A. Non-Separable Proof of Two Kernels (Theorem 6)

In this section, we prove a theorem that mirrors that of Theorem 2, but with the ℓ_2 slack SVM. First, we state the KKT conditions for the slack SVM. Let \mathbf{r} be the dual variables associated with the primal $\boldsymbol{\xi} \succeq 0$ constraints. Then, we have 8 conditions:

- 1. $1 \xi_i y_i \mathbf{w}^{\intercal} \phi(\mathbf{x}_i) \le 0 \ \forall i \in [n] \ (Primal Feasibility 1)$
- 2. $\xi_i \geq 0 \ \forall i \in [n]$ (Primal Feasibility 2)
- 3. $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \phi(\mathbf{x}_i)$ (Stationarity 1)
- 4. $\mathbf{r} = C\boldsymbol{\xi} \boldsymbol{\alpha}$ (Stationarity 2)
- 5. $\alpha_i \geq 0 \ \forall i \in [n]$ (Dual Feasibility 1)
- 6. $r_i \geq 0 \ \forall i \in [n]$ (Dual Feasibility 2)
- 7. $\alpha_i(1-\xi_i-y_i\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_i))=0 \ \forall i\in[n] \ (\textit{Complementary Slackness 1})$
- 8. $r_i \xi_i = 0 \ \forall i \in [n]$ (Complementary Slackness 2)

We also provide two preliminary lemmas before proving the main theorem.

Lemma 2. Let α, ξ be the optimal solution to the ℓ_2 Slack Dual SVM problem with parameter C. Then, $\xi = \frac{1}{C}\alpha$. This also implies $\alpha^{\mathsf{T}}\xi = C\|\xi\|_2^2$.

Proof. First we substitute Stationarity 2 into Complementary Slackness 2:

$$r_i \xi_i = 0$$

$$(C\xi_i - \alpha_i)\xi_i = 0$$

$$C\xi_i^2 = \alpha_i \xi_i$$

That is, when $\xi_i \neq 0$, we know that $\xi_i = \frac{\alpha_i}{C}$. This allows us to conclude that $\xi_i \leq \frac{\alpha_i}{C}$, since both α_i and C are nonnegative. The dual problem has constraint $\alpha_i \leq C\xi_i$, which is equivalent to $\xi_i \geq \frac{\alpha_i}{C}$. Hence ξ_i is both upper and lower bounded by $\frac{\alpha_i}{C}$. Therefore, $\xi_i = \frac{\alpha_i}{C}$.

Lemma 3. Let α, ξ be the optimal solution to the ℓ_2 Slack Dual SVM problem on input \tilde{K} with parameter C. Then $\|\alpha\|_1 = \alpha^{\mathsf{T}} \tilde{K} \alpha + C \|\xi\|_2^2$.

Proof. First substitute Stationarity 1 into Complementary Slackness 1:

$$0 = \alpha_i (1 - \xi_i - y_i \mathbf{w}^\mathsf{T} \boldsymbol{\phi}(\mathbf{x}_i))$$

$$0 = \alpha_i \left(1 - \xi_i - y_i \left(\sum_{j=1}^n \alpha_j y_j \boldsymbol{\phi}(\mathbf{x}_j) \right)^\mathsf{T} \boldsymbol{\phi}(\mathbf{x}_i) \right)$$

$$0 = \alpha_i \left(1 - \xi_i - \sum_{j=1}^n \alpha_j y_i y_j \boldsymbol{\phi}(\mathbf{x}_j)^\mathsf{T} \boldsymbol{\phi}(\mathbf{x}_i) \right)$$

$$0 = \alpha_i \left(1 - \xi_i - \sum_{j=1}^n \alpha_j [\tilde{\boldsymbol{K}}]_{i,j} \right)$$

$$0 = \alpha_i - \alpha_i \xi_i - \sum_{j=1}^n \alpha_i \alpha_j [\tilde{\boldsymbol{K}}]_{i,j}$$

$$\alpha_i = \alpha_i \xi_i + \sum_{j=1}^n \alpha_i \alpha_j [\tilde{\boldsymbol{K}}]_{i,j}$$

Then, we sum up over all $i \in [n]$:

$$\begin{split} \sum_{i=1}^{n} \alpha_i &= \sum_{i=1}^{n} \alpha_i \xi_i + \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j [\tilde{K}]_{i,j} \\ \|\alpha\|_1 &= \alpha^{\mathsf{T}} \xi + \alpha^{\mathsf{T}} \tilde{K} \alpha \\ \|\alpha\|_1 &= C \|\xi\|_2^2 + \alpha^{\mathsf{T}} \tilde{K} \alpha \end{split}$$

Now we prove the main theorem:

Theorem 6 Restated. Let $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ be a dataset. Let k_1, k_2 be kernel functions. Define $k_{1+2}(\cdot, \cdot) := k_1(\cdot, \cdot) + k_2(\cdot, \cdot)$. Let $\tilde{K}_1, \tilde{K}_2, \tilde{K}_{1+2}$ be their labeled kernel matrices and $\alpha_1, \alpha_2, \alpha_{1+2}$ be the corresponding Dual SVM solutions with parameter $C = \frac{1}{2}$. Then we have

$$\boldsymbol{\alpha}_{1+2}^{\intercal}\tilde{\boldsymbol{K}}_{1+2}\boldsymbol{\alpha}_{1+2} \leq \frac{1}{3}(\boldsymbol{\alpha}_{1}^{\intercal}\tilde{\boldsymbol{K}}_{1}\boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{2}^{\intercal}\tilde{\boldsymbol{K}}_{2}\boldsymbol{\alpha}_{2})$$

