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Abstract
Generative models often use latent variables to
represent structured variation in high-dimensional
data, such as images and medical waveforms.
However, these latent variables may ignore subtle,
yet meaningful features in the data. Some features
may predict an outcome of interest (e.g. heart
attack) but account for only a small fraction of vari-
ation in the data. We propose a generative model
training objective that uses a black-box discrimina-
tive model as a regularizer to learn representations
that preserve this predictive variation. With
these discriminatively regularized latent variable
models, we visualize and measure variation in the
data that influence a black-box predictive model,
enabling an expert to better understand each
prediction. With this technique, we study models
that use electrocardiograms to predict outcomes
of clinical interest. We measure our approach on
synthetic and real data with statistical summaries
and an experiment carried out by a physician.

1. Introduction
Machine learning research has led to extraordinary predic-
tion results across many data types but less success in deriv-
ing human-level insight from (or incorporating that insight
into) our models. Two such problems include model diag-
nosis: using expert human knowledge to understand and
improve upon model shortcomings; and model-based dis-
covery: understanding what human-interpretable features
drive predictive performance. To be concrete, consider these
biomedical applications:

(a) A newly trained model detects a common heart condi-
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tion (e.g. atrial fibrillation or afib, a condition observable
in an EKG) with reasonable accuracy, but below the
level of a skilled cardiologist. How can we use human
expertise to diagnose model shortcomings?

(b) By contrast, using EKG waveforms as inputs to a black-
box predictor can outperform a cardiologist in predict-
ing future cardiac events, such as heart attacks. It is
critical to understand what EKG features that predictor
is using, insight which can be used to motivate future
experiments, treatments, and care protocols.

Though these scenarios are specific, they raise a general
problem. Given a black-box predictive model m(x) (e.g. a
neural network) that converts a high-dimensional signal x
(e.g. an EKG) into a prediction score of output y (e.g. afib),
we would like to show domain experts what the algorithm
“sees” — what variation in x influences predictions of y.

In recent years, model interpretability has received consid-
erable attention (Ribeiro et al., 2016; Doshi-Velez & Kim,
2017; Kindermans et al., 2017; Narayanan et al., 2018). One
way to interrogate a predictive model is to examine pertur-
bations of an input x that influence the prediction the most.1

For example, we can compute the gradient of m(x) with re-
spect to model input (e.g. pixels) at point some data point x.
This will produce a saliency map that identifies which parts
of the input most influence the outcome of interest (Baehrens
et al., 2010; Simonyan et al., 2013). One shortcoming of this
approach is that the gradient contains only local information;
for high-dimensional structured inputs, following the gradi-
ent flow for any moderate distance will produce meaningless
inputs that bear little resemblance to real observations.

We can improve upon saliency maps by restricting our per-
turbations to remain on the “data manifold.” For instance,
the activation maximization approach uses a deep generative
model to represent the space of natural images with a latent
variable z (Nguyen et al., 2016). To interrogate an input, a
new observation is synthesized by finding the z that max-
imizes the prediction score for some classifier of interest.
This data manifold constraint enables the visualization of
realistic image features that influence the prediction.

1For clarity, we will always use the term prediction to refer to
the output of m(x). Further, we assume the discriminative model
m(x) has been given to us — its parameters have been fit and fixed.
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One issue with this approach is that a generative model may
ignore subtle, yet important features of the data. Generative
models fit with maximum likelihood optimize for recon-
struction error, which focuses on representing directions
of high variation. This can be problematic if the variation
we are interested in visualizing and exploring are predictive
features of x — potentially subtle, structured variation in
the data that influence m(·) the most. We show that the
standard (approximate) maximum likelihood objective can
lead to under-representation of predictive features in x.

To address these issues, we propose the discriminitively reg-
ularized variational autoencoder (DR-VAE), a simple way
to constrain latent variables to represent the variation that a
black-box model m(x) uses to form predictions. To fit a DR-
VAE, we augment the typical maximum likelihood-based
objective with a regularization term that depends on the dis-
criminative model m(x). This constraint gives the user more
control over the semantic meaning of the latent representa-
tion even when we train on a separate set of unlabeled data.

The contributions of this work are: (i) a constrained gen-
erative model objective that retains targeted, semantically
meaningful properties;2 (ii) an information theoretic inter-
pretation of the regularizer; (iii) an empirical study of trade-
offs in a synthetic, a toy data, and a real setting with EKGs
that demonstrates the advantages of incorporating such con-
straints; (iv) the use of model-morphed data to interpret
black-box predictors in a real biomedical informatics appli-
cation; and (v) validation of the technique using statistical
summaries and physician assessment.

