Optimality Implies Kernel Sum Classifiers are Statistically Efficient

A. Non-Separable Proof of Two Kernels (Theorem 6)

In this section, we prove a theorem that mirrors that of Theorem 2, but with the /5 slack SVM. First, we state the KKT
conditions for the slack SVM. Let r be the dual variables associated with the primal £ > 0 constraints. Then, we have 8
conditions:

1. 1 =& —yiwTo(x;) <0 Vi € [n] (Primal Feasibility 1)

2. & >0 Vi € [n] (Primal Feasibility 2)

3w =", ay;d(x;) (Stationarity 1)

4. r = C¢ — o (Stationarity 2)

5. a; > 0 Vi € [n] (Dual Feasibility 1)

6. r; > 0 Vi € [n] (Dual Feasibility 2)

7. a;(1 =& —y;wTp(x;)) =0 Vi € [n] (Complementary Slackness 1)
8. r;& = 0 Vi € [n] (Complementary Slackness 2)

We also provide two preliminary lemmas before proving the main theorem.

Lemma 2. Let o, & be the optimal solution to the {5 Slack Dual SVM problem with parameter C'. Then, £ = %a. This also
implies o7& = C||€||3.

Proof. First we substitute Stationarity 2 into Complementary Slackness 2:

ri& =0
(C& —a;)éi =0
C& = i
That is, when §; # 0, we know that §; = . This allows us to conclude that §; < 7, since both ; and C are nonnegative.
The dual problem has constraint a;; < C§;, which is equivalent to &; > . Hence &; is both upper and lower bounded by
& Therefore, §; = &. O

Lemma 3. Let o, § be the optimal solution to the {2 Slack Dual SVM problem on input K with parameter C. Then
lally = aTKa + C|€]3.

Proof. First substitute Stationarity 1 into Complementary Slackness 1:
0=0i(1-& —yiw' o(xi))
n T
0=q; (1 —&— v (ijl ajyj¢(xj)> ¢’(Xi))
0=aq; (1 & - Zj:l ajyiyj¢(xj)T¢(xi)>
0=ay (1 —& - ZFI Oéj[K]m)
n
0=0; — i — > aia;[Kli
j=1

n
ai = aibi+ Y aiog[Kly

j=1
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Then, we sum up over all ¢ € [n]:

n n

> ai= Z i+ Y aij|K
i=1

1=15=1
||l = aTéJraTKa

el = Cligll3 + a™Ka

Now we prove the main theorem:

Theorem 6 Restated. Let S = {(x1,91),---,(Xn,Yn)} be a dataset. Let ki,ky be kernel functions. Define
k1yo(s,-) == ki(-, ) + ka(, ). Let Ky, Ko, K112 be their labeled kernel matrices and oy, oz, o142 be the corresponding
Dual SVM solutions with parameter C' = % Then we have

~ 1 ~ ~
QI+2K1+2a1+2 S g(aIKlal + a;Kgag)
Furthermore,

. 2 . .
af ,Kiisoqy < 3 max{a] Kjay,al Koas}

Proof. We start with the dual objective for k4 2:

~ 1 1 ~ -~ 1
leei 2]l = Sl p Kiroants — §||€1+2H§ = llevselh = oty (K + Ka)anss — §||€1+2||§
1 1 )
= |zl = gof o Kionye = Slléial
1 ~ 1
+ (lasalh - 30l sReania - 5l6ualR)
1 2
+ §||51+2H2 — levis2flx
1 -~ 1
< llealh = safKiar — 5 1&3
2 2
1
+ (lloalls - gadRaos - leal3)
1 2
+ §||§1+2H2 = |l
1+ & 2 I 1% 1 2 1 2
2]artzll = o Kipzanss — €142z < ( llealh — SarKion = Sll&lly | + { llezfls — *%K2a2 *\|€2||2

By applying Lemma 3 and some algebra, we have three useful equations:

o 2llaryall — 3o oKy — [§142]3 = Sal o Kiysans + (20 = 1)[|€142]3

N

o laulli — 3ol Kion — 1|63 = o] Kian + 257216413

o [laz]i — JalKras — $[&]13 = ol Koo + 257116, 13
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Applying these equations, we continue our inequality from before,

3 ~ 1 ~ 2C —1 1 - 2C —1
soloKiaar + 20 - Digual} < (jalKian + 2 jal) + (JodRaen + 22 ealt)

3 ~ 1 - - 2C -1

SalKianss < 5 (alKiar +alKeas ) + = (J&15 + €13 — 2/12]3)

3 - 1 - -

§QI+2K1+201+2 = 5 (aIKlal + a;K202> +0

N 1 - N
aI+2K1+2a1+2 = g (aIKlal + OL;KQQQ>
In the second to last line, we recall that C = %, which implies 2C' — 1 = 0. O

B. Proof of Many Kernels (Theorem 3)

Theorem 3 Restated. Let S = {(x1,91),...,(Xn,yn)} be a dataset. Let ky, ks, ..., ky be kernel functions. Define
ky() == Yo, k(o). Let Ku, ..., Ky, K, be their labeled kernel matrices and a1, . . ., 0y, oy, be the corresponding
Dual SVM solutions. Then we have

