
Understanding and correcting pathologies in the training of learned optimizers

A. Derivation of the unrolled gradient
For the case of learning a learning rate, we can derive the unrolled gradient to get some intuition for issues that arise with
outer-training. Here, the update rule is given by:

w ← w − θ∇`(w),

where w are the inner-parameters to train, ` is the inner-loss, and θ is a scalar learning rate, the only outer-parameter. We
use superscripts to denote the iteration, so w(t) are the parameters at iteration t. In addition, we use g(t) = ∇`(w(t)) and
H(t) = ∇2`(w(t)) to denote the gradient and Hessian of the loss at iteration t, respectively.

We are interested in computing the gradient of the loss after T steps of gradient descent with respect to the learning rate, θ.
This quantity is given by ∂d`

∂θ = 〈g(T ), dw
(T )

dθ 〉. The second term in this inner product tells us how changes in the learning
rate affect the final parameter value after T steps. This quantity can be defined recursively using the total derivative:

dw(T )

dθ
=

∂w(T )

∂w(T−1)
dw(T−1)

dθ
− ∂w(T )

∂θ

=
(
I −H(T−1)

) dw(T−1)

dθ
− g(T−1)

By expanding the above expression from t = 1 to t = T , we get the following expression for the unrolled gradient:

d`(w(T ))

dθ
=

〈
g(T ),−

T−1∑
i=0

 T−1∏
j=i+1

(I − θH(j))

 g(i)

〉
.

This expression highlights where the exploding outer-gradient comes from: the recursive definition of dw(T )

dθ means that
computing it will involve a product of the Hessian at every iteration.

This expression makes intuitive sense if we restrict the number of unrolled steps to one. In this case, the unrolled gradient is
the negative inner product between the current and previous gradients: d`(w

(T ))
dθ = −〈g(T ), g(T−1)〉. This means that if the

current and previous gradients are correlated (have positive inner product), then updating the learning rate in the direction
of the negative unrolled gradient means that we should increase the learning rate. This makes sense as if the current and
previous gradients are correlated, we expect that we should move faster along this direction.
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B. Exploding Gradients on 1D Loss Surfaces
In addition to varying momentum, shown in Figure 2 we also explore the effects of varying learning rate in Figure 9.
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Figure 9. Extension of 2 showing varying learning rate with a fixed momentum (top), and varying learning rate with no momentum
(bottom). Outer-problem optimization landscapes can become increasingly pathological with increasing inner-problem step count. (a)
A toy 1D inner-problem loss surface with two local minimum. Initial parameter value (w(0)) is indicated by the star. (b) Final inner-
parameter value (w(T )) as a function of the number of inner problem training steps T . The top row SGD+momentum. Color denotes
different values of the optimizer’s learning rate parameter. In both settings, low learning rates converge to the first local minimum at
w = 0. Slightly larger learning rates escape this minimum to settle at the global minimum (w ≈ 3.5). Even larger values (purples)
oscillate before eventually diverging. (c) The final loss after some number steps of optimization as a function of the learning rate. Larger
values of T result in near discontinuous loss surfaces around the transition points between the two minima.



Understanding and correcting pathologies in the training of learned optimizers

C. Outer-Training Algorithm

Algorithm 1 Outer-training algorithm using the combined gradient estimator.
Initialize outer-parameters (θ).
while Outer-training, for each parallel worker do

Sample a dataset D, from task distribution T .
Initialize the inner loop parameters w(0) randomly.
for Each truncation, t, in the inner loop do

Sample ES perturbation: e ∼ N(0, σ2I).
Sample a number of steps per truncation, k, based on current outer-training iteration.
Compute a positive, and negative sequence starting from w(t) by iteratively applying (for k steps), u(·; θ + e), to
w(t)

Compute a pair of outer-objectives with both a positive, and negative antithetic sample (L+, L−) using the 2
sequences of w from t to t+ k using either the train or validation inner-problem data.
Compute a single sample of grp = ∇θ 1

2 (L
+ + L−).

Compute a single sample of ges = 1
2 (L

+ − L−)∇θlog(N(e; θ, σ2I))
Store the sample of (grp, ges) in a buffer until a batch of samples is ready.
Assign the current inner-parameter w from one of the two sequences with the inner-parameter value from the end
of the truncation (w(t+k)).

end for
end while
while Outer-training do

When a batch of gradients is available, compute empirical variance and empirical mean of each weight for each
estimator.
Use equation 1 to compute the combined gradient estimate.
Update outer-parameters with SGD: θ ← θ − αgcombined where α is a learning rate.

end while

D. Architecture details
D.1. Architecture

In a similar vein to diagonal preconditioning optimizers, and existing learned optimizers our architecture operates on each
parameter independently. Unlike other works, we do not use a recurrent model as we have not found applications where
the performance gains are worth the increased computation. We instead employ a single hidden layer feed forward MLP
with 32 hidden units. This MLP takes as input momentum terms at a few different decay values: [0.5, 0.9, 0.99, 0.999,
0.9999]. A similar idea has been explored in (Lucas et al., 2018). The current gradient as well as the current weight value
are also used as features (2 additional features). By passing in weight values, the optimizer can learn to do arbitrary norm
weight decay. To emulate learning rate schedules, the current training iteration is fed in transformed via applying a tanh
squashing functions at different timescales: tanh(t/η − 1) where η is the timescale. We use 9 timescales logarithmicly
spaced from (3, 300k).

