠΘ = {πθ : θ ∈ Θ ⊆ Rp} as well as the environment con-
figuration PΩ = {pω : ω ∈ Ω ⊆ Rq}. Thus, the learning
problem in a Conf-MDP can be rephrased as finding the
optimal policy and configuration parametrizations:

θ∗,ω∗ = arg max
θ∈Θ,ω∈Ω

Jπθ,pω . (5)

3. Relative Entropy Model Policy Search
In this section, we introduce an algorithm to solve the learn-
ing problem in the Conf-MDP framework that can be effec-
tively applied to continuous state-action spaces. Relative
Entropy Model Policy Search (REMPS), imports several
ideas from the classic REPS (Peters et al., 2010); in par-
ticular, the use of a constraint to ensure that the resulting
new stationary distribution is sufficiently close to the current
one. REMPS consists of two subsequent phases: optimiza-
tion and projection. In the optimization phase (Section 3.1)
we look for the stationary distribution d′ that optimizes the
performance (4). This search is limited to the space of distri-
butions that are not too dissimilar from the current stationary
distribution dπ,p. The notion of dissimilarity is formalized
in terms of a threshold κ > 0 on the KL-divergence. The
resulting distribution d′ may not fall within the space of the
representable stationary distributions given our parametriza-
tion DΠΘ,PΩ

. Therefore, similarly to Daniel et al. (2012),
in the projection phase (Section 3.2) we need to retrieve
a policy πθ and a configuration pω inducing a stationary
distribution dπθ,pω ∈ DΠΘ,PΩ

as close as possible to d′.

3.1. Optimization

The optimization problem can be stated in terms of sta-
tionary distributions only. Given a stationary distribution d
(e.g., the one used to collect samples, i.e., dπ,p) and a KL–
divergence threshold κ > 0, we look for a new stationary
distribution d′ solving the optimization problem PRIMALκ:

max
d′∈∆(S×A×S)

Jd′ s.t. DKL(d′‖d) ≤ κ,

where, for a given set X , we have denoted with ∆(X) the
set of all probability distributions over X and DKL(d′‖d) =

ES,A,S′∼d′
[
log d′(S,A,S′)

d(S,A,S′)

]
is the KL-divergence between

d′ and d. It is worth noting that, unlike REPS, we do not
impose a constraint on the validity of the stationary distribu-
tion w.r.t. the transition model (constraint (7) in Peters et al.
(2010)), as we have the possibility to change it. With similar
mathematical tools we can solve PRIMALκ in closed form.

Theorem 3.1. Let d be a distribution over S ×A× S and
κ > 0 a KL-divergence threshold. The solution d′ of the
problem PRIMALκ, for κ > 0, is given by:

d′(s, a, s′) ∝ d(s, a, s′) exp

(
1

η
r(s, a, s′)

)
, (6)

where η is the unique solution of the dual problem DUALκ:

min
η∈[0,+∞)

g(η) = η log E
S,A,S′∼d

[
exp

(
1

η
r(S,A, S′) + κ

)]
.

Thus, to find the optimal solution of PRIMALκ we must
first determine η, by solving DUALκ. It can be proved, as
done in REPS, that with a change of variable η = 1/η, we
have that g(η) is a convex function (Boyd & Vandenberghe,
2004), and therefore DUALκ can be easily solved using stan-
dard optimization tools. Given a value of η, the new station-
ary distribution d′ is defined by the exponential reweighting
of each (s, a, s′) triple with its reward r(s, a, s′). Moreover,
given a stationary distribution d′, we can derive a repre-
sentation of a policy π′ and a configuration p′ inducing d′.

Corollary 3.1. The solution d′ of PRIMALκ is induced by
the configuration p′ and the policy π′ defined as:

p′(s′|s, a) ∝ p(s′|s, a) exp

(
1

η
r(s, a, s′)

)
,

π′(a|s) ∝ π(a|s) E
S′∼p(·|s,a)

[
exp

(
1

η
r(s, a, S′)

)]
.

In practice, we do not have access to the actual sampling
distribution dπ,p, so we cannot compute the exact solution
of the dual problem DUALκ. As in REPS, all expecta-
tions must be estimated from samples. Given a dataset
{(si, ai, s′i, ri)}Ni=1 of N i.i.d. samples drawn from dπ,p,
the empirical dual problem D̃UALκ becomes:

min
η∈[0,+∞)

g̃(η) = η log
1

N

N∑
i=1

exp

(
1

η
ri + κ

)
,

which yields the solution η̃ inducing the distribution d̃′ de-
fined by Equation (6). We discuss the effect of the finite
sample size in Section 4.3.

3.2. Projection

The solution d′ of the PRIMALκ problem does not belong,
in general, to the class of stationary distributions DΠΘ,PΩ

Reinforcement Learning in Configurable Continuous Environments

induced by ΠΘ and PΩ. For this reason, we look for a
parametric policy πθ and a parametric configuration pω that
induce a stationary distribution dπθ,pω as close as possible
to d′, by performing a moment projection (PROJd):1

θ′,ω′ = arg min
θ∈Θ,ω∈Ω

DKL (d′‖dπθ,pω)

= arg max
θ∈Θ,ω∈Ω

E
S,A,S′∼d′

[log dπθ,pω (S,A, S′)] .

However, this problem is very hard to solve as computing
the functional form of dπθ,pω is complex and cannot be
performed in closed form for most cases. If the state space
and the action space are finite, we can formulate the prob-
lem by defining a set of constraints d′(s) = (1− γ)µ(s) +
γ
∑
s′∈S

∑
a∈A d

′(s′)πθ(a|s′)pω(s|s′, a), ∀s ∈ S to en-
force the nature of the stationary distribution. Neverthe-
less, in most of the relevant cases, the problem remains
intractable as the state space could be very large. Therefore,
we consider more convenient projection approaches that we
will justify from a theoretical standpoint in Section 4.1. A
first relaxation consists in finding an approximation of the
transition kernel p′π

′
induced by d′ (PROJpπ):

θ′,ω′ = arg min
θ∈Θ,ω∈Ω

E
S∼d′

[
DKL

(
p′
π′

(·|S)‖pπθω (·|S)
)]

= arg max
θ∈Θ,ω∈Ω

E
S,A,S′∼d′

[log pπθω (S′|S)] .

Clearly, we need to be able to compute the functional form
of the state transition kernel pπθω , which is only possible
when considering finite action spaces. Indeed, in such case,
we just have to marginalize over the (finite) action space
as: pπθω (s′|s) =

∑
a∈A πθ(a|s)pω(s′|s, a). When also the

action space is infinite, we resort to separate projections for
the policy and the transition model (PROJπ,p):
θ′ = arg min

θ∈Θ
E

S∼d′
[DKL (π′(·|S)‖πθ(·|S))]

= arg max
θ∈Θ

E
S,A,S′∼d′

[log πθ(A|S)] ,

ω′ = arg min
ω∈Ω

E
S,A∼d′

[DKL (p′(·|S,A)‖pω(·|S,A))]

= arg max
ω∈Ω

E
S,A,S′∼d′

[log pω(S′|S,A)] .

Similarly to what happens during the optimization phase,
we only have access to a finite dataset of N samples. More-
over, here we are faced with an additional challenge, i.e., we
need to compute expectations w.r.t. d′, but our samples are
collected with dπ,p. This can be cast as an off-distribution
estimation problem and therefore we resort to importance
weighting (Owen, 2013). In the importance weighting esti-
mation, each sample (si, ai, s

′
i) is reweighted by the likeli-

hood of being generated by d′, i.e., by wi = exp (ri/η̃).2 In
the following, we will denote the approximate projections

1When using samples, the moment projection is equivalent to
the maximum likelihood estimation.

2The likelihood is given by the density ratio d′(s,a,s′)
dπ,p(s,a,s′) ∝

exp (r(s, a, s′)/η̃).

Algorithm 1 Relative Entropy Model Policy Search

1: Initialize θ0,ω0 arbitrarily
2: for t = 0, 1, ... until convergence3 do
3: Collect N samples {(si, ai, s′i, ri)}Ni=1 with dπθt ,pωt
4: (Optimization) Compute η̃ and d̃′ solving the D̃UALκ
5: (Projection) Perform the projection of d̃′ and obtain

θt+1 and ωt+1

6: end for

with P̃ROJ. A summary of the objective functions for the
different projection approaches, their applicability, and the
corresponding estimators are reported in Table 1.

The full REMPS problem can be stated as the composition
of optimization and projection, i.e., REMPSκ = PROJ ◦
PRIMALκ, and the corresponding problem from samples
as R̃EMPSκ = P̃ROJ ◦ ˜PRIMALκ. Refer to Algorithm 1
for a high-level pseudocode of REMPS.

4. Theoretical Analysis
In this section, we elaborate on three theoretical aspects
of REMPS. First of all, we provide three inequalities that
bound the difference of performance when changing the
policy and the model in terms of distributional divergences
between stationary distributions, policies and models (Sec-
tion 4.1). Secondly, we present a sensitivity study of the
hyper-parameter κ (i.e., the KL-divergence threshold) of
REMPS (Section 4.2). Finally, we discuss a finite-sample
analysis of the single step of REMPS (Section 4.3). In the
following, we will not constrain the policy and the con-
figuration spaces to be parametric spaces, so we will omit
the parameter space dependence in the symbols Π and P .
Furthermore, we will consider the following assumptions.

Assumption 4.1. (Uniformly bounded reward) For any
s, s′ ∈ S, a ∈ A it holds that: |r(s, a, s′)| ≤ rmax < +∞.

Assumption 4.2. (Ergodicity) Let π ∈ Π and p ∈ P , the
ergodicity coefficient (Seneta, 1988) of the Markov chain
induced by π and p is defined as:

τ (pπ) =
1

2
sup
s,s′∈S

‖pπ(·|s)− pπ(·|s′)‖ .

If γ = 1, for any π ∈ Π and p ∈ P we assume τ (pπ) ≤
τmax.

4.1. Performance Bounds

We start with the following result that bounds the absolute
difference of total reward with a dissimilarity index between
the stationary distributions.

3The algorithm can be stopped after a fixed number of iterations
Nmax or if the performance improvement between two consecutive
iterations is too small.

Reinforcement Learning in Configurable Continuous Environments

Table 1. Applicability, exact objective function and corresponding estimator for the three projections presented. wi is the (non-normalized)
importance weight defined as wi = exp (ri/η̃).

Projection |S| =∞ |A| =∞ Exact objective Estimated objective

PROJd 7 7 E
S,A,S′∼d′

[
log dπθ ,pω (S,A, S′)

]
1
N

∑N
i=1 wi log dπθ ,pω (si, ai, s

′
i)

PROJpπ 3 7 E
S,A,S′∼d′

[
log pπθω (S′|S)

]
1
N

∑N
i=1 wi log p

πθ
ω (s′i|si)

PROJπ,p 3 3

E
S,A,S′∼d′

[log πθ(A|S)]

E
S,A,S′∼d′

[
log pω(S′|S,A)

] 1
N

∑N
i=1 wi log πθ(ai|si)

1
N

∑N
i=1 wi log pω(s′i|si, ai)

Proposition 4.1. Let d and d′ be two stationary distribu-
tions, then it holds that:
|Jd′ − Jd| ≤ rmax ‖d′ − d‖1 ≤ rmax

√
2DKL (d′‖d).

This result justifies the use of the projection PROJd, since
minimizing the KL-divergence between the stationary dis-
tributions allows controlling the performance difference.
As we have seen in Section 3.2, the PROJd is typically
intractable. Therefore, we now prove that performing the
projection of the state transition kernel (PROJpπ) still allows
controlling the performance difference.

Corollary 4.1. Let pπ and p′π
′

two transition kernels, in-
ducing the stationary distributions d and d′ respectively,
then, under Assumption 4.2, it holds that:

|Jd′ − Jd| ≤ rmaxρ

√
2 E
S∼d′

[
DKL

(
p′π
′
(·|S)‖pπ(·|S)

)]
,

where ρ = γ
1−γ if γ < 1 or ρ = 1

1−τmax
if γ = 1.

Finally, the following result provides a justification for the
separate projections of policy and model (PROJπ,p) .
Lemma 4.1. Let (π, p) and (π′, p′) be two policy-
configuration pairs and let pπ and p′π

′
the corresponding

transition kernels, then for any state s ∈ S, it holds that:

DKL

(
p′
π′

(·|s)‖pπ(·|s)
)
≤ DKL (π′(·|s)‖π(·|s))

+ E
A∼π′(·|s)

[DKL (p′(·|s,A)‖p(·|s,A))] .

As an immediate consequence, thanks to the monotonicity
property, the inequality remains valid when taking the ex-
pectation w.r.t. S ∼ d′. Thus, we are able to bound the
right-hand side of Corollary 4.1 isolating the contribution
of policy and configuration.

4.2. Sensitivity to the KL threshold

We analyze how the performance of the solution of
PRIMALκ changes when the KL-divergence threshold κ
varies. The following result upper bounds the reduction in
performance between the optimal solution d of PRIMALκ
and the optimal solution d′ of PRIMALκ′ when κ′ ≤ κ.
Proposition 4.2. Let d and d′ be the solutions of PRIMALκ
and PRIMALκ′ respectively with κ′ ≤ κ, having d0 as

sampling distribution. Then, it holds that:

Jd − Jd′ ≤ rmax‖d− d0‖1
(

1− κ′

κ

)
. (7)

This result is general and can be applied broadly to the class
of trust-region methods, when using the KL-divergence as a
constraint to define the trust-region.

4.3. Finite-sample Analysis

Now we present a finite-sample analysis of the single step
of REMPS. In particular, our goal is to upper bound the
difference Jd′ − Jπ̃′′,p̃′′ where d′ is the solution of the exact
problem PRIMALκ and dπ̃′′,p̃′′ is the solution obtained after
projecting d̃′ onto DΠ,P . Due to the similarities between
the two algorithms, large part of our analysis applies to
also REPS (Peters et al., 2010). We will denote Dd =
{d′ ∈ ∆(S ×A× S) : d′ ∝ d exp (r/η) : η ∈ [0,+∞)}
the set of possible solutions to the PRIMALκ problem.We
will consider the following additional assumptions.

Assumption 4.3. (Finite pseudo-dimension) Given a pol-
icy π ∈ Π and a transition model p ∈ P , the pseudo-
dimensions of the hypothesis spaces { d

dπ,p
: d ∈ Ddπ,p},

{ d
dπ,p

r : d ∈ Ddπ,p}, { d
dπ,p

log d
dπ,p

: d ∈ Ddπ,p} and

{ d
dπ,p

log d′ : d ∈ Ddπ,p , d′ ∈ DΠ,P} are bounded by
v < +∞.