Furthermore,

$$\boldsymbol{\alpha}_{1+2}^{\intercal} \tilde{\boldsymbol{K}}_{1+2} \boldsymbol{\alpha}_{1+2} \leq \frac{2}{3} \max \{\boldsymbol{\alpha}_{1}^{\intercal} \tilde{\boldsymbol{K}}_{1} \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}^{\intercal} \tilde{\boldsymbol{K}}_{2} \boldsymbol{\alpha}_{2}\}$$

Proof. We start with the dual objective for k_{1+2} :

$$\begin{split} \|\boldsymbol{\alpha}_{1+2}\|_1 - \frac{1}{2}\boldsymbol{\alpha}_{1+2}^{\intercal}\tilde{\boldsymbol{K}}_{1+2}\boldsymbol{\alpha}_{1+2} - \frac{1}{2}\|\boldsymbol{\xi}_{1+2}\|_2^2 &= \|\boldsymbol{\alpha}_{1+2}\|_1 - \frac{1}{2}\boldsymbol{\alpha}_{1+2}^{\intercal}(\tilde{\boldsymbol{K}}_1 + \tilde{\boldsymbol{K}}_2)\boldsymbol{\alpha}_{1+2} - \frac{1}{2}\|\boldsymbol{\xi}_{1+2}\|_2^2 \\ &= \left(\|\boldsymbol{\alpha}_{1+2}\|_1 - \frac{1}{2}\boldsymbol{\alpha}_{1+2}^{\intercal}\tilde{\boldsymbol{K}}_1\boldsymbol{\alpha}_{1+2} - \frac{1}{2}\|\boldsymbol{\xi}_{1+2}\|_2^2\right) \\ &+ \left(\|\boldsymbol{\alpha}_{1+2}\|_1 - \frac{1}{2}\boldsymbol{\alpha}_{1+2}^{\intercal}\tilde{\boldsymbol{K}}_2\boldsymbol{\alpha}_{1+2} - \frac{1}{2}\|\boldsymbol{\xi}_{1+2}\|_2^2\right) \\ &+ \left(\frac{1}{2}\|\boldsymbol{\xi}_{1+2}\|_2^2 - \|\boldsymbol{\alpha}_{1+2}\|_1\right) \\ &\leq \left(\|\boldsymbol{\alpha}_1\|_1 - \frac{1}{2}\boldsymbol{\alpha}_1^{\intercal}\tilde{\boldsymbol{K}}_1\boldsymbol{\alpha}_1 - \frac{1}{2}\|\boldsymbol{\xi}_1\|_2^2\right) \\ &+ \left(\|\boldsymbol{\alpha}_2\|_1 - \frac{1}{2}\boldsymbol{\alpha}_2^{\intercal}\tilde{\boldsymbol{K}}_2\boldsymbol{\alpha}_2 - \frac{1}{2}\|\boldsymbol{\xi}_2\|_2^2\right) \\ &+ \left(\frac{1}{2}\|\boldsymbol{\xi}_{1+2}\|_2^2 - \|\boldsymbol{\alpha}_{1+2}\|_1\right) \\ 2\|\boldsymbol{\alpha}_{1+2}\|_1 - \frac{1}{2}\boldsymbol{\alpha}_{1+2}^{\intercal}\tilde{\boldsymbol{K}}_{1+2}\boldsymbol{\alpha}_{1+2} - \|\boldsymbol{\xi}_{1+2}\|_2^2 \leq \left(\|\boldsymbol{\alpha}_1\|_1 - \frac{1}{2}\boldsymbol{\alpha}_1^{\intercal}\tilde{\boldsymbol{K}}_1\boldsymbol{\alpha}_1 - \frac{1}{2}\|\boldsymbol{\xi}_1\|_2^2\right) + \left(\|\boldsymbol{\alpha}_2\|_1 - \frac{1}{2}\boldsymbol{\alpha}_2^{\intercal}\tilde{\boldsymbol{K}}_2\boldsymbol{\alpha}_2 - \frac{1}{2}\|\boldsymbol{\xi}_2\|_2^2\right) \end{split}$$

By applying Lemma 3 and some algebra, we have three useful equations:

•
$$2\|\boldsymbol{\alpha}_{1+2}\|_1 - \frac{1}{2}\boldsymbol{\alpha}_{1+2}^{\intercal}\tilde{\boldsymbol{K}}_{1+2}\boldsymbol{\alpha}_{1+2} - \|\boldsymbol{\xi}_{1+2}\|_2^2 = \frac{3}{2}\boldsymbol{\alpha}_{1+2}^{\intercal}\tilde{\boldsymbol{K}}_{1+2}\boldsymbol{\alpha}_{1+2} + (2C-1)\|\boldsymbol{\xi}_{1+2}\|_2^2$$

$$\bullet \ \|\boldsymbol{\alpha}_1\|_1 - \tfrac{1}{2}\boldsymbol{\alpha}_1^\intercal \tilde{K}_1 \boldsymbol{\alpha}_1 - \tfrac{1}{2} \|\boldsymbol{\xi}_1\|_2^2 = \tfrac{1}{2}\boldsymbol{\alpha}_1^\intercal \tilde{K}_1 \boldsymbol{\alpha}_1 + \tfrac{2C-1}{2} \|\boldsymbol{\xi}_1\|_2^2$$

$$\bullet \ \|\boldsymbol{\alpha}_2\|_1 - \tfrac{1}{2}\boldsymbol{\alpha}_2^{\intercal}\tilde{\boldsymbol{K}}_2\boldsymbol{\alpha}_2 - \tfrac{1}{2}\|\boldsymbol{\xi}_2\|_2^2 = \tfrac{1}{2}\boldsymbol{\alpha}_2^{\intercal}\tilde{\boldsymbol{K}}_2\boldsymbol{\alpha}_2 + \tfrac{2C-1}{2}\|\boldsymbol{\xi}_2\|_2^2$$