All non-time features are normalized by the second moment with regard to other elements in the “batch” dimension (the
other weights of the weight tensor). We choose this over other normalization strategies (e.g. batch norm) to preserve
directionality. These activations are then passed the into a hidden layer, 32 unit MLP with ReLU activations. Many
existing optimizer hyperparameters (such as learning rate) operate on an exponential scale. As such, the network produces
two outputs, and we combine them in an exponential manner: exp(λexpo1)λlino2 making use of two scaling parameters
λexp and λlin which are both set to 1e − 3. Without these scaling terms, the default initialization yields steps on the
order of size 1 – far above the step size of any known optimizer and result in highly chaotic regions of θ. It is still
possible to optimize given our estimator, but training is slow and the solutions found are quite different. Code for this
optimizer can be found at https://github.com/google-research/google-research/tree/master/
task_specific_learned_opt.
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D.2. Inner-problem

The optimizer targets a 3 layer convolutional neural network with 3x3 kernels, and 32 units per layer. The first 2 layers are
stride 2, and the 3rd layer has stride 1. We use ReLU activations and glorot initializations (Glorot & Bengio, 2010). At the
last convolutional layer, an average pool is performed, and a linear projection is applied to get the 10 output classes.

D.3. Outer-Training

We train using the algorithm described in Appendix C using a linear schedule on the number of unrolling steps from 50
- 10k over the course of 5k outer-training iterations. To add variation in length, we additionally shift this length by a
percentage uniformly sampled between (-20%, 20%). We optimize the outer-parameters, θ, using Adam (Kingma & Ba,
2014) with a batch size of 128 and with a learning rate of 0.003 for the training outer-objective and 0.0003 for the validation
outer-objective, and β1 = 0.5(following existing literature on non-stationary optimization (Arjovsky et al., 2017)). While
both values of learning rate work for both outer-objectives, we find the validation outer-objective to be considerably harder,
and training is more stable with the lower learning rate.
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E. Additional inner loop problem learning curves
We plot additional learning curves from both the outer-train task distribution and the outer-validation task distribution. See
Figure 6. Additionally, we supply 4 additional baselines: RMSProp+Reg+Decay hyper parameter searched for validation
and training loss over learning rate, learning rate schedule (both exponential and linear), epsilon, and l1/l2 regularization
using 1000 random configurations, and SGDMom+Reg+Decay hyper parameter searched for validation and training loss
over learning rate, learning rate schedule, momentum, to use Nesterov momentum, and l1/l2 regularization using 1000 ran-
dom configurations. The search procedure and search space matches the existing Adam+Reg+Decay procedure described
in 4.4.
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Figure 10. Additional outer-validation problems.

0 5000 10000

Inner steps

0.0

0.5

1.0

1.5

2.0

T
ra

in
 l
o
ss

Learned (train outer-objective)

Learned (valid outer-objective)

Momentum

Adam

RMSProp

Adam+Reg+Decay (valid outer-objective)

Adam+Reg+Decay (train outer-objective)

RMSProp+Reg+Decay (valid outer-objective)

RMSProp+Reg+Decay (train outer-objective)

SGDMom+Reg+Decay (valid outer-objective)

SGDMom+Reg+Decay (train outer-objective)0 5000 10000

Inner steps

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

T
e
st

 l
o
ss

0 5000 10000

Inner steps

0.0

0.5

1.0

1.5

2.0

T
ra

in
 l
o
ss

Learned (train outer-objective)

Learned (valid outer-objective)

Momentum

Adam

RMSProp

Adam+Reg+Decay (valid outer-objective)

Adam+Reg+Decay (train outer-objective)

RMSProp+Reg+Decay (valid outer-objective)

RMSProp+Reg+Decay (train outer-objective)

SGDMom+Reg+Decay (valid outer-objective)

SGDMom+Reg+Decay (train outer-objective)0 5000 10000

Inner steps

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

T
e
st

 l
o
ss

Figure 11. Outer-training problems.
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F. Out of domain generalization
In this work, we focus our attention to learning optimizers over a specific task distribution (3 layer convolutional networks
trained on ten class subsets of 32x32 Imagenet). In addition to testing on these in domain problems (Appendix E), we
test our learned optimizer on a variety of out of domain target problems. Despite little variation in the outer-training
task distribution, our models show promising generalization when transferred to a wide range of different architectures
(fully connected, convolutional networks) depths (2 layer to 6 layer) and number of parameters (models roughly 16x more
parameters). We see these as promising sign that our learned optimizer has a reasonable (but not perfect) inductive bias.
We leave training with increased variation to encourage better generalization as an area for future work.
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Figure 12. Inner problem: 2 hidden layer fully connected network. 32 units per layer with ReLU activations trained on 14x14 MNIST.
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Figure 13. Inner problem: 3 hidden layer fully connected network. 128 units per layer with ReLU activations trained on 14x14 MNIST.
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Figure 14. Inner problem: 6 convolutional layer network. 32 units per layer, strides: [2,1,2,1,1,1] with ReLU activations on 28x28
MNIST.
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Figure 15. Inner problem: 3 convolutional layer network. 32 units per layer, strides: [2,2,1] with ReLU activations on 28x28 MNIST.
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Figure 16. Inner problem: 3 convolutional layer network. 128 units per layer, strides: [2,2,1] with ReLU activations trained on a ten-way
classification sampled from 32x32 Imagenet (using holdout classes).