Assumption 4.4. (Finite β–moments) There exist β ∈
(1, 2), such that

E
S,A,S′∼dπ,p

[∣∣∣∣ d(S,A, S′)

dπ,p(S,A, S′)

∣∣∣∣β
]1/β

and

E
S,A,S′∼dπ,p

[∣∣∣∣ d(S,A, S′)

dπ,p(S,A, S′)
log d′(S,A, S′)

∣∣∣∣β
]1/β

are bounded for all d ∈ Ddπ,p and d′ ∈ DΠ,P .

Assumption 4.3 requires that all the involved hypothesis
spaces (for the solution of the PRIMALκ and PROJ) are
characterized by a finite pseudo-dimension. This assump-
tion is necessary to state learning theory guarantees. As-
sumption 4.4 is more critical as it requires that the involved
loss functions (used to solve the PRIMALκ and PROJ) have

Reinforcement Learning in Configurable Continuous Environments

a uniformly bounded (over the hypothesis space) moment
of order β ∈ (1, 2). In particular, the first line states that
the exponentiated β-Rényi divergence (Cortes et al., 2010,
see Equation (34)) between d and dπ,p is finite for some
β ∈ (1, 2). This requirement allows an analysis based
on Cortes et al. (2013) for unbounded loss function with
bounded moments. A more straightforward analysis can
be made by assuming that the involved loss functions are
uniformely bounded and using more traditional tools (Mohri
et al., 2012) (see Appendix A.4.4). However, we believe this
latter requirement is too restrictive. Therefore, we report
below the general statement, under Assumption 4.4.

Theorem 4.1. (Finite–Sample Bound) Let π ∈ Π and p ∈
P be the current policy and transition model. Let κ > 0
be the KL–divergence threshold. Let d′ ∈ Ddπ,p be the
solution of the PRIMALκ problem and dπ̃′′,p̃′′ ∈ DΠ,P be

the solution of the R̃EMPSκ problem with PROJd computed
with N > 0 samples collected with dπ,p. Then, under
Assumptions 4.1, 4.3 and 4.4, for any α ∈ (1, β), there
exist two constants χ, ξ and a function ζ(N) = O(logN)
depending on α, and on the samples, such that for any
δ ∈ (0, 1), with probability at least 1− 4δ it holds that:

Jd′ − Jπ̃′′,p̃′′ ≤
√

2rmax sup
d∈Ddπ,p

inf
d∈DΠ,P

√
DKL(d‖d)

approximation error

+ rmaxχ
√
ε+ rmaxζ(N)ε+ rmaxξε

2

estimation error

,

where ε = 2
α+2
2α

√
v log 2eN

v +log 8
δ

N
2(α−1)
α

Γ

(
α,

√
v log 2eN

v +log 8
δ

N
2(α−1)
α

)
,

depending on the pseudo-dimension bound
v < +∞ and Γ(α, τ) = α−1

α +

1
α

(
α
α−1

)α−1 (
1 +

(
α−1
α

)α−1
log 1

τ

)α−1
α

.

Proof Sketch. The idea of the proof is to decouple the contribu-
tions of (i) ˜PRIMALκ and (ii) P̃ROJd to the final error:

Jd′ − Jπ̃′′,p̃′′ = Jd′ − Jd̃′
(i)

+ Jd̃′ − Jπ̃′′,p̃′′
(ii)

,

where d̃′ is the solution of ˜PRIMALκ. (i) is the contribution of
the estimation error due to the finite number of samples used to
solve ˜PRIMALκ. It is analyzed in Lemma A.3, exploiting the
sensitivity analysis of Lemma 4.2. (ii) includes the contribution of
an approximation error due to the space in which we represent the
stationary distributions DΠ,P and an estimation error due to the
finite number of samples used to perform the projection P̃ROJd.
This term can be decomposed using Lemma A.4. Lemmas A.7-
A.10 are then employed to state learning theory bounds over the
various terms that allow completing the proof of the main statement.

The estimation error is dominated by
√
ε. Ignoring logarith-

mic terms, we have that Jd′ − Jπ̃′′,p̃′′ = Õ
(
N−

2(α−1)
4α

)
. In

this analysis, we considered the case in which the projection

1 2
a,θ

1−ω,0

ω,s

b,1−
θ

ω,0

1−ω,s

a,θ
ω,s

1−ω,L

b,1−
θ

1−ζω,s ζω

Figure 1. The Chain Domain.

is performed over the stationary distribution (PROJd).4 The
result can be easily extended to the case in which we resort
to PROJpπ or PROJπ,p (Corollary A.1).

5. Approximation of the Transition Model
The formulation of REMPS we presented above, requires
access to a representation of the environment model pω,
depending on a vector of parameters ω. Although the pa-
rameters that can be configured are usually known; the
environment dynamics is unknown in a model-free scenario.
Even when an environment model is available it may be too
imprecise or too complex to be used effectively. In principle,
we could resort to a general model-based RL approach to
effectively approximate the transition model (Deisenroth
& Rasmussen, 2011; Nagabandi et al., 2018). However, in
our scenario, we need to learn a mapping from state-action-
configuration triples to a new state. Our approach is based
on a simple maximum likelihood estimation. Given a dataset
of experience {(si, ai, s′i,ωi)}Ni=1 (possibly collected with
different policies πi and different configurations ωi) and
given an approximation space P̂Ω we solve the problem:

max
p̂∈P̂Ω

1

N

N∑
i=1

log p̂(s′i|si, ai,ωi), (8)

where we made explicit that the distribution of the next state
s′i depends also on the configuration.5 Given the model
approximation, we can run REMPS by replacing p with
p̂. We do not impose any restriction on the specific model
class P̂Ω (e.g., neural network, Gaussian process) and on
the moment in which the fitting phase has to be performed
(e.g., at the beginning of the training or every m iterations).

6. Experiments
In this section, we provide the experimental evaluation of
REMPS on three domains: a simple chain domain (Sec-
tion 6.1, Figure 1), the classical Cartpole (Section 6.2) and

4Note that Assumption 4.4 ensures that the approximation error
is finite, since the KL-divergence is the 1-Rényi divergence and
the Rényi divergence is non-decreasing in the order β (Van Erven
& Harremos, 2014).

5Notice that the configuration parameters ω are an input of the
approximate model.

Reinforcement Learning in Configurable Continuous Environments

Figure 2. Return surface of the
Chain domain.

0 5 10 15

2

4

6

8

10
J∗

iteration

a
v
e
ra

g
e
re
w
a
rd

0 5 10 15

0

0.5

1

ω∗

iteration

ω

0 5 10 15

0

0.5

1
θ∗

iteration

θ

REMPS κ = 0.0001 REMPS κ = 0.01 REMPS κ = 0.1

REMPS κ = 10 G(PO)DMP Optimal

Figure 3. Average reward, configuration parameter ω, and policy parameter θ, as a function of the
number of iterations for REMPS with different values of κ and G(PO)MDP. 20 runs, 95% c.i.

a more challenging car-configuration task based on TORCS
(Section 6.3). In the first two experiments, we compare
REMPS with the extension of G(PO)MDP to the policy-
configuration learning (Appendix B), whereas in the last
experiment we evaluate REMPS against REPS, the latter
used for policy learning only. Full experimental details are
reported in Appendix D.

6.1. Chain Domain

The Chain Domain (Figure 1) is an illustrative example of
Conf-MDP. There are two states 1 and 2 and the agent can
perform two actions a (forward) and b (backward). The
agent is forced to play every action with the same proba-
bility in both states, i.e., πθ(a|s) = θ and πθ(b|s) = 1− θ
for all s ∈ {1, 2} and θ ∈ [0, 1]. The environment can be
configured via the parameter ω ∈ [0, 1], that is the proba-
bility of action failure. Action a, if successful, takes the
agent to state 2, whereas action b, if successful, takes the
agent to state 1. When one action fails, the other is executed.
The agent gets a high reward, L > 0, if, starting from state
1, it successfully executes action a, while it gets a smaller
reward, l (0 < l < L) if it lands in state 2 starting from 1
but by performing action b. The agent gets an even smaller
reward, s (0 < s < l), when it lands in state 1. The param-
eter ζ ∈ [0, 1] is not configurable and has been added to
avoid symmetries in the return surface.

The main goal of this experiment is to show the benefits of
our algorithm compared to a simple gradient method, assum-
ing to know the exact environment model. The return sur-
face is characterized by two local maxima (Figure 2). If the
system is initialized in a suitable region (as in Figure 2), to
reach the global maximum we need to change the model in
order to worsen the current policy performance. In Figure 3,
we compare our algorithm REMPS using PROJpπ with dif-
ferent values of κ, against G(PO)MDP adapted to model
learning (see Appendix B). We can see that G(PO)MDP,
besides the slow convergence, moves in the direction of the

local maximum. Instead, for some appropriate values of the
hyperparameter (e.g., κ ∈ {0.1, 0.01}) REMPS is able to
reach the global optimum. It is worth noting that too small
a value of κ (e.g., κ = 0.0001) prevents escaping the basin
of attraction of the local maximum. Likewise, for too large
κ (e.g., κ = 10) the estimated quantities are too uncertain
and therefore we are not able to reach the global optimum
as well. Hyperparameter values and further experiments,
including the effect of the different projection strategies, no-
configuration cases, and the comparison with SPMI (Metelli
et al., 2018), are reported in Appendix D.1.

6.2. Cartpole

The Cartpole domain (Widrow & Smith, 1964; Barto et al.,
1983) is a continuous-state and finite-action environment.
We add to the standard Cartpole domain the possibility to
configure the cart force, via the parameter ω. We consider in
the reward function an additional penalization proportional
to the applied force, so that an optimal agent should find the
smallest force that allows the pole to remain in a vertical
position (details in Appendix D.2.1). The goal of this ex-
periment is to test the ability of REMPS to learn jointly the
policy and the environment configuration in a continuous
state environment, as well as the effect of replacing the exact
environment model with an approximator, trained just at the
beginning of the learning process.

In Figure 4, we compare the performance of REMPS, with
the two projection strategies PROJpπ and PROJπ,p, and
G(PO)MDP, starting from a fixed value of the model pa-
rameter (ω0 = 8), both for the case of exact model and
approximate model. In the exact case, the performance
of REMPS are similar to those of G(PO)MDP. The latter
is even faster to achieve a good performance, although it
shows a larger variance across the runs. No significant dif-
ference can be found between PROJpπ and PROJπ,p in this
case. Instead, in the approximated scenario, REMPS no-
tably outperforms G(PO)MDP, which shows a very unstable

Reinforcement Learning in Configurable Continuous Environments

0 500 1000 1500 2000
0

500

1000

1500

2000

iteration

a
v
e
ra

g
e
re
tu

rn

Exact model

0 500 1000 1500 2000
0

500

1000

1500

2000

iteration

Approximate model

REMPS PROJpπ REMPS PROJπ,p G(PO)MDP

Figure 4. Average return as a function of the number of iterations
for the Cartpole experiment when the environment model is exact
(left) or approximated from samples (right) comparing REMPS
with PROJpπ , PROJπ,p and G(PO)MDP. 20 runs, 95% c.i.

curve. Indeed, constraining the search in a trust-region, as
REMPS does by means of κ, is even more important in
the approximate case, since the estimated quantities are af-
fected by further uncertainty (injected by the approximated
model of the environment). It is worth noting that in this
case the difference between PROJpπ and PROJπ,p is more
visible. Indeed, PROJπ,p is less precise than PROJpπ (be-
ing a relaxation) and thus, when projecting d′, it trusts the
approximate model moving towards a suboptimal configura-
tion. Further details on the Cartpole experiments are given
in Appendix D.2.

6.3. Driving and Configuring with TORCS

The Open Racing Car Simulator TORCS (Wymann et al.,
2000) is a car racing simulation that allows simulating driv-
ing races. TORCS has been used several times in RL (Loia-
cono et al., 2010; Koutnı́k et al., 2013; Lillicrap et al., 2015;
Mnih et al., 2016). We modified TORCS adding the pos-
sibility to configure the car parameters taking inspiration
from the “Car Setup Competition” (Loiacono et al., 2013,
details in Appendix D.3.1). The agent’s observation is a low-
dimensional representation of the car’s sensors (including
speed, focus and wheel speeds), while the action space is
composed of steering and acceleration/braking (continuous).

The goal of this experiment is to show the ability of REMPS
to learn policy and configuration in a continuous state-action
space, like a car racing scenario. We consider a configura-
tion space made of three parameters: rear and front wing
orientation and brake repartition between front and rear. We
start with a policy pretrained via behavioral cloning, using
samples collected with a driving bot (snakeoil). Using the
same bot, we collect a dataset of episodes with different
parameter values, used to train an approximation of the en-
vironment. In Figure 5, we compare the average reward
and the average lap time for REMPS (with PROJπ,p), in
which we act on both the policy and the model, and REPS,

0 20 40
20

40

60

80

100

iteration

a
v
e
ra

g
e
re
w
a
rd

0 20 40

0

100

200

iteration

a
v
e
ra

g
e
d
u
ra

ti
o
n

REMPS REPS Bot

Figure 5. Average reward and episode duration as a function of
the number of iterations for the TORCS experiment comparing
REMPS, REPS and the bot. 10 runs, 80% c.i.

in which only policy learning is enabled. We can notice
that REMPS is able to reach performances larger than those
achievable without configuring the environment. In this ex-
periment, we can appreciate another remarkable benefit of
environment configurability: configuring the environment
can also speed up the learning process (online performance),
as clearly visible in Figure 5. Full experimental results can
be found in Appendix D.3.

7. Discussion and Conclusions
Environment configurability is a relevant property of many
real-world domains, with significant potential benefits when
accounted by the RL algorithms. In this paper, we proposed
a novel trust-region algorithm, REMPS, which takes advan-
tage of this possibility to jointly learn an agent policy and an
environment configuration. Unlike previous works, REMPS
can be employed in continuous state-action spaces and does
not require the knowledge of the exact environment dynam-
ics. Furthermore, we derived several interesting properties
of REMPS, especially we provided a finite-sample analysis
for the single step of REMPS. Finally, the experimental
evaluation showed that configuring the environment, on
the one hand, allows the agent to learn highly performing
policies; on the other hand, it might speed up the learning
process itself. Moreover, REMPS showed the ability to
overcome some of the limitations of gradient methods when
employed to configure environments, even in the presence of
approximate models. The future research directions include
a more-in-depth analysis of REMPS, especially by study-
ing the effect of dynamically modifying the KL-divergence
threshold κ and the extension of the theoretical analysis
for finite-time guarantees as well as for accounting of the
approximate model of the environment. More generally, it
is interesting to investigate diverse applications of the Conf-
MDP framework, with particular attention of removing the
knowledge of the agent policy space.