2. Background and Problem Setup
We are given an already-trained and fixed discriminative
model m :X 7→ R that maps a data point x ∈ X to a real-
valued prediction score (e.g. the conditional log-odds for a
binary classifier) for an outcome of interest y. In our moti-
vating example, x is a D-dimensional EKG, where D = 300
(3 leads × 100 samples per lead) and y = 1 indicates the
patient exhibits “ST elevation,” a clinically important indi-
cator of potential heart attack (myocardial ischemia). The
discriminative model computes the conditional probability
that a patient has ST elevation given the EKG observation:

m(x) = logit(Pr(y= 1 |x))¬ s . (1)

An example of such a discriminative model m(·) is a neural
network that transforms x into intermediate representations
(e.g. hidden layers) and eventually a scalar prediction. We
often ask how a neural network arrives at its predictions.
Given a neural network model trained and validated on data

2To be concrete, throughout we use “semantically meaningful
information” to mean information used by the predictor to form
prediction m(x). We measure this with discriminative reconstruc-
tion error defined in Equation 19.

from another hospital system but fails in our hospital setting,
how do we diagnose these model shortcomings?

Popular approaches examine variation in x that change the
prediction m(x) by following the gradient of m(x). One
limitation, however, is that the gradient is local and ignores
global structure in X -space. Following the gradient flow
defined by ∇xm(x) to increase the prediction score, we will
generate physiologically implausible inputs (e.g. meaning-
less images or EKGs). We can constrain this exploration
by restricting our search over X with a generative latent
variable model (Nguyen et al., 2016).

Generative latent variable models A latent variable
model is a probabilistic description of a high-dimensional
data vector, x, using a low-dimensional representation, z.
A common model for continuous-valued x ∈ RD uses a
parametric mean function gθ (z), resulting in the model

z∼ p(z) , x∼ gθ (z) +σ · ε (2)

where ε ∼ N (0,1) and σ is the observation noise scale.
When gθ (·) is a deep neural network, we call this a deep
generative model (DGM). One way to fit a DGM to data
is the autoencoding variational Bayes (AEVB) framework
(Kingma & Welling, 2013; Rezende et al., 2014). The
AEVB framework fits DGMs via optimization of the ev-
idence lower bound (ELBO), a tractable lower bound to
the marginal likelihood of the data, p(x |θ ) (Jordan et al.,
1999; Blei et al., 2017). For efficiency, AEVB introduces
an inference network parameterized by a global variational
parameter λ that specifies the posterior approximation as a
conditional distribution qλ(z |x). Together, the generative
network and inference network are referred to as a varia-
tional autoencoder (VAE). For a single observation x, the
VAE objective is

LVAE(θ ,λ) = Eqλ(z|x) [ln pθ (x,z)− ln qλ(z|x)]≤ ln pθ (x) .

We maximize this objective with respect to generative pa-
rameters θ and inference network parameters λ. A gen-
erative model captures the distribution of the data x via
the latent representation z. By varying z, we can explore
the structural variation in x (represented by the generative
model) that influence m(x).

3. Discriminative Regularization
Fitting a generative model requires choosing what variation
in x is structure and what is noise. A deep generative model
implicitly makes this choice by explaining variation in x
with either gθ (z) (i.e. structure) or σ ·ε (i.e. noise). What is
variation and what is noise, however, is not always obvious
and not always easy to specify. A discriminative model m(x)
may be influenced by subtle features in x. If the maximum
likelihood objective targets reconstruction error (e.g. as a
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(b) DR-VAE

Figure 1. Comparison of the VAE and DR-VAE. Left: Graphical
representation of a DGM — low-dimensional latent variable z
generates observed data x for all N observations. Right: Compu-
tational graph of a VAE (solid black) and a DR-VAE (additional
dotted red). A VAE feeds data x through the recognition network
(i.e. the “encoder”) which yields an approximate posterior distribu-
tion over z. A sample from this posterior is then mapped through
the generative model gθ (z) (i.e. the “decoder”) producing the syn-
thetic observation x̄ — a loss penalizes the divergence between x
and x̄. The DR-VAE adds an additional penalty — the predictive
function we care about m(·) must also be close for x and x̄. The
strength of this penalty is determined by a tuning parameter β > 0.

Gaussian likelihood does), then subtle variation in x can be
ignored — the optimization procedure pushes this variation
into the noise term and gθ (z) ignores these features.