G. Inner-loop training speed
When training models, often one cares about taking less wall-clock time as compared to loss decrease per weight update.
Much like existing first order optimizers, the computation performed in our learned optimizer is linear in terms of number
of parameters in the model being trained and smaller than the cost of computing gradients. The bulk of the computation in
our model consists of two batched matrix multiplies of size featuresx32, and 32x2. When training models that make use of
weight sharing, e.g. RNN or CNN, the computation performed per weight often grows super linearly with parameter count.
As the learned optimizer methods are scaled up, the additional overhead in performing more complex weight updates will
vanish.

For the specific models we test in this paper, we measure the performance of our optimizer on CPU and GPU. We re-
implement Adam, SGD, and our learned optimizer in TensorFlow (no fused ops) for this comparison. Given the small scale
of problem we are working at, we implement training in graph in a tf.while loop to avoid TensorFlow Session overhead. We
use random input data instead of real data to avoid any data loading confounding. On CPU the learned optimizer executes
at 80 batches a second where Adam runs at 92 batches a second and SGD at 93 batches per second. The learned optimizer
is 16% slower than both.

On a GPU (Nvidia Titan X) we measure 177 batches per second for the learned and 278 batches per second for Adam, and
358 for sgd. This is or 57% slower than Adam and 102% slower than SGD.

Overhead is considerably higher on GPU due to the increased number of ops, and thus kernel executions, sent to the GPU.
We expect a fused kernel can dramatically reduce this overhead. Despite the slowdown in computation, the performance
gains exceed the slowdown, resulting in an optimizer that is still considerably faster when measured in wall-clock time.

For the wall-clock figures presented in this paper we rescale the step vs performance curves by the steps per second instead
of directly measuring wall-clock time. When running evaluations, we perform extensive logging which dominates the total
compute costs.
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H. Ablation learning curves

Figure 17. Training curves for ablations described in §4.5. The thick line bordered in black is the median performance, with the shaded
region containing the 25% and 75% percentile. Thinner solid lines are individual runs.
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I. Additional Truncation Bias Experiments
In §2.4 we show the effect of truncation bias when learning Adam hyper parameters using the Adam outer-optimizer. When
using truncated gradients, the directions passed into this outer-optimizer are not well behaved, and are not even guaranteed
to be a conservative vector field. As such, different outer optimizers might behave differently. To test this, we test multiple
configurations of outer-optimizer in figure 18.
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Figure 18. Additional experiments showing truncation bias when attempting to learn Adam hyper-parameters with different outer-
optimizers. We show 4 configurations of Adam (2 learning rates, with and without beta1), and 2 configurations of SGD (2 different
learning rates) with outer-loss and learning rate plotted for each. In all experiments we see similar, and significant truncation bias when
using low amounts of steps per truncation. For some of the higher learning rate experiments (e.g. SGD with lr=0.01), we see diverging
loss.

J. Batch-Normed Base Model
In this section, we present experiments targeting a different task family. In particular, we add batch normalization to the
convolution layers. We employ the same meta-training procedure and same learned optimizer architecture as used in the
rest of this paper and target the validation loss outer-objective.

Meta-training curves can be found in Figure 19. We find we outperform learning rate tuned Adam, but do not out perform
the 8 parameter tuned Adam baseline. At this point, we are unsure the source of this gap but suspect hyper parameter
tuning would improve this result.

J.1. Longer Unrolls

All of the learned optimizers presented in this paper are outer-trained using 10k inner-iterations. In Figure 20 we show
an application of a learned optimizer outside of the outer-training regime – up to 100k inner iterations using the learned
optimizer shown in orange in figure 19. Unlike hand designed optimizers, our learned optimizer does not completely
minimize the training loss. As a result, the test performance remains consistent far outside the outer-training regime.
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Figure 19. Outer-training curves for 5 different random seeds. The learned optimizers outperform LR tuned Adam on 4/5 random seeds
but do not yet out perform the 8 parameter Adam baseline.
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Figure 20. Example unrolls on held out outer-tasks when inner-trained for 10x more inner steps. Each panel represents a different
held out task. The dashed vertical line denotes the max number of steps seen at outer-training time. The solid line shows inner-test
performance, where as the dashed denotes inner-train. We find that our learned optimizers keep a consistent test and train loss even after
the 10k iterations used for outer-training.