Applying these equations, we continue our inequality from before

$$\begin{split} \frac{3}{2}\boldsymbol{\alpha}_{1+2}^{\intercal}\tilde{\boldsymbol{K}}_{1+2}\boldsymbol{\alpha}_{1+2} + (2C-1)\|\boldsymbol{\xi}_{1+2}\|_{2}^{2} &\leq \left(\frac{1}{2}\boldsymbol{\alpha}_{1}^{\intercal}\tilde{\boldsymbol{K}}_{1}\boldsymbol{\alpha}_{1} + \frac{2C-1}{2}\|\boldsymbol{\xi}_{1}\|_{2}^{2}\right) + \left(\frac{1}{2}\boldsymbol{\alpha}_{2}^{\intercal}\tilde{\boldsymbol{K}}_{2}\boldsymbol{\alpha}_{2} + \frac{2C-1}{2}\|\boldsymbol{\xi}_{2}\|_{2}^{2}\right) \\ &\frac{3}{2}\boldsymbol{\alpha}_{1+2}^{\intercal}\tilde{\boldsymbol{K}}_{1+2}\boldsymbol{\alpha}_{1+2} \leq \frac{1}{2}\left(\boldsymbol{\alpha}_{1}^{\intercal}\tilde{\boldsymbol{K}}_{1}\boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{2}^{\intercal}\tilde{\boldsymbol{K}}_{2}\boldsymbol{\alpha}_{2}\right) + \frac{2C-1}{2}\left(\|\boldsymbol{\xi}_{1}\|_{2}^{2} + \|\boldsymbol{\xi}_{2}\|_{2}^{2} - 2\|\boldsymbol{\xi}_{1+2}\|_{2}^{2}\right) \\ &\frac{3}{2}\boldsymbol{\alpha}_{1+2}^{\intercal}\tilde{\boldsymbol{K}}_{1+2}\boldsymbol{\alpha}_{1+2} = \frac{1}{2}\left(\boldsymbol{\alpha}_{1}^{\intercal}\tilde{\boldsymbol{K}}_{1}\boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{2}^{\intercal}\tilde{\boldsymbol{K}}_{2}\boldsymbol{\alpha}_{2}\right) + 0 \\ &\boldsymbol{\alpha}_{1+2}^{\intercal}\tilde{\boldsymbol{K}}_{1+2}\boldsymbol{\alpha}_{1+2} = \frac{1}{3}\left(\boldsymbol{\alpha}_{1}^{\intercal}\tilde{\boldsymbol{K}}_{1}\boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{2}^{\intercal}\tilde{\boldsymbol{K}}_{2}\boldsymbol{\alpha}_{2}\right) \end{split}$$

In the second to last line, we recall that $C = \frac{1}{2}$, which implies 2C - 1 = 0.

B. Proof of Many Kernels (Theorem 3)

Theorem 3 Restated. Let $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ be a dataset. Let k_1, k_2, \dots, k_m be kernel functions. Define $k_{\Sigma}(\cdot, \cdot) := \sum_{t=1}^m k_t(\cdot, \cdot)$. Let $\tilde{K}_1, \dots, \tilde{K}_m, \tilde{K}_{\Sigma}$ be their labeled kernel matrices and $\alpha_1, \dots, \alpha_m, \alpha_{\Sigma}$ be the corresponding Dual SVM solutions. Then we have

$$\boldsymbol{\alpha}_{\scriptscriptstyle{\Sigma}}^{\intercal} \tilde{\boldsymbol{K}}_{\scriptscriptstyle{\Sigma}} \boldsymbol{\alpha}_{\scriptscriptstyle{\Sigma}} \leq 3m^{-\log_2(3)} \sum_{t=1}^m \boldsymbol{\alpha}_t^{\intercal} \tilde{\boldsymbol{K}}_t \boldsymbol{\alpha}_t$$

Furthermore

$$\boldsymbol{\alpha}_{\scriptscriptstyle{\Sigma}}^{\intercal} \tilde{\boldsymbol{K}}_{\scriptscriptstyle{\Sigma}} \boldsymbol{\alpha}_{\scriptscriptstyle{\Sigma}} \leq 3m^{-\log_2(3/2)} \max_{t \in [m]} \boldsymbol{\alpha}_t^{\intercal} \tilde{\boldsymbol{K}}_t \boldsymbol{\alpha}_t$$