Reinforcement Learning in Configurable Continuous Environments

References
Barto, A. G., Sutton, R. S., and Anderson, C. W. Neuronlike

adaptive elements that can solve difficult learning con-
trol problems. IEEE transactions on systems, man, and
cybernetics, (5):834–846, 1983.

Baxter, J. and Bartlett, P. L. Infinite-horizon policy-gradient
estimation. Journal of Artificial Intelligence Research,
15:319–350, 2001.

Boyd, S. and Vandenberghe, L. Convex optimization. Cam-
bridge university press, 2004.

Busic, A. and Meyn, S. Action-constrained markov decision
processes with kullback-leibler cost. In Conference On
Learning Theory (COLT), 2018.

Ciosek, K. A. and Whiteson, S. Offer: Off-environment
reinforcement learning. In AAAI, pp. 1819–1825, 2017.

Cortes, C., Mansour, Y., and Mohri, M. Learning bounds for
importance weighting. In Advances in Neural Information
Processing Systems, pp. 442–450, 2010.

Cortes, C., Greenberg, S., and Mohri, M. Relative deviation
learning bounds and generalization with unbounded loss
functions. arXiv preprint arXiv:1310.5796, 2013.

Daniel, C., Neumann, G., and Peters, J. Hierarchical rela-
tive entropy policy search. In Artificial Intelligence and
Statistics, pp. 273–281, 2012.

Deisenroth, M. P. and Rasmussen, C. E. PILCO: A model-
based and data-efficient approach to policy search. In
Getoor, L. and Scheffer, T. (eds.), Proceedings of the 28th
International Conference on Machine Learning, ICML
2011, Bellevue, Washington, USA, June 28 - July 2, 2011,
pp. 465–472. Omnipress, 2011.

Florensa, C., Held, D., Wulfmeier, M., Zhang, M., and
Abbeel, P. Reverse curriculum generation for reinforce-
ment learning. In Conference on Robot Learning, pp.
482–495, 2017.

Gelfand, I. M., Silverman, R. A., et al. Calculus of varia-
tions. Courier Corporation, 2000.

Guan, P., Raginsky, M., and Willett, R. M. Online markov
decision processes with kullback–leibler control cost.
IEEE Transactions on Automatic Control, 59(6):1423–
1438, 2014.

Kakade, S. and Langford, J. Approximately optimal ap-
proximate reinforcement learning. In Sammut, C. and
Hoffmann, A. G. (eds.), Machine Learning, Proceedings
of the Nineteenth International Conference (ICML 2002),
University of New South Wales, Sydney, Australia, July
8-12, 2002, pp. 267–274. Morgan Kaufmann, 2002.

Keren, S., Pineda, L., Gal, A., Karpas, E., and Zilberstein,
S. Equi-reward utility maximizing design in stochastic
environments. HSDIP 2017, pp. 19, 2017.

Koutnı́k, J., Cuccu, G., Schmidhuber, J., and Gomez, F.
Evolving large-scale neural networks for vision-based re-
inforcement learning. In Proceedings of the 15th Annual
Conference on Genetic and Evolutionary Computation,
GECCO ’13, pp. 1061–1068, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-1963-8.

Levine, S. and Koltun, V. Guided policy search. In Proceed-
ings of the 30th International Conference on Machine
Learning, ICML 2013, Atlanta, GA, USA, 16-21 June
2013, volume 28 of JMLR Workshop and Conference
Proceedings, pp. 1–9. JMLR.org, 2013.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Loiacono, D., Prete, A., Lanzi, P. L., and Cardamone, L.
Learning to overtake in torcs using simple reinforcement
learning. In IEEE Congress on Evolutionary Compu-
tation, pp. 1–8, July 2010. doi: 10.1109/CEC.2010.
5586191.

Loiacono, D., Cardamone, L., and Lanzi, P. L. Simulated
car racing championship: Competition software manual.
arXiv preprint arXiv:1304.1672, 2013.

Metelli, A. M., Mutti, M., and Restelli, M. Configurable
markov decision processes. In Dy, J. G. and Krause, A.
(eds.), Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Pro-
ceedings of Machine Learning Research, pp. 3488–3497.
PMLR, 2018.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T. P., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
Balcan, M. and Weinberger, K. Q. (eds.), Proceedings
of the 33nd International Conference on Machine Learn-
ing, ICML 2016, New York City, NY, USA, June 19-24,
2016, volume 48 of JMLR Workshop and Conference
Proceedings, pp. 1928–1937. JMLR.org, 2016.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Founda-
tions of machine learning. MIT press, 2012.

Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S.
Neural network dynamics for model-based deep reinforce-
ment learning with model-free fine-tuning. In 2018 IEEE
International Conference on Robotics and Automation
(ICRA), pp. 7559–7566. IEEE, 2018.

Reinforcement Learning in Configurable Continuous Environments

Owen, A. B. Monte Carlo theory, methods and examples.
2013.

Peters, J. and Schaal, S. Reinforcement learning of motor
skills with policy gradients. Neural networks, 21(4):682–
697, 2008.

Peters, J., Mülling, K., and Altun, Y. Relative entropy policy
search. In AAAI, pp. 1607–1612. Atlanta, 2010.

Pirotta, M., Restelli, M., Pecorino, A., and Calandriello,
D. Safe policy iteration. In Proceedings of the 30th
International Conference on Machine Learning, ICML
2013, Atlanta, GA, USA, 16-21 June 2013, volume 28 of
JMLR Workshop and Conference Proceedings, pp. 307–
315. JMLR.org, 2013.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Schulman, J., Levine, S., Abbeel, P., Jordan, M. I., and
Moritz, P. Trust region policy optimization. In Bach,
F. R. and Blei, D. M. (eds.), Proceedings of the 32nd
International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, volume 37 of JMLR
Workshop and Conference Proceedings, pp. 1889–1897.
JMLR.org, 2015.

Seneta, E. Perturbation of the stationary distribution mea-
sured by ergodicity coefficients. Advances in Applied
Probability, 20(1):228–230, 1988.

Silva, R., Melo, F. S., and Veloso, M. What if the world were
different? gradient-based exploration for new optimal
policies. EPiC Series in Computing, 55:229–242, 2018.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction, volume 1. MIT press Cambridge, 1998.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,
Y. Policy gradient methods for reinforcement learning
with function approximation. In Advances in Neural
Information Processing Systems, pp. 1057–1063, 2000.

Todorov, E. Linearly-solvable markov decision problems.
In Advances in Neural Information Processing Systems,
pp. 1369–1376, 2007.

Todorov, E. Efficient computation of optimal actions. Pro-
ceedings of the national academy of sciences, 106(28):
11478–11483, 2009.

Van Erven, T. and Harremos, P. Rényi divergence and
kullback-leibler divergence. IEEE Transactions on Infor-
mation Theory, 60(7):3797–3820, 2014.

Widrow, B. and Smith, F. W. Pattern-recognizing control
systems. Computer and information sciences, 288, 1964.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992.

Wymann, B., Espié, E., Guionneau, C., Dimitrakakis, C.,
Coulom, R., and Sumner, A. Torcs, the open racing car
simulator. 4:6, 2000.

Reinforcement Learning in Configurable Continuous Environments

A. Proofs and Derivations
In this Appendix, we provide the proofs and the derivations of the results presented in the main paper.

A.1. Proofs of Section 3.1

Theorem 3.1. Let d be a distribution over S ×A× S and κ > 0 a KL-divergence threshold. The solution d′ of the problem
PRIMALκ, for κ > 0, is given by:

d′(s, a, s′) ∝ d(s, a, s′) exp

(
1

η
r(s, a, s′)

)
, (6)

where η is the unique solution of the dual problem DUALκ:

min
η∈[0,+∞)

g(η) = η log E
S,A,S′∼d

[
exp

(
1

η
r(S,A, S′) + κ

)]
.

Proof. For the sake of brevity, we define X = S ×A× S and (s, a, s′) = x ∈ X . We restate the PRIMALκ problem in a more explicit
form:

max
d′

∫
X
d′(x)r(x)dx (9)

s.t.
∫
X
d′(x) log

d′(x)

d(x)
dx ≤ κ (10)∫

X
d′(x)dx = 1, (11)

where we simply made explicit the constraint guaranteeing that d′ must sum up to one. Note that we do not need to ensure that d′(x) ≥ 0
for all x ∈ X since this is guaranteed by the KL-divergence constraint. We solve the optimization problem using the Lagrange multipliers.
We denote with η ≥ 0 the Lagrange multiplier associated with the KL constraint (10) and with λ the multiplier associated with the
constraint (11). The Lagrangian function becomes:

L
(
d′, η, λ

)
=

∫
X
d′(x)r(x)dx+ η

(
κ−

∫
X
d′(x) log

d′(x)

d(x)
dx

)
+ λ

(
1−

∫
X
d′(x)dx

)
(12)

=

∫
X
d′(x)

(
r(x)− η log

d′(x)

d(x)
− λ

)
dx+ ηκ+ λ.

Taking the functional derivative of L w.r.t. d′ and applying a simple form of the Euler-Lagrange equation (Gelfand et al., 2000), we get:
δL

δd′(x)
= r(x)− η log

d′(x)

d(x)
− η − λ = 0 =⇒ d′(x) = d(x) exp

(
r(x)

η

)
exp

(
−1− λ

η

)
. (13)

We can derive an expression for d′ by enforcing the constraint (11):

exp

(
−1− λ

η

)−1

=

∫
X
d(x) exp

(
r(x)

η

)
dx =⇒ d′(x) =

d(x) exp
(
r(x)
η

)
∫
X d(x) exp

(
r(x)
η

)
dx
. (14)

Substituting (13) into the Lagrangian function (12) and recalling (14), we obtain the dual function:

g(η, λ) = exp

(
−1− λ

η

)∫
X
d(x) exp

(
r(x)

η

){
r(x)− η log

[
exp

(
r(x)

η

)
exp

(
−1− λ

η

)]
− λ

}
dx+ ηκ+ λ

= η exp

(
−1− λ

η

)∫
X
d(x) exp

(
r(x)

η

)
dx+ ηκ+ λ

= η + ηκ+ λ

= η log

[
exp

(
−1− λ

η

)−1
]

+ ηκ

= η log

∫
X
d(x) exp

(
r(x)

η

)
dx+ ηκ

= η log

∫
X
d(x) exp

(
r(x)

η
+ κ

)
dx.

Making the change of variable η = 1/η, we have that 1
η

log
∫
X d(x) exp (ηr(x)) dx is convex (Boyd & Vandenberghe, 2004). Moreover,

κ
η

is strictly convex (as ∂2

∂η2
κ
η

= 2κ
η3 > 0 for κ > 0), therefore their sum is strictly convex. Furthermore, function g is proper as it admits

at least one feasible point (e.g., η = 1). Thus, being g strictly convex and proper, the optimization problem admits a unique solution (Boyd
& Vandenberghe, 2004).

Reinforcement Learning in Configurable Continuous Environments

Corollary 3.1. The solution d′ of PRIMALκ is induced by the configuration p′ and the policy π′ defined as:

p′(s′|s, a) ∝ p(s′|s, a) exp

(
1

η
r(s, a, s′)

)
,

π′(a|s) ∝ π(a|s) E
S′∼p(·|s,a)

[
exp

(
1

η
r(s, a, S′)

)]
.

Proof. Recall the definition of d′(s, a, s′) = d′(s)π′(a|s)p′(s′|s, a). Therefore we have:

p′(s′|s, a) =
d′(s, a, s′)

d′(s)π′(a|s) =
d′(s, a, s′)

d′(s, a)
=

d′(s, a, s′)∫
S d
′(s′, s, a)ds′

.

Now, we substitute the expression of d′:

p′(s′|s, a) =
d(s, a, s′) exp

(
r(s,a,s′)

η

)
∫
S d(s, a, s′) exp

(
r(s,a,s′)

η

)
ds′

=
d(s)π(a|s)p(s′|s, a) exp

(
r(s,a,s′)

η

)
d(s)π(a|s)

∫
S p(s

′|s, a) exp
(
r(s,a,s′)

η

)
ds′

=
p(s′|s, a) exp

(
r(s,a,s′)

η

)
∫
S p(s

′|s, a) exp
(
r(s,a,s′)

η

)
ds′

.

In a similar way for the policy, recall that d′(s, a) = d′(s)π′(a|s), we have:

π′(a|s) =
d′(s, a)

d′(s)
=

∫
S d
′(s, a, s′)ds′∫

A

∫
S d
′(s, a, s′)ds′da

.

Now, we substitute the expression of d′ again:

π′(a|s) =

∫
S d(s, a, s′) exp

(
r(s,a,s′)

η

)
ds′∫

A

∫
S d(s, a, s′) exp

(
r(s,a,s′)

η

)
ds′da

=
d(s)π(a|s)

∫
S p(s

′|s, a) exp
(
r(s,a,s′)

η

)
ds′

d(s)
∫
A π(a|s)

∫
S p(s

′|s, a) exp
(
r(s,a,s′)

η

)
ds′da

=
π(a|s)

∫
S p(s

′|s, a) exp
(
r(s,a,s′)

η

)
ds′∫

A π(a|s)
∫
S p(s

′|s, a) exp
(
r(s,a,s′)

η

)
ds′da

.

A.2. Proofs of Section 4.1

Proposition 4.1. Let d and d′ be two stationary distributions, then it holds that:
|Jd′ − Jd| ≤ rmax ‖d′ − d‖1 ≤ rmax

√
2DKL (d′‖d).

Proof. The first inequality is obtained with the following simple derivation:

|Jd − Jd′ | =
∣∣∣∣∫ (d(s, a, s′)− d′(s, a, s′)

)
r(s, a, s′)dsdads′

∣∣∣∣ ≤ rmax

∫ ∣∣d(s, a, s′)− d′(s, a, s′)
∣∣ dsdads′.

The second inequality is a straightforward application of the Pinsker’s inequality.

Corollary 4.1. Let pπ and p′π
′

two transition kernels, inducing the stationary distributions d and d′ respectively, then,
under Assumption 4.2, it holds that:

|Jd′ − Jd| ≤ rmaxρ

√
2 E
S∼d′

[
DKL

(
p′π
′
(·|S)‖pπ(·|S)

)]
,

where ρ = γ
1−γ if γ < 1 or ρ = 1

1−τmax
if γ = 1.