Furthermore

alK, o, <3m~ 1082(*/2) max o] Ko
te[m]

Proof. Let ¢ := [log,(m)] be the length of labels we give our base kernels. Now, rename each kernel k; with the length ¢
bitstring representation of the number ¢. For instance, if / = 4 then we rename kg to kg119. For every length ¢ — 1 bitstring
boby ... by_1, define a new kernel

kb0b1~~b(—1 ('7 ) = kbobl»-~be—10('7 ) + kbob1~~bz—11('7 )

Repeat this process of labeling with length ¢ — 2 bitstrings and so on until we have defined k¢ and k. Lastly, we define

m

k):(" ) = kO('v ) + kl('7 ) = Zkt('v )
t=1

Now, recall Theorem 2 (or Theorem 6 if we are using the SVM with slack). Let [bg] := {bo ... b¢|b € {0,1}} denote the set
of all length ¢ bitstrings. Also, for every kernel ky,...v;» compute the associated kernel matrix Ky, .., and dual solution
vector Qpg..b; -

Claim 1. Fix j € [{ —1]. Then

- 1\’ .
T
a;KzaZ < (3> Z abomijbO“.bjabo...bj
bo...b;j €[b;]

This claim follows from induction. In the base case, j = 1, and Theorem 2 tells us that agkzaz < %(agﬁ'oao +

a{f( 11 ), matching the claim. Now, assume the claim holds for j — 1. Then,

- 1\’ .
T
alK o, < <3) Z b, Koo...b; Oby...b;

bo...b; €[b;]
1\’ R . ; N
< 3 Z g(abo,__bjoKbO...bjoabo‘..bjo+Otbo__,b].1Kb0‘..bj1ab0...bj1)
bo...b; €[b;]

1 J+1 _
- T
<3> E : abo...bj+1Kb()"<bj+1ab0“‘bj+l

bo--bj+1€[bj+1]
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This completes the proof of the claim.

Now we need to be careful when moving to the length ¢ kernel labels because if mn is not a power of two, then only some of
the kernels have a length £ label. Let 4 be the set of all base kernels that have a length ¢ — 1 label. Let B3 be the rest of the
base kernels, with a length £ label. By Claim 1, we know that

1 -1
TR Z § T 2
angaz <3> abo‘,,bgfleo---bl—labo-ublfl
bo...be—1€[be—1]

1 -1
T -
§ : (3) abg...be_leombtzqO‘bombzq

bo...bg_1€[be—1]

IN

-1 -1
1 T - 1 T ~
= § : g abo...bzfleombe—labo---bzfl + E : g abon-beflKbo"'béflabo"'b"'*l
bo...bg—1€[br_1]: bo...by—1E[be_1]:
bo-.bp_1 €A kbg.. by EA

IN
N
7N
W =

-1 14
T + Noar K&
QApo by B b1 Obg... by 3 Ao b, B bo. b Oy b,

bo...be—1E€[br_1]: bo...be€lbe]:
kbg...b,_, €A kvy...0,EB
-1 -1
1 T ~ 1 T ~
< g 3 oy, Ko by O b,y T E 3 oy, Koy b, 0.,
bo...bg—1€[be—1]: bo...be€lbe]:
kbg...b,_1 €A kby...b, €8
—1
< (L T K, + T K
=\3 Qpobp_ 1 B30 be_1 b by Qg by Bbo.. b g by
bo...bg,le[b[,ﬂt bg...bge[bg]:
kbg...by_q EA kvy..v,EB

1 =1 m ~
= (3) Z aI K (1827
t=1
Where the second inequalty applies Theorem 2 and the last equality uses the fact that all base kernels are in either B or .A.

Lastly, recall that £ = [log,(m)].

-1
(1> _ gl-[log,(m)] _ 5. 3-Mlogs(m)] < 5. g~ loga(m) _ 5. )~ logs(3)
3 =

Therefore, overall, we have

m
o —log,(3 T I
al K. a, <3m 82(3) E ol Koy
t=1

C. Proof of Kernel Sum Rademacher (Theorem 4)

Theorem 4 Restated. Let S = {(x1,41),...,(Xn,Yn)} be a dataset. Let ki, ..., ky, be kernel functions. Define
ky(-) == Yo k(). Let Ky,..., Ky, K, be their labeled kernel matrices and a1, . .., 0y, oy, be the corre-
sponding Dual SVM solutions. Then,

Rs(F,) < l 3m— 1082 (3) <Z Tr[KA) ZatTKsat
n
t=1 t=1

Further, if we assume of Ky, < B? and k(x;,x;) < R? forall t € [m),i € [n], then

BR
R (Fy) < e Vam(Ion)

>
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This proof very closely parallels that of Lemma 22 in (Bartlett & Mendelson, 2002). We produce the entire proof here for

completeness. First, note that

Fo C {xms wiggllwyl2 < By}

Where ¢, is the concatenation of the feature spaces associated with each of the m kernels, and Bg =al K 0. Then,