Proof. Let $\ell := \lceil \log_2(m) \rceil$ be the length of labels we give our base kernels. Now, rename each kernel k_t with the length ℓ bitstring representation of the number t. For instance, if $\ell = 4$ then we rename k_6 to k_{0110} . For every length $\ell - 1$ bitstring $b_0 b_1 \dots b_{\ell-1}$, define a new kernel

$$k_{b_0b_1...b_{\ell-1}}(\cdot,\cdot) := k_{b_0b_1...b_{\ell-1}0}(\cdot,\cdot) + k_{b_0b_1...b_{\ell-1}1}(\cdot,\cdot)$$

Repeat this process of labeling with length $\ell-2$ bitstrings and so on until we have defined k_0 and k_1 . Lastly, we define

$$k_{\Sigma}(\cdot,\cdot) = k_0(\cdot,\cdot) + k_1(\cdot,\cdot) = \sum_{t=1}^{m} k_t(\cdot,\cdot)$$

Now, recall Theorem 2 (or Theorem 6 if we are using the SVM with slack). Let $[b_\ell] := \{b_0 \dots b_\ell | b \in \{0,1\}\}$ denote the set of all length ℓ bitstrings. Also, for every kernel $k_{b_0 \dots b_j}$, compute the associated kernel matrix $\tilde{K}_{b_0 \dots b_j}$ and dual solution vector $\alpha_{b_0 \dots b_j}$.

Claim 1. Fix $j \in [\ell - 1]$. Then

$$\boldsymbol{\alpha}_{\scriptscriptstyle{\Sigma}}^{\intercal} \tilde{\boldsymbol{K}}_{\scriptscriptstyle{\Sigma}} \boldsymbol{\alpha}_{\scriptscriptstyle{\Sigma}} \leq \left(\frac{1}{3}\right)^{j} \sum_{b_{0} \dots b_{j} \in [b_{j}]} \boldsymbol{\alpha}_{b_{0} \dots b_{j}}^{\intercal} \tilde{\boldsymbol{K}}_{b_{0} \dots b_{j}} \boldsymbol{\alpha}_{b_{0} \dots b_{j}}$$

This claim follows from induction. In the base case, j=1, and Theorem 2 tells us that $\alpha_{\Sigma}^{\mathsf{T}} \tilde{K}_{\Sigma} \alpha_{\Sigma} \leq \frac{1}{3} (\alpha_{0}^{\mathsf{T}} \tilde{K}_{0} \alpha_{0} + \alpha_{1}^{\mathsf{T}} \tilde{K}_{1} \alpha_{1})$, matching the claim. Now, assume the claim holds for j-1. Then,

$$\begin{split} \boldsymbol{\alpha}_{\Sigma}^{\intercal} \tilde{\boldsymbol{K}}_{\Sigma} \boldsymbol{\alpha}_{\Sigma} &\leq \left(\frac{1}{3}\right)^{j} \sum_{b_{0} \dots b_{j} \in [b_{j}]} \boldsymbol{\alpha}_{b_{0} \dots b_{j}}^{\intercal} \tilde{\boldsymbol{K}}_{b_{0} \dots b_{j}} \boldsymbol{\alpha}_{b_{0} \dots b_{j}} \\ &\leq \left(\frac{1}{3}\right)^{j} \sum_{b_{0} \dots b_{j} \in [b_{j}]} \frac{1}{3} (\boldsymbol{\alpha}_{b_{0} \dots b_{j} 0}^{\intercal} \tilde{\boldsymbol{K}}_{b_{0} \dots b_{j} 0} \boldsymbol{\alpha}_{b_{0} \dots b_{j} 0} + \boldsymbol{\alpha}_{b_{0} \dots b_{j} 1}^{\intercal} \tilde{\boldsymbol{K}}_{b_{0} \dots b_{j} 1} \boldsymbol{\alpha}_{b_{0} \dots b_{j} 1}) \\ &= \left(\frac{1}{3}\right)^{j+1} \sum_{b_{0} \dots b_{j+1} \in [b_{j+1}]} \boldsymbol{\alpha}_{b_{0} \dots b_{j+1}}^{\intercal} \tilde{\boldsymbol{K}}_{b_{0} \dots b_{j+1}} \boldsymbol{\alpha}_{b_{0} \dots b_{j+1}} \\ \end{split}$$

This completes the proof of the claim.

Now we need to be careful when moving to the length ℓ kernel labels because if m is not a power of two, then only some of the kernels have a length ℓ label. Let $\mathcal A$ be the set of all base kernels that have a length $\ell-1$ label. Let $\mathcal B$ be the rest of the base kernels, with a length ℓ label. By Claim 1, we know that