Proof. If γ < 1, the statement is obtained starting from Theorem 4.1 and bounding ‖d′ − d‖1 as in Proposition 3.1 of Metelli et al.

Reinforcement Learning in Configurable Continuous Environments

(2018): ∥∥d′ − d∥∥
1

=
γ

1− γ E
S∼d′

[∥∥∥p′π′(·|S)− pπ(·|S)
∥∥∥

1

]
.

For the case γ = 1, we start from the following inequality provided in Seneta (1988) (Section 2, taking p =∞) that we rewrite in our
notation: ∥∥d′ − d∥∥

1
≤
∞∑
k=0

τ (pπ)k
∫
S

∣∣∣∣∫
S
d′(s)

(
p′
π′

(s′|s)− pπ(s′|s)
)

ds

∣∣∣∣ ds′
≤
∫
S
d′(s)

∫
S

∣∣∣p′π′(s′|s)− pπ(s′|s)
∣∣∣ds′ds ∞∑

k=0

τkmax

≤ 1

1− τmax
E

S∼d′

[∣∣∣pπ(·|S)− p′π
′
(·|S)

∣∣∣] ,
where we exploited Assumption 4.2 for the bound τ (pπ) ≤ τmax. An application of Pinsker’s inequality concludes the proof.

Lemma 4.1. Let (π, p) and (π′, p′) be two policy-configuration pairs and let pπ and p′π
′

the corresponding transition
kernels, then for any state s ∈ S, it holds that:

DKL

(
p′
π′

(·|s)‖pπ(·|s)
)
≤ DKL (π′(·|s)‖π(·|s))

+ E
A∼π′(·|s)

[DKL (p′(·|s,A)‖p(·|s,A))] .

Proof. We can prove the result by exploiting the properties of the KL-divergence:

DKL

(
p′
π′

(·|s)‖pπ(·|s)
)

=

∫
S
p′
π′

(s′|s) log
p′
π′

(s′|s)
pπ(s′|s) ds′

=

∫
S

∫
A
p′(s′|s, a)π′(a|s)da log

∫
A p
′(s′|s, a)π′(a|s)da∫

A p(s
′|s, a)π(a|s)da

ds′

≤
∫
S

∫
A
p′(s′|s, a)π′(a|s) log

p′(s′|s, a)π′(a|s)
p(s′|s, a)π(a|s) dads′ (15)

=

∫
A
π′(a|s)

∫
S
p′(s′|s, a) log

p′(s′|s, a)

p(s′|s, a)
ds′da+

∫
A
π′(a|s) log

π′(a|s)
π(a|s) da

= E
A∼π′(·|s)

[
DKL

(
p′(·|s,A)‖p(·|s,A)

)]
+DKL

(
π′(·|s)‖π(·|s)

)
,

where (15) is an application of the integral log-sum inequality
∫
X f(x) log f(x)

g(x)
dx ≥ F log F

G
, where F =

∫
X f(x)dx and G =∫

X g(x)dx, that holds for any pair of integrable non negative functions f and g.

A.3. Proofs of Section 4.2

In order to prove Proposition 4.2, we need a preliminary Lemma. Suppose that κ′ ≤ κ, then the KL constraint is more
restrictive, thus, we expect Jd′ ≤ Jd. Let us consider a new class distributions dα = αd + (1 − α)d0, with α ∈ [0, 1].
Ideally, we could increase α until we saturate the constraint κ′, getting a sort of projection of d over the region that satisfies
the constraint induced by κ′.

Lemma A.1. Let d and d′ be the solution of the problems PRIMALκ and PRIMALκ′ with κ′ ≤ κ. Let dα = αd+ (1−α)d0

with α ∈ [0, 1]. If DKL(dα‖d0) = κ′, then α ≥ κ′

κ .

Proof. We use the convexity of the KL divergence: DKL(αµ1 +(1−α)µ2‖αν1 +(1−α)ν2) ≤ αDKL(µ1‖ν1)+(1−α)DKL(µ2‖ν2)
for α ∈ [0, 1]. Take µ1 = d, µ2 = ν1 = ν2 = d0:

κ′ = DKL(dα‖d0) = DKL(αd+ (1− α)d0‖αd0 + (1− α)d0) ≤
≤ αDKL(d‖d0) + (1− α)DKL(d0‖d0) = αDKL(d‖d0).

Therefore, observing that DKL(d‖d0) ≤ κ:

α ≥ κ′

DKL(d‖d0)
≥ κ′

κ
. (16)

We can now prove Proposition 4.2.

Reinforcement Learning in Configurable Continuous Environments

Proposition 4.2. Let d and d′ be the solutions of PRIMALκ and PRIMALκ′ respectively with κ′ ≤ κ, having d0 as sampling
distribution. Then, it holds that:

Jd − Jd′ ≤ rmax‖d− d0‖1
(

1− κ′

κ

)
. (7)

Proof. Consider the α′ ∈ [0, 1], as defined in Lemma A.1, such that DKL(dα′‖d0) = κ′. We start observing that being d′ the optimal
solution with constraint κ′ and since dα′ fulfills the constraint, we surely have Jd′ ≥ Jdα′ . Consider the following sequence of
inequalities:

Jd − Jd′ ≤ Jd − Jdα′
≤ rmax‖d− dα′‖1
≤ rmax‖(1− α′)(d− d0)‖1
= rmax(1− α′)‖d− d0‖1.

Applying Lemma A.1 we get 1− α′ ≤ 1− κ′
κ

, from which the result follows.

A.4. Proofs of Section 4.3

For sake of brevity, we will denote with X = S ×A× S and with x = (s, a, s′) a state-action-next-state triple. In order to
make the presentation clearer, we revise in the following the formulation of the optimization problems involved in REMPS.

A.4.1. FORMULATION OF THE OPTIMIZATION PROBLEMS

The REMPS problem takes as input a stationary distribution dπ,p ∈ DΠ,P and a KL–divergence threshold κ and provides as
output a new stationary distribution in the space DΠ,P . This process is dived into two consecutive phases: optimization and
projection.

Optimization In the optimization phase, given a KL–divergence threshold κ > 0, let (π, p) ∈ Π × P be the current
policy-configuration pair inducing a stationary distribution dπ,p, we seek for a new stationary distribution d′ that solves the
following optimization problem PRIMALκ:

max
d∈∆(X)

Jd = E
X∼d

[
r(X)

]
s.t. DKL(d‖dπ,p) = E

X∼d

[
log

d(X)

dπ,p(X)

]
≤ κ.

This problem, yields to the solution:

d′(x) =
dπ,p(x) exp

(
1
η r(x)

)
∫
X dπ,p(x) exp

(
1
η r(x)

)
dx
, x ∈ X , (17)

where η is the unique solution of the dual problem DUALκ:

min
η∈[0,∞)

η log E
X∼dπ,p

[
exp

(
1

η
r(X) + κ

)]
. (18)

In practice we have no access to dπ,p. Therefore, we need to estimate the expectations from samples using a dataset
{(si, ai, s′i, ri)}Ni=1 = {(xi, ri)}Ni=1 (note that ri = r(xi)) of N samples collected with dπ,p. Notice that we have only
access to an empirical estimate of dπ,p, which is d̂π,p(x) = 1

N

∑N
i=1 δ(x − xi) uniform on the seen xs. Using d̂π,p we

want to evaluate the performance of a candidate distribution d defined over the seen xs. For this purpose, we perform an
importance weighting procedure. We define the weight w(xi) = d(xi)

d̂π,p(xi)
= Nd(xi). The problem we aim to solve becomes

˜PRIMALκ:

max
d∈∆({xi:i∈{1,2,...,N}})

J̃d =
1

N

N∑
i=1

w(xi)r(xi) =

N∑
i=1

d(xi)r(xi)

s.t. D̃KL(d‖dπ,p) =
1

N

N∑
i=1

w(xi) logw(xi) =

N∑
i=1

d(xi) (log d(xi) + logN) ≤ κ.

Reinforcement Learning in Configurable Continuous Environments

This problem yields a solution which is defined only over the seen state-action-next-state triples:

d′(xi) =
exp

(
1
η̃ r(xi)

)
1
N

∑N
j=1 exp

(
1
η̃ r(xj)

) , i ∈ {1, 2, . . . , N}, (19)

where η̃ is the unique solution of the dual problem D̃UALκ:

min
η∈[0,∞)

η log
1

N

N∑
i=1

exp

(
1

η
r(xi) + κ

)
. (20)

Once we solved this problem, the new distribution over the whole X is characterized by just the Lagrange multiplier η̃:

d̃′(x) =
dπ,p(x) exp

(
1
η̃ r(x)

)
∫
X dπ,p(x) exp

(
1
η̃ r(x)

)
dx
, x ∈ X . (21)

We denote the performance of the new stationary distribution d̃′ as with Jd̃′ = EX∼d̃′ [r(X)].

Projection In the projection phase we aim at finding the best representation of the stationary distribution we got from the
optimization phase in a given hypothesis space DΠ,P . Let d′ be the solution of PRIMALκ, the projection problem PROJ can
be stated as the moment-projection of d′ onto DΠ,P . According to the three projections presented in Section 3.2, we have:

PROJd max
π′′∈Π,p′′∈P

H(d′‖dπ′′,p′′) = E
X∼d′

[log dπ′′,p′′(X)] + c,

PROJpπ max
π′′∈Π,p′′∈P

H(p′
π′‖p′′π

′′
) = E

S,A,S′∼d′

[
H(p′

π′
(·|S)‖p′′π

′′
(·|S))

]
= E
S,A,S′∼d′

[
log p′′

π′′
(·|S)

]
+ c,

PROJπ,p maxπ′′∈Π H(π′‖π′′) = ES,A,S′∼d′ [H(π′(·|S)‖π′′(·|S))] = ES,A,S′∼d′ [log π′′(·|S)] + c

maxp′′∈P H(p′‖p′′) = ES,A,S′∼d′ [H(p′(·|S,A)‖p′′(·|S,A))] = ES,A,S′∼d′ [log p′′(·|S,A)] + c,

where H(d‖d′) is the cross–entropy, since DKL(d‖d′) = H(d‖d′)−H(d) and the entropy H(d) is independent on d′, and
c denotes a constant that does not depend on the quantities we are optimizing on. Clearly, also in this case we need to
consider the Monte Carlo estimates obtained from the very same samples {xi}Ni=1 collected with dπ,p. Let d̃′ be the solution
of ˜PRIMALκ, the projection problem P̃ROJ becomes:

P̃ROJd max
π′′∈Π,p′′∈P

H̃(d̃′‖dπ′′,p′′) =
1

N

N∑
i=1

w(xi) log dπ′′,p′′(xi) + c,

P̃ROJpπ max
π′′∈Π,p′′∈P

H̃(p̃′π
′‖p′′π

′′
) =

1

N

N∑
i=1

w(xi) log p′′
π′′

(s′i|si) + c,

P̃ROJπ,p max
π′′∈Π

H̃(π̃′‖π′′) =
1

N

N∑
i=1

w(xi) log π′′(ai|si) + c

max
p′′∈P

H̃(p̃′‖p′′) =
1

N

N∑
i=1

w(xi) log p′′(s′i|si, ai) + c,

A.4.2. OFF-DISTRIBUTION ESTIMATION

Given a value of the Lagrange multiplier η inducing d, let us define the ratio importance weight ŵ(x) and the self-normalized
importance weight w̃(x) as:

ŵ(x) =
d(x)

dπ,p(x)
=

exp
(

1
η r(x)

)
∫
X dπ,p(x) exp

(
1
η r(x)

)
dx
, w̃(x) =

ŵ(x)∑N
i=1 ŵ(xi)

=
exp

(
1
η r(x)

)
∑N
i=1 exp

(
1
η r(xi)

) .

Reinforcement Learning in Configurable Continuous Environments

Thus, the off-distribution estimator J̃d which is optimized by ˜PRIMALκ is actually a self–normalized importance weighting
estimate, opposed to the ratio importance weighting estimate Ĵd which does not appear in the optimization problems, but
will be useful in the following:

Ĵd =
1

N

N∑
i=1

ŵ(xi)R(xi), J̃d =

N∑
i=1

w̃(xi)R(xi).

Analogously we can define the KL divergence estimators:

D̂KL(d‖dπ,p) =
1

N

N∑
i=1

ŵ(xi) log ŵ(xi), D̃KL(d‖dπ,p) =

N∑
i=1

w̃(xi) log (Nw̃(xi)) ,

and, given a d′ ∈ DΠ,P , we define the cross–entropy estimators:

Ĥ(d‖d′) =
1

N

N∑
i=1

ŵ(xi) log d′(xi), H̃(d‖d′) =

N∑
i=1

w̃(xi) log d′(xi).

It is well known that the ratio estimation is unbiased while the self-normalized estimator is biased but consistent (Owen,
2013).

A.4.3. ERROR ANALYSIS

We have seen in the previous section that we need to solve both phases of the REMPS problem using the samples. Starting
with dπ,p, PRIMALκ yields the solution d′ whereas R̃EMPSκ provides the solution dπ̃′′,p̃′′ which is in terms derived from
the ˜PRIMALκ problem yielding d̃′ and the P̃ROJ problem. There are two sources of error in this process. First of all, d̃′ is
obtained from a finite sample and thus it may differ from d′ (estimation error). Secondly, we limit to a hypothesis space
DΠ,P that may not be able to represent d̃′ (approximation error). Furthermore, the projection is performed from samples as
well (another source of estimation error). The goal of this analysis is to provide a bound to the quantity Jd′ − Jπ̃′′,p̃′′ . To
this end, we consider the following decomposition to isolate the contribution of the two phases:

Jd′ − Jπ̃′′,p̃′′ = Jd′ − Jd̃′
(i)

+ Jd̃′ − Jπ̃′′,p̃′′
(ii)

.