IN

IN
S|

1
—E
n o

3|

s ‘MUU 3 ‘MUU 3 ‘MUU 3 ‘MUU 3 ‘MUU s ‘MUU

«q«« Shc)

q

sup
lws |<By

Z oY Ps (Xi)
Lili=1

(W; Z TiYiPy (&))]

j

> iy (xi)
=1

2

2

:_\/Z:j_l 0i0j[Kyi g }
:Z;—:l 0i0; [K'z]m}
:Zj_l Uz'2 [‘f{z]i,z}

q

3m (1—log,(3)) Z aIK’tat .

t=1

> Ti[K]
t=1

3m—loga(3) (Z Tr[f{t]> Z ol K,y
t=1

t=1

The second inequality is Jensen’s, and the last inequality is Theorem 3. This completes the first part of the proof. We can

then substitute in B2 and R?:

IA
3|

IN

1

3

m

3m—l082(3) <Z Tr[Kﬂ)

t=1

m

E aIKtat

t=1

3m—lo82(3) <Z nR2> Z B2
=1 =1

l\/3m* log>(3) . mnR2 - mB2
n

BR fam—tog,(72)
Jn
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D. Proof of Learning Kernels (Theorem 5)

Theorem 5 Restated. Let S = {(x1,¥1), ..., (Xn,yn)} be a dataset. Let ki, ..., ky, be kernel functions. Consider any
P C [m]. Define k,(-,-) = 3 ,cpki(,-). Let Ky, ..., Ky, K, be their labeled kernel matrices and vy, . . ., Oty @t
be the corresponding Dual SVM solutions. Assume k;(x;,x;) < R? and o] K,o, < B? for all t € [m] and i € [n]. Then,

. BR\/36770 m(1=1082(%2)) [In(m)]
<
ms(fp) > \/ﬁ

where 19 = %

This proof closely follows that of Theorem 1 in (Cortes et al., 2009c).

Proof. Let s := |P|. Let w, be the optimal Primal SVM solution using subset of kernels P. Note that w,, is a
concatenation of s labeled and scaled feature vectors. To be precise, let ¢, be the feature map for the ' kernel and define
wyi= > ayid(x;). Then w, = [w], .. wl_]T, where ; is the i*" smallest element of P.

Consider some ¢, > 1 such that % + % = 1. Then,

1 n
Rs(Fp) = ﬁIE [hsg;) Zaih(xi,yi)]
s i=1

IN
\
=

1 [ n
SUp_ Sup supw, (Zi:1 0iYiPp (Xz‘))]

N o |scim]|Pl=s Wp

1 [ 1/q n ry Yr

D E s s sup (30, Iwillt) (3, [, o) ]
| sElm =s Wp -

[  r

)"

L s sup sup (30, Iwelg) ™ (320, [ 320, et
B[ eme]]) ]

No |sem]|Pl=s Wp
m q 1/aq
sup sup sup (3 Jwils) | E
The third line follows exactly from Lemma 5 in (Cortes et al., 2009¢). We bound both terms separately. We only substantially
differ from the original proof in bounding the first term. To start, note that f(x) = '/ is subadditive for 1/ < 1:

s€[m] |P|=s Wp
0\ qy\Ya
(32, Iwelld) ™ < 3 (will)

IN
\
&=

IN
\
&=

1
n

teP
n
= Z Zaiyi¢t(xi)
teP lli=1 2
1| ’
= SZ S Zaiyi¢t(xi)
teP i=1 2
1< ’
<5y > S Z oYie (%)
teP =1 2

= /s E al Kia,
teP

=4/s-alK, o,

< Vs 3s 22/ p2

_ Bq/38(1*10g2(3/2))
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The second inequality follows from Jensen’s, and the last inequality is Theorem 2.

We start our bound of the second term by applying Jensen’s Inequality:

IE[(ZZI I aenx) 2)/} - (G[ " IS i ]) o
(X e[| mel)]) "

We detour to bound the inner expectation. Assume that r is an even integer. That is, » = 2p for some integer p.

B H‘ijl oip(x:) ;} B [(erzl Uiajkt(xi’xj))p}

’,

2 [(orie)’

< (nopTr[K])p

Where the last line follows from Lemma 1 in (Cortes et al., 2010), where ng = % Returning to the bound of the second

term,
1/2p
)] 1)

IN

(Z:iIIUE HZ oii(xi)
(3, (womigd)’)”
(S, ey’

( (nop nR?) )/QP
=m

20\ /nop nR2

o'|:( tlHZ oir(xi)

IN

IN

By differentiating, we find that p = In(m) minimizes this expression. We required p to be an integer, so we instead take

p=[In(m)].

T 1/7'

= Rm TG no [In(m)] n
< Ry/eng [In(m)] n

Combining the first and second terms’ bounds, we return to the bound of the Rademacher complexity itself:

B {(Z:; HZ:; oiPi(xi)

S|

Rs(Fp) < _:el?g] Sup S (ZL Ithlg)l/q] ‘E {( . Hzl Lo ()|
i%p]B*/:as“’l“”(g/”) . {R\/m}
5V [y e ]
B BR\/Seno m 72 T (m)
- vn

IN
SlIl— 3=