$$\begin{split} & \boldsymbol{\alpha}_{\Sigma}^{\mathsf{T}} \tilde{\boldsymbol{K}}_{\Sigma} \boldsymbol{\alpha}_{\Sigma} \leq \left(\frac{1}{3}\right)^{\ell-1} \sum_{b_{0} \dots b_{\ell-1} \in [b_{\ell-1}]} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell-1}}^{\mathsf{T}} \tilde{\boldsymbol{K}}_{b_{0} \dots b_{\ell-1}} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell-1}} \\ &= \sum_{b_{0} \dots b_{\ell-1} \in [b_{\ell-1}]} \left(\frac{1}{3}\right)^{\ell-1} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell-1}}^{\mathsf{T}} \tilde{\boldsymbol{K}}_{b_{0} \dots b_{\ell-1}} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell-1}} \\ &= \sum_{b_{0} \dots b_{\ell-1} \in [b_{\ell-1}]} \left(\frac{1}{3}\right)^{\ell-1} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell-1}}^{\mathsf{T}} \tilde{\boldsymbol{K}}_{b_{0} \dots b_{\ell-1}} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell-1}} + \sum_{b_{0} \dots b_{\ell-1} \in [b_{\ell-1}]} \left(\frac{1}{3}\right)^{\ell-1} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell-1}}^{\mathsf{T}} \tilde{\boldsymbol{K}}_{b_{0} \dots b_{\ell-1}} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell-1}} + \sum_{b_{0} \dots b_{\ell} \in [b_{\ell}]} \left(\frac{1}{3}\right)^{\ell} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell-1}}^{\mathsf{T}} \tilde{\boldsymbol{K}}_{b_{0} \dots b_{\ell-1}} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell-1}} + \sum_{b_{0} \dots b_{\ell} \in [b_{\ell}]} \left(\frac{1}{3}\right)^{\ell} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell}}^{\mathsf{T}} \tilde{\boldsymbol{K}}_{b_{0} \dots b_{\ell-1}} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell-1}} + \sum_{b_{0} \dots b_{\ell} \in [b_{\ell}]} \left(\frac{1}{3}\right)^{\ell} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell}}^{\mathsf{T}} \tilde{\boldsymbol{K}}_{b_{0} \dots b_{\ell}} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell-1}} + \sum_{b_{0} \dots b_{\ell} \in [b_{\ell}]} \left(\frac{1}{3}\right)^{\ell-1} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell}}^{\mathsf{T}} \tilde{\boldsymbol{K}}_{b_{0} \dots b_{\ell-1}} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell-1}} + \sum_{b_{0} \dots b_{\ell} \in [b_{\ell}]} \left(\frac{1}{3}\right)^{\ell-1} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell}}^{\mathsf{T}} \tilde{\boldsymbol{K}}_{b_{0} \dots b_{\ell-1}} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell-1}} + \sum_{b_{0} \dots b_{\ell} \in [b_{\ell}]} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell}}^{\mathsf{T}} \tilde{\boldsymbol{K}}_{b_{0} \dots b_{\ell}} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell-1}} \boldsymbol{\alpha}_{b_{0} \dots b_{\ell}} \boldsymbol{\alpha}_{b_{0} \dots$$

Where the second inequalty applies Theorem 2 and the last equality uses the fact that all base kernels are in either \mathcal{B} or \mathcal{A} . Lastly, recall that $\ell = \lceil \log_2(m) \rceil$.

$$\left(\frac{1}{3}\right)^{\ell-1} = 3^{1-\lceil \log_2(m) \rceil} = 3 \cdot 3^{-\lceil \log_2(m) \rceil} \le 3 \cdot 3^{-\log_2(m)} = 3 \cdot m^{-\log_2(3)}$$

Therefore, overall, we have

$$\boldsymbol{\alpha}_{\scriptscriptstyle{\Sigma}}^{\intercal} \tilde{\boldsymbol{K}}_{\scriptscriptstyle{\Sigma}} \boldsymbol{\alpha}_{\scriptscriptstyle{\Sigma}} \leq 3m^{-\log_2(3)} \sum_{t=1}^m \boldsymbol{\alpha}_t^{\intercal} \tilde{\boldsymbol{K}}_t \boldsymbol{\alpha}_t$$

C. Proof of Kernel Sum Rademacher (Theorem 4)

Theorem 4 Restated. Let $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ be a dataset. Let k_1, \dots, k_m be kernel functions. Define $k_{\Sigma}(\cdot, \cdot) := \sum_{t=1}^m k_t(\cdot, \cdot)$. Let $\tilde{K}_1, \dots, \tilde{K}_m, \tilde{K}_{\Sigma}$ be their labeled kernel matrices and $\alpha_1, \dots, \alpha_m, \alpha_{\Sigma}$ be the corresponding Dual SVM solutions. Then,

$$\hat{\mathfrak{R}}_{\mathcal{S}}(\mathcal{F}_{\scriptscriptstyle{\Sigma}}) \leq \frac{1}{n} \sqrt{3m^{-\log_2(3)} \left(\sum_{t=1}^m \mathrm{Tr}[\tilde{\boldsymbol{K}}_t]\right) \sum_{t=1}^m \boldsymbol{\alpha}_t^\intercal \tilde{\boldsymbol{K}}_t \boldsymbol{\alpha}_t}$$

Further, if we assume $\alpha_t^{\mathsf{T}} \tilde{K}_t \alpha_t \leq B^2$ and $k_t(\mathbf{x}_i, \mathbf{x}_i) \leq R^2$ for all $t \in [m], i \in [n]$, then

$$\hat{\mathfrak{R}}_{\mathcal{S}}(\mathcal{F}_{\scriptscriptstyle{\Sigma}}) \leq \frac{BR}{\sqrt{n}} \sqrt{3m^{(1-\log_2(3/2))}}$$

This proof very closely parallels that of Lemma 22 in (Bartlett & Mendelson, 2002). We produce the entire proof here for completeness. First, note that

$$\mathcal{F}_{\scriptscriptstyle\Sigma} \subseteq \{\mathbf{x} \mapsto \mathbf{w}_{\scriptscriptstyle\Sigma}^{\intercal} \boldsymbol{\phi}_{\scriptscriptstyle\Sigma} | \|\mathbf{w}_{\scriptscriptstyle\Sigma}\|_2 \leq B_{\scriptscriptstyle\Sigma} \}$$