Term (i) A typical approach, from Empirical Risk Minimization (ERM), to bound the estimation error is to add and
subtract the empirical risk of the empirical risk minimizer J̃d̃′ and exploit the fact that this quantity is larger (smaller in
supervised learning) than the empirical risk of any other hypothesis in the hypothesis space (being ERM), in particular d′.
However, in our framework, the hypothesis space changes since the constraint on the KL–divergence is estimated from
samples and, in principle, it can impose more relaxed/tight conditions. For this purpose, we introduce a new distribution d
which is the optimal solution to the PRIMALκ problem using the sample constraint. For this reason, d̃′ and d are searched
in the same hypothesis space and thus we can apply the theory from ERM. Clearly, we need to manage the discrepancy
between d and d′. For this, we use the sensitivity analysis (Section 4.2). Let us define the discrepancy in the constraint for a
given hypothesis d:

∆κ(d) = DKL(d‖dπ,p)− D̃KL(d‖dπ,p). (22)

As a consequence D̃KL(d‖dπ,p) ≤ κ ⇐⇒ DKL(d‖dπ,p) ≤ κ + ∆κ(d). Finally, we define ∆κ = supd∈Ddπ,p ∆κ(d).
We have the usual two cases. i) If ∆κ ≤ 0 then the exact constraint is always (i.e., for every hypothesis) tighter and thus
Jd ≥ Jd. ii) If ∆κ > 0 then there exists at least one hypothesis for which the constraint is looser; thus it might be that
Jd ≤ Jd. In general, the following result holds.

Lemma A.2. Let d′, d as defined before. The following bound holds:

Jd′ ≤ Jd + 2rmax max

{
0,min

{
1

2
,

∆κ

κ

}}
. (23)

Proof. If Jd′ − Jd ≤ 0 then the theorem holds. Otherwise, it must be that ∆κ(d′) ≥ 0 (this is because we defined d as the optimal
solution under the sample-based constraint). We define dα as in Proposition 4.2, so we get:

Jd′ − Jd ≤ Jd′ − Jdα

≤ rmax

(
1− κ

κ+ ∆κ(d′)

)
‖d′ − dπ,p‖1

≤ rmax
∆κ(d′)

κ+ ∆κ(d′)
‖d′ − dπ,p‖1

Reinforcement Learning in Configurable Continuous Environments

≤ 2rmax min

{
1

2
,

∆κ(d′)

κ

}
≤ 2rmax min

{
1

2
,

∆κ

κ

}
,

where we exploited the fact that ‖d′ − dπ,p‖1 ≤ 2, ∆κ(d′)
κ+∆κ(d′) ≤

∆κ(d′)
κ

, being ∆κ(d′) ≥ 0, and ∆κ(d′)
κ+∆κ(d′) ≤

1
2

being ∆κ(d′) ≤ κ and
finally ∆κ(d′) ≤ ∆κ. Taking the max between the two cases we get the result.

Notice that max
{

0,min
{

1
2 ,

∆κ
κ

}}
≤ |∆κ|

κ = 1
κ supd∈Ddπ,p

∣∣∣D̃KL(d‖dπ,p)−DKL(d‖dπ,p)
∣∣∣, which is convenient for

using ERM theory. Now we are ready to bound Jd′ − Jd̃′ .

Lemma A.3. Let d′ and d̃′ be the solutions of the PRIMALκ and ˜PRIMALκ problems, the latter using N > 0 i.i.d. samples
collected with dπ,p. Let κ > 0 be the KL–divergence threshold. Then, it holds that:

Jd′ − Jd̃′ ≤ 2 sup
d∈Ddπ,p

∣∣∣Jd − J̃d∣∣∣+
2rmax

κ
sup

d∈Ddπ,p

∣∣∣D̃KL(d‖dπ,p)−DKL(d‖dπ,p)
∣∣∣ . (24)

Proof. We use a very simple argument of ERM combined with the previous result. Let d be defined as before, we have:

Jd′ − Jd̃′ ≤ Jd − Jd̃′ + 2rmax max

{
0,min

{
1

2
,

∆κ

κ

}}
≤ Jd − Jd̃′ +

2rmax

κ
|∆κ|

= Jd − Jd̃′ +
2rmax

κ
|∆κ| ± J̃d̃′

≤ Jd − J̃d + J̃d̃′ − Jd̃′ +
2rmax

κ
|∆κ|

≤ 2 sup
d∈Ddπ,p

∣∣∣Jd − J̃d∣∣∣+
2rmax

κ
sup

d∈Ddπ,p

∣∣∣D̃KL(d‖dπ,p)−DKL(d‖dπ,p)
∣∣∣ ,

where we exploited the fact that J̃d ≤ J̃d̃′ , being d̃′ the ERM over the same hypothesis space.

Term (ii) To bound this second term it is useful to recall the property of the KL–divergenceDKL(d‖d′) = H(d‖d′)−H(d),
where H(d‖d′) is the cross-entropy between d and d′ and H(d) is the entropy of d. When performing the projection, we are
minimizing the term H(d‖d′) since H(d) does not depend on d′. We can state the following result for P̃ROJd.

Lemma A.4. Let d̃′ and dπ̃′′,p̃′′ be the solutions of the ˜PRIMALκ and P̃ROJd problems using N > 0 i.i.d. samples collected
with dπ,p. Let κ > 0 be the KL–divergence threshold. Then, it holds that:

Jd̃′ − Jπ̃′′,p̃′′ ≤ rmax

√
2 sup
d∈Ddπ,p

inf
d′∈DΠ,P

DKL(d‖d′) + rmax

√
2 sup
d∈Ddp,π

sup
d′∈DΠ,P

∣∣∣Ĥ(d‖d′)−H(d‖d′)
∣∣∣. (25)

Proof. Let us define:

ε2 = sup
d∈Ddπ,p

sup
d′∈DΠ,P

∣∣∣Ĥ(d‖d′)−H(d‖d′)
∣∣∣ . (26)

Consider the best approximation of d̃′ contained in DΠ,P , let us call it d∗, i.e., d∗ = arg mind∈DΠ,P H(d̃′‖d). Then we can state the
following inequalities:

Jd̃′ − Jπ̃′′,p̃′′ ≤ rmax

∥∥∥d̃′ − dπ̃′′,p̃′′∥∥∥
1

≤ rmax

√
2DKL(d̃′‖dπ̃′′,p̃′′) (27)

= rmax

√
2H(d̃′‖dπ̃′′,p̃′′)− 2H(d̃′)

≤ rmax

√
2Ĥ(d̃′‖dπ̃′′,p̃′′)− 2H(d̃′) + ε2 (28)

= rmax

√√√√2

(
1

N

N∑
i=1

ŵ(xi)

)
H̃(d̃′‖dπ̃′′,p̃′′)− 2H(d̃′) + ε2 (29)

Reinforcement Learning in Configurable Continuous Environments

≤ rmax

√√√√2

(
1

N

N∑
i=1

ŵ(xi)

)
H̃(d̃′‖d∗)− 2H(d̃′) + ε2 (30)

= rmax

√
2Ĥ(d̃′‖d∗)− 2H(d̃′) + ε2

≤ rmax

√
2H(d̃′‖d∗)− 2H(d̃′) + 2ε2 (31)

= rmax

√
2DKL(d̃′‖d∗) + 2ε2 (32)

≤ rmax

√
2DKL(d̃′‖d∗) + rmax

√
2ε2

≤ rmax

√
2 sup
d∈Ddπ,p

inf
d′∈DΠ,P

DKL(d‖d′) + rmax

√
2ε2, (33)

where line (27) follows from Pinsker inequality, lines (28) and (31) follow from the hypothesis, line (30) follows from the fact
that dπ̃′′,p̃′′ is ERM, line (32) follows from the inequality

√
a+ b ≤

√
a +
√
b and lines (29) and (31) follow from the fact that(

1
N

∑N
i=1 ŵ(xi)

)
H̃(d′‖dπ̃′′,p̃′′) = Ĥ(d̃′‖dπ̃′′,p̃′′).

It is pretty straightforward to extent the previous result to the other two projections.

Corollary A.1. Let d̃′ and dπ̃′′,p̃′′ be the solutions of the ˜PRIMALκ and P̃ROJpπ problems using N > 0 i.i.d. samples
collected with dπ,p. Let κ > 0 be the KL–divergence threshold. Then, it holds that:

Jd̃′ − Jdπ̃′′,p̃′′ ≤rmaxρ
√

2 sup
d′∈Ddπ,p

inf
p′′π′′∈PΠ

E
S∼d

[
DKL

(
p′π
′
(·|S)‖p′′π′′(·|S)

)]
+ rmaxρ

√
2 sup
d∈Ddp,π

sup
p′′π′′∈PΠ

∣∣∣Ĥ(p′π
′‖p′′π′′)−H(p′π

′‖p′′π′′)
∣∣∣,

where we denote with PΠ = {pπ : p ∈ P, π ∈ Π} the set of state transition kernels induced by P and Π.

Let d̃′ and dπ̃′′,p̃′′ be the solutions of the ˜PRIMALκ and P̃ROJπ,p problems using N > 0 i.i.d. samples collected with dπ,p.
Let κ > 0 be the KL–divergence threshold. Then, it holds that:

Jd̃′ − Jdπ̃′′,p̃′′ ≤rmaxρ
√

2 sup
d′∈Ddπ,p

inf
π′′∈Π

E
S∼d

[DKL (π′(·|S)‖π′′(·|S))]

+ rmaxρ

√
2 sup
d∈Ddp,π

sup
π′′∈Π

∣∣∣Ĥ(π′‖π′′)−H(π′‖π′′)
∣∣∣

+ rmaxρ
√

2 sup
d′∈Ddπ,p

inf
p′′∈P

E
S,A∼d

[DKL (p′(·|S,A)‖p′′(·|S,A))]

+ rmaxρ

√
2 sup
d∈Ddp,π

sup
p′′∈P

∣∣∣Ĥ(p′‖p′′)−H(p′‖p′′)
∣∣∣.

Proof. The result is obtained using an approach analogous to that of Lemma A.4, using Corollary 4.1 and Lemma 4.1.

From now on we will limit our attention to the case of PROJd. Putting all together we get the following result.

Theorem A.1. (Error Decomposition) Let π ∈ Π and p ∈ P be the current policy and transition model respectively. Let
κ > 0 be the KL–divergence threshold. Let d′ ∈ Ddπ,p be the solution of the PRIMALκ problem and dπ̃′′,p̃′′ ∈ DΠ,P be the

solution of the R̃EMPSκ problem computed with N > 0 i.i.d. samples collected with dπ,p. Then, under Assumptions 4.1, it
holds that:

Jd′ − Jπ̃′′,p̃′′ ≤ 2 sup
d∈Ddπ,p

∣∣∣Jd − J̃d∣∣∣+
2rmax

κ
sup

d∈Ddπ,p

∣∣∣D̃KL(d‖dπ,p)−DKL(d‖dπ,p)
∣∣∣

+ rmax

√
2 sup
d∈Ddπ,p

inf
d∈DΠ,P

DKL(d‖d′) + rmax

√
2 sup
d∈Ddp,π

sup
d′∈DΠ,P

∣∣∣Ĥ(d‖d′)−H(d‖d′)
∣∣∣.

Proof. Just sum together Lemma A.3 and Lemma A.4.

Reinforcement Learning in Configurable Continuous Environments

A.4.4. FINITE–SAMPLE ANALYSIS FOR BOUNDED PROBABILITY DENSITIES

In the following, we will provide a finite–sample analysis of REMPS under the following assumption on the involved
distributions.

Assumption A.1. (Finite sup, non–zero inf) For every π ∈ Π and a transition model p ∈ P , for every d ∈ Ddπ,p and for
every s, s′ ∈ S and a ∈ A it holds that 0 < m ≤ d(s, a, s′) ≤M < +∞ and 0 < m ≤ dπ,p(s, a, s′) ≤M < +∞.

This assumption ensures that all loss functions we are considering are uniformly bounded and allows us to state the sequence
of useful facts.

Lemma A.5. For any d ∈ Ddπ,p and for any d′ ∈ DΠ,P . Under Assumption A.1, the following facts hold:

1. the importance weights are bounded above and below: m
M ≤ ŵ(x) ≤ M

m ;

2. the empirical KL divergence is bounded:
∣∣∣D̂KL(d‖dπ,p)

∣∣∣ ≤ max
{

1
e ,

M
m log M

m

}
;

3. the empirical cross–entropy is bounded:
∣∣∣Ĥ(d′‖d)

∣∣∣ ≤ max
{
−Mm logm, Mm logM

}
;

4.
∣∣∣D̂KL(d‖dπ,p)− D̃KL(d‖dπ,p)

∣∣∣ ≤ max
{

log M
m + 1,−2 log m

M − 1, logN + 1
} ∣∣∣ 1

N

∑N
i=1 ŵ(xi)− 1

∣∣∣;
5.
∣∣∣Ĵd − J̃d∣∣∣ ≤ rmax

∣∣∣ 1
N

∑N
i=1 ŵ(xi)− 1

∣∣∣.
Proof. 1. Immediate consequence of Assumption A.1, just observing that ŵ(x) = d(x)/dπ,p(x).

2. |D̂KL(d‖dπ,p)| ≤ 1
N

∑N
i=1 |ŵ(xi) log ŵ(xi)|. Now, we know that ŵ(x) ≤ M

m
and that the function |y log y| has a local maximum

whose value is 1/e. As a consequence, |ŵ(x) log ŵ(x)| ≤ max{1/e,M/m log(M/m)}.

3. |Ĥ(d‖d′)| ≤ 1
N

∑N
i=1 |ŵ(xi) log d′(xi)|. The maximum is attained when both ŵ(x) and | log d′(x)| are maximum. ŵ(x) ≤

M/m, while | log d′(x)| ≤ max{− logm, logM}.

4. The absolute derivative of y log y is | log y + 1|. Consider the term ŵ(xi) log ŵ(xi), we know that m/M ≤ ŵ(xi) ≤ M/m,
therefore the maximum absolute derivative has value max{log(M/m) + 1,− log(m/M) − 1}. Consider the term Nw̃(xi) =

Nŵ(xi)/
∑N
i=1 ŵ(xi). We know that (m/M)2 ≤ Nw̃(xi) ≤ N , thus the maximum absolute derivative has value max{log(N) +

1,−2 log(m/M)− 1}. Since the Lipschitz constant of an average is smaller or equal to the Lipschitz constant of each term, we get
the result.

5. Consider the following inequalities: ∣∣∣Ĵd − J̃d∣∣∣ =

∣∣∣∣∣ 1

N

N∑
i=1

ŵ(xi)r(xi)−
∑N
i=1 ŵ(xi)r(xi)∑N

i=1 ŵ(xi)

∣∣∣∣∣
=

∣∣∣∣∣
∑N
i=1 ŵ(xi)r(xi)∑N

i=1 ŵ(xi)

(
1

N

N∑
i=1

ŵ(xi)− 1

)∣∣∣∣∣
≤ rmax

∣∣∣∣∣ 1

N

N∑
i=1

ŵ(xi)− 1

∣∣∣∣∣ .