Ignoring predictive features in x will prevent model-based
exploration of m(x) with latents z — gθ (·) and z will not
be able to reconstruct certain features in x that are impor-
tant to m(x) because the generative model is focused on
reconstructing features that are unimportant to m(x).

Additionally, deep generative models can be overly flexible.
This flexibility results in an equivalence class of generative
models with similar likelihood performance, but with dif-
ferent reconstruction properties. Our goal is learn a DGM
that uses this flexibility to represent potentially subtle, yet
predictive features with the latent variable z. We propose
maximizing the following objective

L (m)DR-VAE(θ ,λ) = LVAE(θ ,λ)
︸ ︷︷ ︸

model likelihood

−β · L (m)disc.(θ ,λ)
︸ ︷︷ ︸

discrim. regularizer

. (3)

We refer to a DGM fit with this objective as a discrimina-
tively regularized VAE (DR-VAE). This objective augments
the typical evidence lower bound with a penalty on parame-
ters that do not result in good discriminative reconstruction
for predictor m(x). This regularizer penalizes differences
in the discriminative model score between real data and
reconstructed data

L (m)disc.(θ ,λ) = Ez∼qλ(z |x) [D (m(x) ||m(x̄))] (4)

x̄¬ gθ (z) . (5)

Here D(· || ·) is a divergence function whose specific form

depends on the output of m(·)— we consider binary and
continuous outcomes below. The discriminative penalty can
be viewed as a type of posterior predictive check (Gelman
et al., 2013). During model training, this term ensures that
simulated data from our approximate posterior encode fea-
tures we care about — the discriminative model predictions.

Note that to optimize Equation 3 with gradient-based up-
dates, we will need to compute the gradient of m(x) with
respect to the input — a similar requirement for saliency
maps (Baehrens et al., 2010; Simonyan et al., 2013) and
activation maximization (Nguyen et al., 2016).

Binary outcomes For binary outcomes, the discrim-
inative model m(x) outputs the conditional probabil-
ity m(x) = Pr(y= 1 |x), a scalar value. To constrain the dif-
ference between m(x) and m(x̄) we penalize the Kullback-
Leibler divergence between the two conditional distributions

DK L(q || p) = q · ln
q
p
+ (1− q) · ln

1− q
1− p

, (6)

where q = m(x) and p = m(x̄). We also consider the
squared loss in the logit-probability values

Dlogi t(q || p) =
�

ln
q

1− q
− ln

p
1− p

�2

. (7)

Continuous outcomes For models that predict a continu-
ous outcome, the predictive model encodes the conditional
expectation, m(x) = E[y |x]. Assuming the model is ho-
moscedastic, the predictive variance V(y |x) = σ2 is the
same for all x. Further assuming the outcome is condition-
ally Gaussian distributed, the KL-divergence between the
predictive distribution m(x) and m(x̄) is simply a function
of the squared difference in expectations

DK L(m(x) ||m(x̄)) =
1

2σ2
(m(x)−m(x̄))2 (8)

=
1

2σ2
(E[y |x]−E[y | x̄])2 . (9)

Valid evidence lower bound The divergence functions
described above are all bounded below by zero (and only
equal to zero when m(x) and m(x̄) are equal). Fixing the
regularization coefficient β > 0 ensures the loss remains a
valid lower bound to the marginal likelihood

L (m)DR-VAE(θ ,λ)≤ ln pθ (x) . (10)

This eliminates potential optimization pathologies (e.g. the
optimizer only maximizing the regularization term).

Relationship to mutual information For additional intu-
ition, we can relate the discriminative penalty to information
theoretic quantities. The conditional mutual information is

I(x;y |z) = Ep(x,z) [DK L(p(y |z,x) || p(y |z))] . (11)
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We can interpret the discriminative penalty as

Ldisc.(θ ,λ) =
1
N

N
∑

n=1

Ez∼qλ(z |xn) [DK L(m(x) ||m(x̄))] (12)

≈ Ep(x)qλ(z |x) [DK L (p(y |x) || p(y |z))] (13)

= I(x;y |z) . (14)

where we have made two assumptions: (i) y is conditionally
independent of z given x (e.g. z adds no information about y
above x), and (ii) the term m(x̄) is approximately

p(y |z) = Ep(x |z) [p(y |x)]≈ p(y |Ep(x |z) [x]) = m(x̄) .

The discriminative regularizer can be interpreted as a penalty
on the approximate conditional mutual information between
x and y given z. This interpretation offers a key insight: min-
imizing the value of Equation 14 encourages the generative
model to minimize the informativeness of x about y when
we know the value of z — this forces y to be explained by z
alone and not by variation described by σ · ε.