Where ϕ_{Σ} is the concatenation of the feature spaces associated with each of the m kernels, and $B_{\Sigma}^2 = \alpha_{\Sigma}^{\intercal} \tilde{K}_{\Sigma} \alpha_{\Sigma}$. Then,

$$\begin{split} \hat{\mathfrak{R}}_{\mathcal{S}}(\mathcal{F}_{\Sigma}) &\leq \frac{1}{n} \operatorname{\mathbb{E}} \left[\sup_{\|\mathbf{w}_{\Sigma}\| \leq B_{\Sigma}} \left(\mathbf{w}_{\Sigma}^{\mathsf{T}} \sum_{i=1}^{n} \sigma_{i} y_{i} \phi_{\Sigma}(\mathbf{x}_{i}) \right) \right] \\ &= \frac{B_{\Sigma}}{n} \operatorname{\mathbb{E}} \left[\left\| \sum_{i=1}^{n} \sigma_{i} y_{i} \phi_{\Sigma}(\mathbf{x}_{i}) \right\|_{2}^{2} \right] \\ &= \frac{B_{\Sigma}}{n} \operatorname{\mathbb{E}} \left[\sqrt{\left\| \sum_{i=1}^{n} \sigma_{i} y_{i} \phi_{\Sigma}(\mathbf{x}_{i}) \right\|_{2}^{2}} \right] \\ &= \frac{B_{\Sigma}}{n} \operatorname{\mathbb{E}} \left[\sqrt{\sum_{i,j=1}^{n} \sigma_{i} \sigma_{j} [\tilde{K}_{\Sigma}]_{i,j}} \right] \\ &\leq \frac{B_{\Sigma}}{n} \sqrt{\operatorname{\mathbb{E}} \left[\sum_{i,j=1}^{n} \sigma_{i} \sigma_{j} [\tilde{K}_{\Sigma}]_{i,j} \right]} \\ &= \frac{B_{\Sigma}}{n} \sqrt{\operatorname{\mathbb{E}} \left[\sum_{i=1}^{n} [\tilde{K}_{\Sigma}]_{i,i} \right]} \\ &= \frac{B_{\Sigma}}{n} \sqrt{\operatorname{Tr} [\tilde{K}_{\Sigma}]} \\ &= \frac{B_{\Sigma}}{n} \sqrt{\operatorname{Tr} [\tilde{K}_{\Sigma}]} \\ &\leq \frac{1}{n} \cdot \sqrt{3m^{(1-\log_{2}(3))} \sum_{t=1}^{m} \alpha_{t}^{\mathsf{T}} \tilde{K}_{t} \alpha_{t}} \cdot \sqrt{\sum_{t=1}^{m} \operatorname{Tr} [\tilde{K}_{t}]} \\ &= \frac{1}{n} \sqrt{3m^{-\log_{2}(3)} \left(\sum_{t=1}^{m} \operatorname{Tr} [\tilde{K}_{t}] \right) \sum_{t=1}^{m} \alpha_{t}^{\mathsf{T}} \tilde{K}_{t} \alpha_{t}} \end{split}$$

The second inequality is Jensen's, and the last inequality is Theorem 3. This completes the first part of the proof. We can then substitute in B^2 and R^2 :

$$\begin{split} \hat{\mathfrak{R}}_{\mathcal{S}}(\mathcal{F}_{\scriptscriptstyle{\Sigma}}) &\leq \frac{1}{n} \sqrt{3m^{-\log_2(3)} \left(\sum_{t=1}^m \mathrm{Tr}[\tilde{\boldsymbol{K}}_t]\right) \sum_{t=1}^m \boldsymbol{\alpha}_t^\intercal \tilde{\boldsymbol{K}}_t \boldsymbol{\alpha}_t} \\ &\leq \frac{1}{n} \sqrt{3m^{-\log_2(3)} \left(\sum_{t=1}^m nR^2\right) \sum_{t=1}^m B^2} \\ &= \frac{1}{n} \sqrt{3m^{-\log_2(3)} \cdot mnR^2 \cdot mB^2} \\ &= \frac{BR}{\sqrt{n}} \sqrt{3m^{(1-\log_2(3/2))}} \end{split}$$

D. Proof of Learning Kernels (Theorem 5)

Theorem 5 Restated. Let $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ be a dataset. Let k_1, \dots, k_m be kernel functions. Consider any $\mathcal{P} \subseteq [m]$. Define $k_{\mathcal{P}}(\cdot, \cdot) := \sum_{t \in \mathcal{P}} k_t(\cdot, \cdot)$. Let $\tilde{K}_1, \dots, \tilde{K}_m, \tilde{K}_{\mathcal{P}}$ be their labeled kernel matrices and $\alpha_1, \dots, \alpha_m, \alpha_{\mathcal{P}}$ be the corresponding Dual SVM solutions. Assume $k_t(\mathbf{x}_i, \mathbf{x}_i) \leq R^2$ and $\alpha_t^{\mathsf{T}} \tilde{K}_t \alpha_t \leq B^2$ for all $t \in [m]$ and $i \in [n]$. Then,

$$\hat{\mathfrak{R}}_{\mathcal{S}}(\mathcal{F}_{\mathcal{P}}) \leq \frac{BR\sqrt{3e\eta_0 \ m^{(1-\log_2(3/2))} \left\lceil \ln(m) \right\rceil}}{\sqrt{n}}$$

where $\eta_0 = \frac{23}{22}$.