We report now a standard result of learning theory that we are going to use extensively throughout the analysis (Mohri et al.,
2012).

Theorem A.2. Let H be a family real-valued functions and let G = {Lh(x) : h ∈ H} be the family of loss functions
associated toH. Assume that Pdim(G) = v and that the loss function L is bounded by M . Then, for any δ ∈ (0, 1), with
probability at least 1− δ, for all h ∈ H it holds that:

E
X

[Lh(X)] ≤ 1

N

N∑
i=1

Lh(xi) +M

√
8v log 2eN

v + 8 log 4
δ

N
,

Reinforcement Learning in Configurable Continuous Environments

and also, with probability at least 1− δ, for all h ∈ H it holds that:

1

N

N∑
i=1

Lh(xi) ≤ E
X

[Lh(X)] +M

√
8v log 2eN

v + 8 log 4
δ

N
.

Using this result, we immediately derive the following.

Lemma A.6. Under Assumption A.1, each of these events hold with probability at least 1− δ:

(E1) ∀d ∈ Ddπ,p :

∣∣∣∣∣ 1

N

N∑
i=1

ŵ(xi)− 1

∣∣∣∣∣ ≤ M

m

√
8v log 2eN

v + 8 log 8
δ

N
;

(E2) ∀d ∈ Ddπ,p :
∣∣∣Ĵd − Jd∣∣∣ ≤ rmax

M

m

√
8v log 2eN

v + 8 log 8
δ

N
;

(E3) ∀d ∈ Ddπ,p :
∣∣∣D̂KL(d‖dπ,p)−DKL(d‖dπ,p)

∣∣∣ ≤ max

{
1

e
,
M

m
log

M

m

}√
8v log 2eN

v + 8 log 8
δ

N
;

(E4) ∀d ∈ Ddπ,p ,∀d′ ∈ DΠ,P :
∣∣∣Ĥ(d′‖d)−H(d′‖d)

∣∣∣ ≤ M

m
max {− logm, logM}

√
8v log 2eN

v + 8 log 8
δ

N
.

Proof. It is a trivial application of Theorem A.2, by observing that we need a bilateral bound, by carefully defining the maximum of each
function involved and exploiting Assumption 4.3.

We can now put all together.

Theorem A.3. (Finite–Sample Bound under Assumption A.1) Let π ∈ Π and p ∈ P be the current policy and transition
model respectively. Let κ > 0 be the KL–divergence threshold. Let d′ ∈ Ddπ,p be the solution of the PRIMALκ problem and

dπ̃′′,p̃′′ ∈ DΠ,P be the solution of the R̃EMPSκ problem computed with N > 0 samples collected with dπ,p. Then, under
Assumptions 4.1, 4.3 and A.1, there exists a constant φ and function ψ(N) = O (logN), such that for any δ ∈ (0, 1), with
probability at least 1− 4δ it holds that:

Jd−Jπ̃′′,p̃′′ ≤
√

2rmax sup
d∈Ddπ,p

inf
d∈DΠ,P

√
DKL(d‖d)+rmaxφ

4

√
8v log 2eN

v + 8 log 8
δ

N
+rmaxψ(N)

√
8v log 2eN

v + 8 log 8
δ

N
.

Proof. We start from Theorem A.1 and we bound each term using Lemma A.5 and Lemma A.6. Let us start with supd∈Ddπ,p

∣∣∣Jd − J̃d∣∣∣:
sup

d∈Ddπ,p

∣∣∣Jd − J̃d∣∣∣ = sup
d∈Ddπ,p

∣∣∣Jd − J̃d ± Ĵd∣∣∣
≤ sup
d∈Ddπ,p

∣∣∣Jd − Ĵd∣∣∣+ sup
d∈Ddπ,p

∣∣∣Ĵd − J̃d∣∣∣
≤ sup
d∈Ddπ,p

∣∣∣Jd − Ĵd∣∣∣+ rmax sup
d∈Ddπ,p

∣∣∣∣∣ 1

N

N∑
i=1

ŵ(xi)− 1

∣∣∣∣∣
≤ 2rmax

M

m

√
8v log 2eN

v
+ 8 log 8

δ

N
,

where we exploited events (E1) and (E2). Consider supd∈Ddπ,p

∣∣∣D̃KL(d‖dπ,p)−DKL(d‖dπ,p)
∣∣∣:

sup
d∈Ddπ,p

∣∣∣D̃KL(d‖dπ,p)−DKL(d‖dπ,p)
∣∣∣ = sup

d∈Ddπ,p

∣∣∣D̃KL(d‖dπ,p)−DKL(d‖dπ,p)± D̂KL(d‖dπ,p)
∣∣∣

≤ sup
d∈Ddπ,p

∣∣∣DKL(d‖dπ,p)− D̂KL(d‖dπ,p)
∣∣∣+ sup

d∈Ddπ,p

∣∣∣D̃KL(d‖dπ,p)− D̂KL(d‖dπ,p)
∣∣∣

≤ sup
d∈Ddπ,p

∣∣∣DKL(d‖dπ,p)− D̂KL(d‖dπ,p)
∣∣∣

Reinforcement Learning in Configurable Continuous Environments

+ sup
d∈Ddπ,p

max

{
log

M

m
+ 1,−2 log

m

M
− 1, logN + 1

} ∣∣∣∣∣ 1

N

N∑
i=1

ŵ(xi)− 1

∣∣∣∣∣
≤
(

max

{
1

e
,
M

m
log

M

m

}
+ max

{
log

M

m
+ 1,−2 log

m

M
− 1, logN + 1

})√
8v log 2eN

v
+ 8 log 8

δ

N

≤ f(N)

√
8v log 2eN

v
+ 8 log 8

δ

N
,

where we defined f(N) = max
{

1
e
, M
m

log M
m

}
+ max

{
log M

m
+ 1,−2 log m

M
− 1, logN + 1

}
= O(logN) and we exploited events

(E1) and (E3). Finally, the term supd∈Ddp,π supd′∈DΠ,P

∣∣∣Ĥ(d‖d′)−H(d‖d′)
∣∣∣ can be bounded using Lemma A.6. Let us define

c = M
m

max {− logm, logM} and ε =

√
8v log 2eN

v
+8 log 8

δ
N

and we put all together we get:

Jd′ − Jπ̃′′,p̃′′ ≤ 4rmaxε+
2rmax

κ
f(N)ε+ rmax

√
2 sup
d∈Ddπ,p

inf
d∈DΠ,P

√
DKL(d‖d) + rmax

√
2cε

= rmax

√
2 sup
d∈Ddπ,p

inf
d∈DΠ,P

√
DKL(d‖d) + rmax

√
ε

((
4 +

2

κ
f(N)

)√
ε+
√

2c

)
= rmax

√
2 sup
d∈Ddπ,p

inf
d∈DΠ,P

√
DKL(d‖d) + rmaxφ

√
ε+ rmaxψ(N)ε,

where we renamed ψ(N) = 4 + 2
κ
f(N) and φ =

√
2c. Notice that ψκ(N) = O(logN). Since we made a union bound over the events

(E1), (E2), (E3) and (E4), the statement holds with probability 1− 4δ.

A.4.5. FINITE–SAMPLE ANALYSIS FOR FINITE β-MOMENTS

In the following, we consider a more realistic set of assumptions (Assumption 4.4). This second analysis poses two main
challenges. First, we are not guaranteed that the involved loss functions have finite supremum. This problem can be tackled
by resorting to learning bounds that are applicable to unbounded loss functions with bounded moments (Cortes et al., 2013).
Second, the analysis of the KL–divergence estimated with self–normalized importance sampling is more complex.

The main theoretical tool we are going to use in the following comes from Cortes et al. (2013).

Theorem A.4. Let H be a family real-valued functions and let G = {Lh(x) : h ∈ H} be the family of loss functions
associated toH. Assume that Pdim(G) = v and that there exists α ∈ (1, 2) such that suph∈H Lα(h) = EX [|Lh(X)|α] <

+∞. Let L̂α(h) = 1
N

∑N
i=1 |Lh(xi)|α. Then, for any δ ∈ (0, 1), with probability at least 1− δ, for all h ∈ H it holds that:

E
X

[Lh(X)] ≤ 1

N

N∑
i=1

Lh(xi) + 2
α+2
2α

α
√
Lα(h)

√
v log 2eN

v + log 4
δ

N
2(α−1)
α

Γ

α,
√
v log 2eN

v + log 4
δ

N
2(α−1)
α

 ,

and also, with probability at least 1− δ, for all h ∈ H it holds that:

1

N

N∑
i=1

Lh(xi) ≤ E
X

[Lh(X)] + 2
α+2
2α

α

√
L̂α(h)

√
v log 2eN

v + log 4
δ

N
2(α−1)
α

Γ

α,
√
v log 2eN

v + log 4
δ

N
2(α−1)
α

 ,

where Γ(α, ε) = α−1
α + 1

α

(
α
α−1

)α−1 (
1 +

(
α−1
α

)α−1
log 1

ε

)α−1
α

.

In the following statements, we make use of the Rényi divergence between probability distributions (Cortes et al., 2010).
Given two probability distributions P and Q admitting p and q as density functions. The α–Rényi divergence between p and
q is given by:

Dα(p‖q) =
1

1− α
log E

X∼q

[(
p(X)

q(X)

)α]
, for α ∈ [0,∞]. (34)

We define the exponentiated Rényi divergence as dα(p‖q) = exp (Dα(p‖q)).

We start by showing a trivial application of Theorem A.4 for bounding in probability several deviations of interest.

Lemma A.7. Let us define ε = 2
β+2
2β

√
v log 2eN

v +log 8
δ

N
2(β−1)
β

Γ

(
β,

√
v log 2eN

v +log 8
δ

N
2(β−1)
β

)
. Under Assumption 4.4, each of these

events holds with probability at least 1− δ:

Reinforcement Learning in Configurable Continuous Environments

(E1) ∀d ∈ Ddπ,p :

∣∣∣∣∣ 1

N

N∑
i=1

ŵ(xi)− 1

∣∣∣∣∣ ≤ max

{
β

√
dβ(d‖dπ,p),

β

√
d̂β(d‖dπ,p)

}
ε;

(E2) ∀d ∈ Ddπ,p :
∣∣∣Ĵd − Jd∣∣∣ ≤ rmax

{
β

√
dβ(d‖dπ,p),

β

√
d̂β(d‖dπ,p)

}
ε;

(E4) ∀d ∈ Ddπ,p ,∀d′ ∈ DΠ,P :∣∣∣Ĥ(d′‖d)−H(d′‖d)
∣∣∣ ≤ max

 E
X∼dπ,p

[∣∣∣∣ d(X)

dπ,p(X)
log d′(X)

∣∣∣∣β
]1/β

,

(
1

N

N∑
i=1

∣∣∣∣ d(xi)

dπ,p(xi)
log d′(xi)

∣∣∣∣β
)1/β

 ε.

Proof. It is a simple application of Theorem A.4, using Assumption 4.4 and applying definition (34).

Concerning the KL–divergence, the derivation is a bit more complicated. We first need the following technical lemma.

Lemma A.8. Under Assumption 4.4, for any α ∈ (1, β), the following inequality holds:

E
X∼dπ,p

[∣∣∣∣ d(x)

dπ,p(x)
log

d(x)

dπ,p(x)

∣∣∣∣α]1/α

≤ 1

e
+

α

β − α E
X∼dπ,p

[∣∣∣∣ d(x)

dπ,p(x)

∣∣∣∣β
]1/α

=
1

e
+

α

β − α
dβ(d‖dπ,p)β/α. (35)

Proof. Let y = d(x)/dπ,p(x). We start proving that the following inequality hold for all α > 1:

|y log y| ≤ max

{
1

e
,
yα

α− 1

}
. (36)

Let g(y) = |y log y|. For y ∈ [0, 1] we know that y log y is negative, thus g(y) = −y log y that has 1/e as maximum. Just take the
derivative ∂g/∂y = − log y − 1 = 0 =⇒ y = 1/e =⇒ g(1/e) = 1/e. Clearly the second derivative is negative, thus 1/e is a
maximum and at the extremes g(0) = g(1) = 0 < 1/e. We prove that for y ∈ [1,∞), g(y) = y log y ≤ yα

α−1
. It suffices to prove

that log y ≤ yα−1

α−1
. Consider the function h(y) = log y − yα−1

α−1
, it is enough to prove that h(y) ≤ 0 for all y ∈ [1,∞). We know that

h(1) = − 1
α−1

< 0 and h(∞) = −∞ and continuous. Therefore we consider the derivative:
∂h

∂y
=

1

y
− yα−2 ≤ 0 =⇒ y ≥ 1. (37)

Thus h(y) is monotonically decreasing in [1,∞) and therefore the statement holds. Now we observe that max{x, y} ≤ x + y for
x, y ≥ 0 and we get using Minkowski:

E
X∼dπ,p

[∣∣∣∣ d(x)

dπ,p(x)
log

d(x)

dπ,p(x)

∣∣∣∣α]1/α

≤ E
X∼dπ,p

[(
1

e
+

1

γ − 1

(
d(x)

dπ,p(x)

)γ)α]1/α

≤ 1

e
+

1

γ − 1
E

X∼dπ,p

[(
d(x)

dπ,p(x)

)γα]1/α

.

By taking γα = β we get the result.

An immediate consequence is the following result.

Lemma A.9. For any α ∈ (1, 2), let ε = 2
α+2
2α

√
v log 2eN

v +log 8
δ

N
2(α−1)
α

Γ

(
α,

√
v log 2eN

v +log 8
δ

N
2(α−1)
α

)
. For any α ∈ (1, β), under

Assumption 4.4, the following inequality holds with probability 1− δ:
(E3) ∀d ∈ Ddπ,p :∣∣∣D̂KL(d‖dπ,p)−DKL(d‖dπ,p)

∣∣∣ ≤ max

1

e
+

α

β − α E
x∼q

[∣∣∣∣ d(x)

dπ,p(x)

∣∣∣∣β
]1/α

,

(
1

N

N∑
i=1

|ŵ(xi) log ŵ(xi)|β
)1/β

 ε.

Proof. It is a simple application of Theorem A.4, using Assumption 4.4 and Lemma A.8.

Finally, we need the following result to relate the KL–divergence estimated with and without the self–normalized estimator.

Lemma A.10. For any d ∈ Ddπ,p and for any d′ ∈ DΠ,P . The following inequality holds:∣∣∣D̂KL(d‖dπ,p)− D̃KL(d‖dπ,p)
∣∣∣ ≤ ∣∣∣∣∣

(
1

N

N∑
i=1

ŵ(xi)

)
log

(
1

N

N∑
i=1

ŵ(xi)

)∣∣∣∣∣+ 2 logN

∣∣∣∣∣ 1

N

N∑
i=1

ŵ(xi)− 1

∣∣∣∣∣ .

Reinforcement Learning in Configurable Continuous Environments

Proof. We perform some algebraic manipulation of the expression:

D̂KL(d‖dπ,p)− D̃KL(d‖dπ,p) =
1

N

N∑
i=1

ŵ(xi) log ŵ(xi)−
1

N

N∑
i=1

ŵ(xi)N∑N
i=1 ŵ(xi)

log
ŵ(xi)N∑N
i=1 ŵ(xi)

=
1

N

N∑
i=1

ŵ(xi) log
ŵ(xi)N∑N
i=1 ŵ(xi)

+

(
1

N

N∑
i=1

ŵ(xi)

)
log

(
1

N

N∑
i=1

ŵ(xi)

)
− 1

N

N∑
i=1

ŵ(xi)N∑N
i=1 ŵ(xi)

log
ŵ(xi)N∑N
i=1 ŵ(xi)

=
1

N

N∑
i=1

ŵ(xi)N∑N
i=1 ŵ(xi)

log
ŵ(xi)N∑N
i=1 ŵ(xi)

(
1

N

N∑
i=1

ŵ(xi)− 1

)
+

(
1

N

N∑
i=1

ŵ(xi)

)
log

(
1

N

N∑
i=1

ŵ(xi)

)
.

Now, consider the term:

1

N

N∑
i=1

ŵ(xi)N∑N
i=1 ŵ(xi)

log
ŵ(xi)N∑N
i=1 ŵ(xi)

=

N∑
i=1

w̃(xi) log w̃(xi) + logN.

Since the w̃(xi) sum up to 1, the summation
∑N
i=1 w̃(xi) log w̃(xi) is maximized in absolute value when all ŵ(xi) are equal, thus

|
∑N
i=1 w̃(xi) log w̃(xi)| ≤ logN . By taking the absolute value of the full expression, we get the result.

Now we can put all together.

Theorem 4.1. (Finite–Sample Bound) Let π ∈ Π and p ∈ P be the current policy and transition model. Let κ > 0 be the
KL–divergence threshold. Let d′ ∈ Ddπ,p be the solution of the PRIMALκ problem and dπ̃′′,p̃′′ ∈ DΠ,P be the solution of

the R̃EMPSκ problem with PROJd computed with N > 0 samples collected with dπ,p. Then, under Assumptions 4.1, 4.3
and 4.4, for any α ∈ (1, β), there exist two constants χ, ξ and a function ζ(N) = O(logN) depending on α, and on the
samples, such that for any δ ∈ (0, 1), with probability at least 1− 4δ it holds that:

Jd′ − Jπ̃′′,p̃′′ ≤
√

2rmax sup
d∈Ddπ,p

inf
d∈DΠ,P

√
DKL(d‖d)

approximation error

+ rmaxχ
√
ε+ rmaxζ(N)ε+ rmaxξε

2

estimation error

,

where ε = 2
α+2
2α

√
v log 2eN

v +log 8
δ

N
2(α−1)
α

Γ

(
α,

√
v log 2eN

v +log 8
δ

N
2(α−1)
α

)
, depending on the pseudo-dimension bound v < +∞ and

Γ(α, τ) = α−1
α + 1

α

(
α
α−1

)α−1 (
1 +

(
α−1
α

)α−1
log 1

τ

)α−1
α

.

Proof. We start from Theorem A.1 and we bound each term using Lemma A.7 and Lemma A.9. For brevity, we define ε =

2
α+2
2α

√
v log 2eN

v
+log 8

δ

N
2(α−1)
α

Γ

(
α,

√
v log 2eN

v
+log 8

δ

N
2(α−1)
α

)
. Let us start with supd∈Ddπ,p

|Jd − J̃d|:

sup
d∈Ddπ,p

∣∣∣Jd − J̃d∣∣∣ = sup
d∈Ddπ,p

∣∣∣Jd − J̃d ± Ĵd∣∣∣
≤ sup
d∈Ddπ,p

∣∣∣Jd − Ĵd∣∣∣+ rmax sup
d∈Ddπ,p

∣∣∣∣∣ 1

N

N∑
i=1

ŵ(xi)− 1

∣∣∣∣∣
≤ 2rmax max

{
α
√
dα(d‖dπ,p),

α

√
d̂β(d‖dπ,p)

}
ε,

where we exploited events (E1) and (E2) and simply observed that α < β and thus Lemma A.9 holds as well. Consider

supd∈Ddπ,p

∣∣∣D̃KL(d‖dπ,p)−DKL(d‖dπ,p)
∣∣∣:

sup
d∈Ddπ,p

∣∣∣D̃KL(d‖dπ,p)−DKL(d‖dπ,p)
∣∣∣ = sup

d∈Ddπ,p

∣∣∣D̃KL(d‖dπ,p)−DKL(d‖dπ,p)± D̂KL(d‖dπ,p)
∣∣∣

≤ sup
d∈Ddπ,p

∣∣∣DKL(d‖dπ,p)− D̂KL(d‖dπ,p)
∣∣∣

+

∣∣∣∣∣
(

1

N

N∑
i=1

ŵ(xi)

)
log

(
1

N

N∑
i=1

ŵ(xi)

)∣∣∣∣∣+ 2 logN

∣∣∣∣∣ 1

N

N∑
i=1

ŵ(xi)− 1

∣∣∣∣∣ .
To complete the derivation we have to analyze the term z log z with z = 1

N

∑N
i=1 ŵ(xi). Now using Lemma A.7 and defining

τ = max

{
α
√
dα(d‖dπ,p), α

√
d̂β(d‖dπ,p)

}
ε we know that max{0, 1− τ} ≤ z ≤ 1 + τ as z ≥ 0. Consider a value of τ ∈ [0, 1] it is

Reinforcement Learning in Configurable Continuous Environments

simple to prove that (1 + τ) log(1 + τ) ≥ −(1− τ) log(1− τ), therefore |z log z| ≤ (1 + τ) log(1 + τ). Therefore, we have:

sup
d∈Ddπ,p

∣∣∣D̃KL(d‖dπ,p)−DKL(d‖dπ,p)
∣∣∣ ≤ max

1

e
+

α

β − α E
x∼q

[∣∣∣∣ d(x)

dπ,p(x)

∣∣∣∣β
]1/α

,

(
1

N

N∑
i=1

|ŵ(xi) log ŵ(xi)|β
)1/β

 ε

+

(
1 + max

{
α
√
dα(d, dπ,p),

α

√
d̂α(d, dπ,p)

}
ε

)
log

(
1 + max

{
α
√
dα(d, dπ,p),

α

√
d̂α(d, dπ,p)

}
ε

)
+ 2 logN max

{
α
√
dβ(d, dπ,p),

α

√
d̂α(d, dπ,p)

}
ε.

Finally, the term supd∈Ddp,π supd′∈DΠ,P

∣∣∣Ĥ(d‖d′)−H(d‖d′)
∣∣∣ can be bounded using Lemma A.7. We define:

f(α) = max

{
1

e
+

α

β − α E
x∼q

[∣∣∣∣ d(x)

dπ,p(x)

∣∣∣∣β
]1/α

,

(
1

N

N∑
i=1

|ŵ(xi) log ŵ(xi)|β
)1/β

, α
√
dα(d, dπ,p),

α

√
d̂α(d, dπ,p),

E
X∼dπ,p

[∣∣∣∣ d(X)

dπ,p(X)
log d′(X)

∣∣∣∣β
]1/β

,

(
1

N

N∑
i=1

∣∣∣∣ d(xi)

dπ,p(xi)
log d′(xi)

∣∣∣∣β
)1/β }

.

Finally,

Jd′ − Jπ̃′′,p̃′′ ≤ 4rmaxf(α)ε+
2rmax

κ
[f(α)ε+ (1 + f(α)ε) log (1 + f(α)ε) + 2 logNf(α)ε]

+ rmax

√
2 sup
d∈Ddπ,p

inf
d∈DΠ,P

√
DKL(d‖d) + rmax

√
2f(α)ε

≤ 4rmaxf(α)ε+
2rmax

κ
(1 + 2 logN + f(α)ε) f(α)ε+ rmax

√
2 sup
d∈Ddπ,p

inf
d∈DΠ,P

√
DKL(d‖d) + rmax

√
2f(α)ε

=
√

2rmax sup
d∈Ddπ,p

inf
d∈DΠ,P

√
DKL(d‖d) + rmaxχ

√
ε+ rmaxζ(N)ε+ rmaxξε

2,

where we exploited the fact that log(1 + x) ≤ x and χ =
√

2f(α), ζ(N) = 4 + 2
κ

(1 + 2 logN)f(α) and ξ = 2
κ

. Since we made a
union bound over the events (E1), (E2), (E3) and (E4), the statement holds with probability 1− 4δ.

Remark The first set of assumptions allows to have a convergence rate of type Õ(N−1/4), while the second allows for
Õ
(
N−

2(α−1)
4α

)
. Note that 2(α−1)

4α ≤ 1
4 , but the assumption employed is significantly lighter.

B. Gradient Estimators for Parametric Configuration Learning
In this appendix, we provide the straightforward extensions of REINFORCE and G(PO)MDP gradient estimators that can
be used to adapt policy gradient methods to the problem of learning parametric environment configurations. Let us start by
recalling the P-Gradient Theorem, introduced in Metelli et al. (2018), which is the natural adaptation of the Policy Gradient
Theorem of Sutton et al. (2000).

Theorem B.1 (P-Gradient Theorem, from (Metelli et al., 2018)). Let PΩ be a class of parametric stochastic transition
models differentiable in ω, let π be a policy. Then, the gradient of the expected return with respect to ω is given by:

∇ωJπ,pω = E
(S,A,S′)∼dπ,pω

[∇ω log pω(S′|S,A)uπ,pω (S,A, S′)] ,

where uπ,pω (s, a, s′) = r(s, a, s′) + γvπ,pω (s′) is the state-action-next-state value function.

We can also simply derive the trajectory-based expression of the gradient w.r.t. the environment configuration parameters.

Proposition B.1. Let PΩ be a class of parametric stochastic transition models differentiable in ω, let π be a policy. Then,
the gradient of the expected return with respect to ω is given by:

∇ωJπ,pω = E
τ∼νπ,pω

[∇ω log νπ,pω (τ)R(τ)] = E
τ∼νπ,pω

[
H−1∑
t=0

∇ω log pω(sτ,t+1|sτ,t, aτ,t)R(τ)

]
,

where νπ,pω (τ) = µ(sτ,0)
∏H−1
t=0 π(aτ,t|sτ,t)pω(sτ,t+1|sτ,t, aτ,t) is the trajectory density function and R(τ) =∑H−1

t=0 γtr(sτ,t, aτ,t, sτ,t+1) is the trajectory return.

Proof. Derives trivially from the linearity of the gradient and expectation and by applying the log-trick.

Reinforcement Learning in Configurable Continuous Environments

We can now derive the REINFORCE and G(PO)MDP estimators for the gradient and the corresponding optimal baselines.
We omit the derivations as they are analogous to the policy case and we denote with � the element-wise product between
vectors.

REINFORCE

∇̂RF
ω Jπ,pω =

1

N

N∑
i=1

(
H−1∑
t=0

∇ω log pω(sτi,t+1|sτi,t, aτi,t)

)
�

(
H−1∑
t=0

γtr(sτi,t, aτi,t, sτi,t+1)− bRF

)

b∗RF =
Eτ∼νπ,pω

[(∑H−1
t=0 ∇ω log pω(sτi,t+1|sτi,t, aτi,t)

)2

R(τ)

]
Eτ∼νπ,pω

[(∑H−1
t=0 ∇ω log pω(sτi,t+1|sτi,t, aτi,t)

)2
]

G(PO)MDP

∇̂G(PO)MDP
ω Jπ,pω =

1

N

N∑
i=1

H−1∑
t=0

(
t∑
l=0

∇ω log pω(sτi,l+1|sτi,l, aτi,l)

)
�
(
γtr(sτi,t, aτi,t, sτi,t+1)− bt,G(PO)MDP

)

b∗t,G(PO)MDP =
Eτ∼νπ,pω

[(∑t
l=0∇ω log pω(sτi,l+1|sτi,l, aτi,l)

)2

γtr(sτ,t, aτ,t, sτ,t+1)

]
Eτ∼νπ,pω

[(∑t
l=0∇ω log pω(sτi,l+1|sτi,l, aτi,l)

)2
]

C. Implementation Details
In this appendix, we discuss some practical issues about our implementation of REMPS.

C.1. Dual Regularization

The parameter η in the solution of the PRIMALκ controls the greediness of the stationary distribution d′. A small η
corresponds to a very greedy distribution since the reward of a triplet (s, a, s′) is weighted by 1/η, an high η makes the
new distribution very similar to the sampling one. We employ a regularization on the dual adding two penalization terms to
prevent η from assuming too extreme values:

min
η∈[0,∞)

g(η) = η log E
S,A,S′∼d

[
exp

(
1

η
r(S,A, S′) + κ

)]
+ λ

(
η +

1

η

)
, (38)

where λ ≥ 0 controls the magnitude of the regularization.

C.2. Policy Regularization

Additionally, we sometimes employ an L2 regularization of the policy parameters in the projection phase:
θ′,ω′ = arg min

θ∈Θ,ω∈Ω
DKL (d′‖dπθ,pω) + β ‖θ‖22 ,

where β ≥ 0 controls the magnitude of the policy regularization. The same regularization term can be applied to all types of
projections. Notice that we do not apply regularization on model parameters.

D. Experimental Details
In this appendix, we report the description of the environments used in the experimental evaluation, the value of the
hyperparameters employed and some additional experiments we did not include in the main paper.

D.1. Chain Domain

D.1.1. HYPERPARAMETERS

In Table 2 we report the hyperparameters used in the experiments on the Chain domain.

Reinforcement Learning in Configurable Continuous Environments

Table 2. Hyper-parameters used in the experiments on the Chain domain.