This proof closely follows that of Theorem 1 in (Cortes et al., 2009c).

Proof. Let $s:=|\mathcal{P}|$. Let $\mathbf{w}_{\mathcal{P}}$ be the optimal Primal SVM solution using subset of kernels \mathcal{P} . Note that $\mathbf{w}_{\mathcal{P}}$ is a concatenation of s labeled and scaled feature vectors. To be precise, let ϕ_t be the feature map for the t^{th} kernel and define $\mathbf{w}_t := \sum_{i=1}^n \alpha_i y_i \phi_t(\mathbf{x}_i)$. Then $\mathbf{w}_{\mathcal{P}} = [\mathbf{w}_{t_1}^\mathsf{T} \cdots \mathbf{w}_{t_s}^\mathsf{T}]^\mathsf{T}$, where t_i is the i^{th} smallest element of \mathcal{P} .

Consider some q, r > 1 such that $\frac{1}{q} + \frac{1}{r} = 1$. Then,

$$\begin{split} \hat{\mathfrak{R}}_{\mathcal{S}}(\mathcal{F}_{\mathcal{P}}) &:= \frac{1}{n} \operatorname{\mathbb{E}} \left[\sup_{h \in \mathcal{F}_{\Sigma}} \sum_{i=1}^{n} \sigma_{i} h(\mathbf{x}_{i}, y_{i}) \right] \\ &\leq \frac{1}{n} \operatorname{\mathbb{E}} \left[\sup_{s \in [m]} \sup_{|\mathcal{P}| = s} \sup_{\mathbf{w}_{\mathcal{P}}} \mathbf{w}_{\mathcal{P}}^{\mathsf{T}} \left(\sum_{i=1}^{n} \sigma_{i} y_{i} \phi_{\mathcal{P}}(\mathbf{x}_{i}) \right) \right] \\ &\leq \frac{1}{n} \operatorname{\mathbb{E}} \left[\sup_{s \in [m]} \sup_{|\mathcal{P}| = s} \sup_{\mathbf{w}_{\mathcal{P}}} \left(\sum_{t \in \mathcal{P}} \|\mathbf{w}_{t}\|_{2}^{q} \right)^{1/q} \left(\sum_{t \in \mathcal{P}} \left\| \sum_{i=1}^{n} \sigma_{i} y_{i} \phi_{t}(\mathbf{x}_{i}) \right\|_{2}^{r} \right)^{1/r} \right] \\ &\leq \frac{1}{n} \operatorname{\mathbb{E}} \left[\sup_{s \in [m]} \sup_{|\mathcal{P}| = s} \sup_{\mathbf{w}_{\mathcal{P}}} \left(\sum_{t \in \mathcal{P}} \|\mathbf{w}_{t}\|_{2}^{q} \right)^{1/q} \left(\sum_{t=1}^{m} \left\| \sum_{i=1}^{n} \sigma_{i} y_{i} \phi_{t}(\mathbf{x}_{i}) \right\|_{2}^{r} \right)^{1/r} \right] \\ &= \frac{1}{n} \left[\sup_{s \in [m]} \sup_{|\mathcal{P}| = s} \sup_{\mathbf{w}_{\mathcal{P}}} \left(\sum_{t=1}^{m} \|\mathbf{w}_{t}\|_{2}^{q} \right)^{1/q} \right] \cdot \operatorname{\mathbb{E}} \left[\left(\sum_{t=1}^{m} \left\| \sum_{i=1}^{n} \sigma_{i} y_{i} \phi_{t}(\mathbf{x}_{i}) \right\|_{2}^{r} \right)^{1/r} \right] \end{split}$$

The third line follows exactly from Lemma 5 in (Cortes et al., 2009c). We bound both terms separately. We only substantially differ from the original proof in bounding the first term. To start, note that $f(x) = x^{1/q}$ is subadditive for 1/q < 1:

$$\left(\sum_{t \in \mathcal{P}} \|\mathbf{w}_{t}\|_{2}^{q}\right)^{1/q} \leq \sum_{t \in \mathcal{P}} \left(\|\mathbf{w}_{t}\|_{2}^{q}\right)^{1/q}$$

$$= \sum_{t \in \mathcal{P}} \left\|\sum_{i=1}^{n} \alpha_{i} y_{i} \phi_{t}(\mathbf{x}_{i})\right\|_{2}$$

$$= s \sum_{t \in \mathcal{P}} \frac{1}{s} \sqrt{\left\|\sum_{i=1}^{n} \alpha_{i} y_{i} \phi_{t}(\mathbf{x}_{i})\right\|_{2}^{2}}$$

$$\leq s \sqrt{\sum_{t \in \mathcal{P}} \frac{1}{s} \left\|\sum_{i=1}^{n} \alpha_{i} y_{i} \phi_{t}(\mathbf{x}_{i})\right\|_{2}^{2}}$$

$$= \sqrt{s \cdot \sum_{t \in \mathcal{P}} \alpha_{\mathcal{P}}^{\intercal} \tilde{K}_{t} \alpha_{\mathcal{P}}}$$

$$= \sqrt{s \cdot \alpha_{\mathcal{P}}^{\intercal} \tilde{K}_{\mathcal{P}} \alpha_{\mathcal{P}}}$$

$$\leq \sqrt{s \cdot 3s^{-\log_{2}(3/2)}}$$

$$= B\sqrt{3s^{(1-\log_{2}(3/2))}}$$

The second inequality follows from Jensen's, and the last inequality is Theorem 2.