Parameter Value

ζ 0.2
L 10
l 8
s 2
ω0 0.8
θ0 0.2
λ 0
β 0

Number of samples per iteration 500

D.1.2. COMPARISON OF PROJECTION STRATEGIES

In Figure 6, we compare the different projection strategies together with the no-configuration cases. We can see that the best
learning curve is attained by the PROJpπ that reaches the global optimum quickly. REMPS with PROJπ,p is unable to reach
the global optimum, indeed the configuration parameter gets stuck to a suboptimal value (around 0.55), thus the performance
is significantly worse w.r.t. PROJpπ . The same behavior, limited to the configuration parameter value, is displayed by the
only-configuration (REMS, Relative Entropy Model Search) learning case. Finally, the only-policy (REPS, Relative Entropy
Policy Search) learning moves the policy parameter towards zero, approaching the local optimum.

0 20 40

2

4

6

8

10
J∗

iteration

a
v
e
ra

g
e
re
w
a
rd

0 20 40

0

0.2

0.4

0.6

0.8

ω∗

iteration

ω

0 20 40

0.5

1
θ∗

iteration

θ

REMPS with PROJpπ REMPS with PROJπ,p REMS

REPS Optimal

Figure 6. Average reward, configuration parameter (ω) and policy parameter (θ) in the Chain domain with different projection strategies,
only-policy (REPS) and only-configuration (REMS) learning as a function of the number of iterations. 20 runs 95% c.i.

D.1.3. EFFECT OF THE POLICY AND MODEL SPACES

The optimization phase (PRIMALκ) in REMPS is able to find in closed-form a new stationary distribution d′ that optimizes
our performance index subject to a trust-region constraint. As we have seen, this distribution is not typically representable in
space DΠ,P and, thus, we need to perform a projection. We analyze how the finite representation power of DΠ,P affects
performance. Figure 7 shows the performance of the best model-policy found as a function of κ and the value of PRIMALκ
which is the expected return obtained by evaluating d′ after solving the primal. We can see that the value of the primal
is always larger than the performance after the projection, i.e., the performance of the new policy-configuration pair. As
expected, the projection yields a degradation of performance.

D.1.4. SENSITIVITY TO PARAMETER INITIALIZATION

REMPS behaves consistently with respect to a random initialization of model and policy parameters. In Figure 8, we can
see that REMPS updates the model and policy parameters towards the global maximum while G(PO)MDP updates vary
across the different initializations. In the G(PO)MDP learning curve it is possible to see clearly the two attractors.

Reinforcement Learning in Configurable Continuous Environments

0 0.2 0.4 0.6 0.8 1
0

5

10

κ

a
v
e
ra

g
e
re
w
a
rd

primal projection

optimal

Figure 7. Average reward after PRIMALκ (primal) and after PROJd (projection) compared with the optimal performance, as a function of
the KL-threshold κ.

0 20 40 60 80 100

0

0.5

1

iteration

ω

0 20 40 60 80 100
0

0.5

1

iteration

θ

0 20 40 60 80 100
0

5

10

Iteration

a
v
e
ra

g
e
re
w
a
rd

0 20 40 60 80 100

0

0.5

1

iteration

ω

0 20 40 60 80 100
0

0.5

1

iteration

θ

0 20 40 60 80 100
0

5

10

iteration

a
v
e
ra

g
e
re
w
a
rd

REMPS G(PO)MDP Optimal

Figure 8. Configuration parameter (ω), policy parameter (θ) and average return in the Chain domain with random initialization of model
and policy parameter. Comparison between G(PO)MDP and REMPS.

D.1.5. COMPARISON WITH SPMI

SPMI (Metelli et al., 2018) is, so far, the only algorithm proposed for Conf-MDPs. We report in the following the learning
curves of SPMI. In Figure 9, we show the behavior of the SPMI variants on the chain experiment. We can easily notice that
SPMI requires a huge number of iterations before convergence. While REMPS converges approximately after 10 iterations,
SPMI requires a number of iterations in the order of 103. This is due to the conservative step size of safe approaches. SPMI,
SPMI-alt, SPMI-sup and SPI-SMI reach the global maximum while SMI-SPI goes (very slowly) towards the local maximum.
SMI-SPI is not able to reach the global maximum since it alternates a model improvement step with a policy improvement
step, considering the two components in a separate way. We recall that SPMI is applicable to the chain experiment since this
environment has a discrete state space and a discrete action space, while the standard version of this algorithm cannot be
applied to the other domains considered in this paper (Cartpole and TORCS), having them a continuous state space.

Reinforcement Learning in Configurable Continuous Environments

0 2 4 6 8 10

·103

0

5

10

iteration

a
v
e
ra

g
e
re
w
a
rd

0 2 4 6 8 10

·103

0

0.5

1

iteration

ω

0 2 4 6 8 10

·103

0

0.5

1

Iteration

θ

SPMI SPMI-alt SPMI-sup SMI-SPI SPI-SMI Optimal

Figure 9. Average return, configuration parameter (ω) and policy parameter (θ) in the Chain domain comparing the different versions of
SPMI.

D.2. Cartpole

D.2.1. ENVIRONMENT DESCRIPTION

The Cartpole domain (Widrow & Smith, 1964; Barto et al., 1983) is a standard RL benchmark. The environment consists
of a cart that moves along the horizontal axis and a pole that is anchored on the cart. The state space is continuous and is
represented by the position of the cart x, by the cart velocity ẋ, by the pole angle γ with respect to the vertical, and by the
pole angular velocity γ̇. The action space is discrete and consists of two actions: left L and right R. The model parameter is
represented by the force ω to be applied to the cart, which is the same for both actions, thus the resulting force is ±ω based
on the action. The parameter space is Ω = [0, 30]. Each action, when performed, is affected by a noise term proportional to
the applied force and independent for each state component. The goal is to keep the pole in a vertical position (γ = 0) as
long as possible. The episode ends when the pole reaches a certain angle (|γ| > γ̄) or after a predefined number of steps.
We want to encourage smaller forces, to this end we use the following reward function:

r(s, a, s′) = 10− ω2

20
− 20 · (1− cos(γ)).

The first part of the reward function is a fixed bonus for each time step the pole is up and the pole angle is within the range
[−γ̄, γ̄]. The second part of the reward is a penalty proportional to the force. The third part is a penalty proportional to the
pole angle. Ideally the agent should learn to balance the pole with the smallest force possible, keeping it fixed in a vertical
position.

D.2.2. HYPERPARAMETERS

In Table 3 we report the hyper-parameters used in the Cartpole experiments.

Table 3. Hyper-parameters used in the exact and approximate Cartpole experiment.

Parameter Exact case Approximate case

Number of samples per iteration 100000 50000
λ 0 0
β 0 10−4

κ 10−3 10−3

ω0 8 8

D.2.3. POLICY AND MODEL APPROXIMATOR

We evaluate the performance of our algorithm in the exact case (known model) and in the approximate case. In the exact
case, we know the effect of the model parameters on the transition function, i.e., we know pω(·|s, a). The policy πθ is

Reinforcement Learning in Configurable Continuous Environments

softmax policy with a linear mapping in the state space s = (x, ẋ, γ, γ̇, 1):

πθ(a|s) =
eθ
T
a s∑

a′∈{L,R} e
θT
a′s
, a ∈ {L,R}.

For the approximate case, we assume the distribution over the next states can be approximated by a Gaussian distribution
with diagonal covariance. We model the mean and the variance using two independent neural networks with the same input
(s, a, ω):

p̂(·|s, a, ω) ∼ N
(
µ(s, a, ω), σ2(s, a, ω)

)
,

µ(s, a, ω) = NNµ(s, a, ω),

σ(s, a, ω) = exp (NNσ(s, a, ω)) ,

where NNµ and NNσ have the same architecture, i.e., one hidden layer made of 10 neurons with tanh activation. The
training is performed just once at the beginning of training, using a dataset made of 105 samples collected with different
configuration parameters ω (randomly generated).

D.2.4. ADDITIONAL RESULTS

In Figure 10, we show additional details of the experiments, reported in the main paper, both for the exact and approximate
case.

0 500 1,000 1,500 2,000
0

2

4

6

8

10

iteration

ω

0 500 1,000 1,500 2,000
0

50

100

150

200

iteration

ti
m
e
st
e
p
s

0 500 1,000 1,500 2,000
0

2

4

6

8

10

iteration

ω

0 500 1,000 1,500 2,000
0

50

100

150

200

iteration

ti
m
e
st
e
p
s

REMPS PROJpπ REMPS PROJπ,p G(PO)MDP

Figure 10. Configuration parameter (ω) and episode duration for the cartpole experiment comparing REMPS with PROJpπ , REMPS with
PROJπ,p and G(PO)MDP. Top: ideal scenario. Bottom: approximated scenario. 20 runs, 95% c.i.

Configuring the environment could be more expensive than modifying the policy (e.g. one should stop a factory and change
the machine configuration). In Figure 11, we show empirically the effect of performing an alternated projection PROJalt
on the performance. In this experiment we perform policy optimization every iteration, while the model optimization is
performed only every 50 iterations, using the projection PROJpπ . In Figure 11, we show the comparison between the
alternated projection and the other types of projections. We can notice that, although the is update of the configuration is
performed rarely, we are able to reach pretty fast a good performance, at least comparable with PROJπ,p.

Reinforcement Learning in Configurable Continuous Environments

0 500 1000 1500 2000
0

500

1000

1500

2000

iteration

a
v
e
ra

g
e
re
tu

rn

0 500 1,000 1,500 2,000
0

2

4

6

8

10

iteration

ω

0 500 1,000 1,500 2,000
0

50

100

150

200

iteration

ti
m
e
st
e
p
s

0 500 1000 1500 2000
0

500

1000

1500

2000

iteration

a
v
e
ra

g
e
re
tu

rn

0 500 1,000 1,500 2,000
0

2

4

6

8

10

iteration

ω

0 500 1,000 1,500 2,000
0

50

100

150

200

iteration

ti
m
e
st
e
p
s

REMPS PROJpπ REMPS PROJπ,p REMPS PROJalt

Figure 11. Average return, Configuration parameter (ω), episode duration for the cartpole experiment comparing REMPS PROJpπ ,
REMPS PROJπ,p and REMPS PROJalt. Top: ideal scenario. Bottom: approximated scenario. 20 runs, 95% c.i.

D.3. TORCS

D.3.1. ENVIRONMENT DESCRIPTION

The state space of the TORCS environment is composed by 29 dimensions, S ⊆ R29. The action space is composed by 2
dimensions, A ⊆ R2: acceleration/brake action, where +1 indicates full acceleration and −1 full brake and steering angle,
where −1 indicates maximum left steer and +1 maximum right steer. Among all possible parameters (Table 5), in our
experiments we focused on configuring the Rear and Front Wings and the Front-Rare Brake Repartition. All configuration
parameters are normalized in the range [0, 1]. The state space space is summarized in Table 4 and the configuration
parameters in Table 5.

Table 4. State space of the TORCS experiment.

Parameter Description

α Angle between the car direction and the direction of the track axis.
rpm Number of rotation per minute of the car engine.
vx Speed of the car along the longitudinal axis of the car.
vy Speed of the car along the transverse axis of the car.
vz Speed of the car along the Z axis of the car.

track Vector of 19 range finder sensors: each sensors returns the distance between
the track edge and the car within a range of 200 meters.

trackPos Distance between the car and the track axis.
wheelSpinVel Vector of 4 sensors representing the rotation speed of wheels.

We defined the reward function in the following way:
r(s, a, s′) = v′x · cos(α′), (39)

where v′x is the velocity on the longitudinal direction of the car in state s′ and α′ is the angle between the car direction
and the direction of the track axis. We give a penalty of −1000 if the agent runs backward, if it goes out of track or if the
progress in the race is too small. The rationale behind this reward is to encourage the agent to go at high speed and to stay
centered with respect to the track.

Reinforcement Learning in Configurable Continuous Environments

Table 5. Configuration space of the TORCS experiment. Underlined the parameters we configure in the experiment.

Parameter Description

Rear Wing Angle of the rear wing.
Front Wing Angle of the front wing.

Front-Rear Brake Repartition Repartition of the brake between the front and rear.
Front Anti-Roll Bar Front Spring.
Rear Anti-Roll Bar Rear Spring.

Front Left-Right Brake Brake disk diameter of the front wheels.
Rear Left-Right Brake Brake disk diameter of the rear wheels.

D.3.2. HYPERPARAMETERS

In Table 6 we report the hyper-parameters used in the TORCS experiments.

Table 6. Hyper-parameters used in the TORCS experiment.

Parameter Value

Number of samples per iteration 20000
λ 0.1
β 0
κ 10−5

ω0 (1, 1, 1)

D.3.3. POLICY AND MODEL APPROXIMATORS

Policy approximator The policy we used in the TORCS experiments is a Gaussian Policy parameterized by a fully
connected neural network:

π(·|s) ∼ N (µ(s),diag(σ2)),

µ(s) = NNµ(s),

σ = exp(ν),

where NNµ and has one hidden layer with 64 neurons with tanh activations. The activation of the last layer of NNµ is tanh
since actions are limited in [−1, 1]. The covariance matrix is diagonal and independent of the state. We initialize the policy
fitting, via maximum likelihood, a scripted policy (snakeoil) using 45000 samples collected with 30 randomly generated
values of the configurable parameters.

Model approximator We considered a Gaussian model to approximate the dynamics of the task:
p̂(·|s,a,ω) ∼ N

(
µ(s,a,ω),diag(σ2)

)
,

µ(s,a,ω) = NNµ(s,a,ω),

σ = exp(η).

The mean network is composed of two hidden layers of 64 neurons each with tanh activation. The covariance matrix is
diagonal and independent of the state, action and configurable parameters. The model fitting is performed at the beginning
of learning using the same samples employed for fitting the policy.

D.3.4. ADDITIONAL EXPERIMENTS

In Figure 12, we show the average speed as a function of the number of iterations and the value of the configurable
parameters. First, we observe that, when configuring the environment is possible, the car reaches higher speeds. Second,
we can see that all parameters tend to be moved towards zero. Indeed, a good behavior in the considered track consists in

Reinforcement Learning in Configurable Continuous Environments

increasing the speed as much as possible. Therefore, the orientation of the wing tends to be reduced to increase the speed. A
similar behavior is visible for the Front-Rear Brake Repartition.

0 20 40

40

60

80

100

iteration

a
v
e
ra

g
e
sp

e
e
d

0 20 40

0

0.5

1

iteration

fr
o
n
t
w
in
g

0 20 40

0

0.5

1

iteration

re
a
r
w
in
g

0 20 40

0

0.5

1

iteration
fr
o
n
t-
re
a
r
b
ra

k
e
re
p
a
rt
it
io
n

REMPS REPS

Figure 12. Average speed, configurable parameters values and episode duration as a function of the number of iterations for the TORCS
experiment comparing REMPS and REPS. 10 runs, 80% c.i.