We start our bound of the second term by applying Jensen's Inequality:

$$\mathbb{E}\left[\left(\sum_{t=1}^{m}\left\|\sum_{i=1}^{n}\sigma_{i}\phi_{t}(\mathbf{x}_{i})\right\|_{2}^{r}\right)^{1/r}\right] \leq \left(\mathbb{E}\left[\sum_{t=1}^{m}\left\|\sum_{i=1}^{n}\sigma_{i}\phi_{t}(\mathbf{x}_{i})\right\|_{2}^{r}\right]\right)^{1/r}$$
$$= \left(\sum_{t=1}^{m}\mathbb{E}\left[\left\|\sum_{i=1}^{n}\sigma_{i}\phi_{t}(\mathbf{x}_{i})\right\|_{2}^{r}\right]\right)^{1/r}$$

We detour to bound the inner expectation. Assume that r is an even integer. That is, r = 2p for some integer p.

$$\mathbb{E}\left[\left\|\sum_{i=1}^{n} \sigma_{i} \phi_{t}(\mathbf{x}_{i})\right\|_{2}^{r}\right] = \mathbb{E}\left[\left(\sum_{i,j=1}^{n} \sigma_{i} \sigma_{j} k_{t}(\mathbf{x}_{i}, \mathbf{x}_{j})\right)^{p}\right]$$

$$= \mathbb{E}\left[\left(\boldsymbol{\sigma}^{\mathsf{T}} \tilde{\boldsymbol{K}}_{t} \boldsymbol{\sigma}\right)^{p}\right]$$

$$\leq \left(\eta_{0} p \operatorname{Tr}[\tilde{\boldsymbol{K}}]\right)^{p}$$

Where the last line follows from Lemma 1 in (Cortes et al., 2010), where $\eta_0 = \frac{23}{22}$. Returning to the bound of the second term,

$$\mathbb{E}\left[\left(\sum_{t=1}^{m}\left\|\sum_{i=1}^{n}\sigma_{i}\phi_{t}(\mathbf{x}_{i})\right\|_{2}^{r}\right)^{1/r}\right] \leq \left(\sum_{t=1}^{m}\mathbb{E}\left[\left\|\sum_{i=1}^{n}\sigma_{i}\phi_{t}(\mathbf{x}_{i})\right\|_{2}^{r}\right]\right)^{1/2p}$$

$$\leq \left(\sum_{t=1}^{m}\left(\eta_{0}p\operatorname{Tr}\left[\tilde{K}_{t}\right]\right)^{p}\right)^{1/2p}$$

$$\leq \left(\sum_{t=1}^{m}\left(\eta_{0}p\operatorname{n}R^{2}\right)^{p}\right)^{1/2p}$$

$$= \left(m\left(\eta_{0}p\operatorname{n}R^{2}\right)^{p}\right)^{1/2p}$$

$$= m^{1/2p}\sqrt{\eta_{0}p\operatorname{n}R^{2}}$$

By differentiating, we find that $p = \ln(m)$ minimizes this expression. We required p to be an integer, so we instead take $p = \lceil \ln(m) \rceil$.

$$\mathbb{E}_{\sigma} \left[\left(\sum_{t=1}^{m} \left\| \sum_{i=1}^{n} \sigma_{i} \phi_{t}(\mathbf{x}_{i}) \right\|_{2}^{r} \right)^{1/r} \right] \leq R m^{1/2p} \sqrt{\eta_{0} p n}$$

$$= R m^{\frac{1}{2 \lceil \ln(m) \rceil}} \sqrt{\eta_{0} \lceil \ln(m) \rceil n}$$

$$\leq R \sqrt{e \eta_{0} \lceil \ln(m) \rceil n}$$

Combining the first and second terms' bounds, we return to the bound of the Rademacher complexity itself:

$$\hat{\mathfrak{R}}_{\mathcal{S}}(\mathcal{F}_{\mathcal{P}}) \leq \frac{1}{n} \left[\sup_{s \in [m]} \sup_{|\mathcal{P}| = s} \sup_{\mathbf{w}_{\mathcal{P}}} \left(\sum_{t=1}^{m} \|\mathbf{w}_{t}\|_{2}^{q} \right)^{1/q} \right] \cdot \mathbb{E} \left[\left(\sum_{t=1}^{m} \left\| \sum_{i=1}^{n} \sigma_{i} y_{i} \phi_{t}(\mathbf{x}_{i}) \right\|_{2}^{r} \right)^{1/r} \right]$$

$$\leq \frac{1}{n} \left[\sup_{s \in [m]} B \sqrt{3s^{(1 - \log_{2}(3/2))}} \right] \cdot \left[R \sqrt{e \eta_{0} \lceil \ln(m) \rceil n} \right]$$

$$= \frac{1}{n} \left[B \sqrt{3m^{(1 - \log_{2}(3/2))}} \right] \cdot \left[R \sqrt{e \eta_{0} \lceil \ln(m) \rceil n} \right]$$

$$= \frac{BR \sqrt{3e \eta_{0}} m^{(1 - \log_{2}(3/2))} \lceil \ln(m) \rceil}{\sqrt{n}}$$