3.1. Model Morphings

A generative model for data x ∈ X with latent variable z
equips us with new tools. We can use this representation to
find similar patients (e.g. patients close in z-space). We can
compute the probability of new observations, enabling us to
cluster patients, detect outliers, or compare models.

We can also use the model to synthesize new samples —
a task we focus on in this section. Given a generative
model gθ (z), we can manipulate z in various ways to gener-
ate new instances of data. Synthesizing new data can help us
understand the patient-specific features that are predictive of
a particular outcome. This may enable the discovery of new
features or reveal the physiological roots of a phenomenon
that can be targeted with more precise measurements, thera-
pies, or further analysis. Synthesized data can also be used
for pedagogical purposes, highlighting subtle features iden-
tifiable to an expert but difficult to discern for a novice. And
as stated before, synthesized data can help us understand
what features are important to a black-box predictor. How-
ever, for any of these efforts to be successful, that latent
space must encode semantically meaningful variation with
respect to the outcome of interest.

To explore features of x important to predictor m(·), we
propose following the gradient of m(·) with respect to the
input along the subspace X̄ = {x : x = gθ (z),z ∈ RK}.
Starting at some x(0) with some z(0), we trace out a model-
morphed trajectory by recursively computing

z(t+1)← z(t) +δ ·
∂m
∂ x
∂ x
∂ z
(z(t)) (15)

x̃(t+1)← gθ (z
(t+1)) (16)

for some small step size δ over T steps. This yields a model-
morphed sequence, x̃(0), . . . , x̃(T ), that gradually increases
the predictive score m(·) (or decreases if δ < 0). By con-
struction, each element in the sequence is constrained to be
on the data manifold defined by the generative model. This
allows us to move along long paths away from the initial
datum x(0). Further, because the generative model has been
constrained to reproduce predictive features, we will see
that the DR-VAE model-morphings can capture much more
predictive variation than the standard VAE.

3.2. Related Work

Trade-offs between generative and discriminative models for
classification performance are well-studied (Ng & Jordan,
2002; Bouchard & Triggs, 2004). Developing generative
models with good discriminative properties is also an active
area of research. Recent research has explored the use of
discriminative models to influence generative model train-
ing and performance. As an example, Hughes et al. (2018)
present an approach that constrains generative model learn-
ing to maintain good discriminative proprieties, and apply
them to a commonly used latent factor model.

Incorporating the activations from discriminative models
into generative model training has been explored as a
method to produce sharper natural image samples (Lamb
et al., 2016), and improve classification performance
(Kuleshov & Ermon, 2017).

Interpreting complex predictive models is another area of
related research. Work built on saliency maps (Simonyan
et al., 2013) and plug-and-play activation maximization
(Nguyen et al., 2016) use similar ideas to explore latent
spaces of generative models. For instance, (Killoran et al.,
2017) extend the activation maximization framework to syn-
thesize discrete DNA sequences with desired properties by
using a pre-trained generative model. Similarly, (Gómez-
Bombarelli et al., 2018) apply this model-based latent space
optimization to generate novel molecular compounds. We
extend these methods by incorporating a semantically mean-
ingful constraint into the generative model training itself
and show that this captures relevant information in x that
may otherwise be ignored.

We also note that our approach is similar in spirit to Cy-
cleGANs (Zhu et al., 2017), which incorporates a cycle
consistency loss into the objective. This cycle consistency
loss ensures that the original image can be recovered after
being translated from one domain to another. Similarly, our
discriminative penalty ensures the original prediction can
be recovered after the image has been encoded into a low-
dimensional latent representation. Additional discussion of
related work is in the supplement.
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Figure 2. The DR-VAE can trade little generative error for im-
proved discriminative error. (a) Example data — 50-dimensional
correlated Gaussian draws with a linear increase in marginal vari-
ance, Σ1,1 = .1 to Σ50,50 = 1. Predictive information is contained
entirely in the first dimension (marked by  on the left) — blue
indicates lower probability and red indicates higher probability.
(b) Generative (red  ) and discriminative (yellow È) test recon-
struction error for a sequence of increasingly regularized models.
As β grows, we trade some generative accuracy (x-avg rmse) for
substantial discriminative accuracy (p(y |x) rmse).

4. Experiments
4.1. Synthetic Data

We apply DR-VAEs to a synthetic data set that, by construc-
tion, has predictive power in the dimension of least variation.
We generate data according to the following model

x∼N (0,Σ) , y |x∼ Bern( f (x;φ)) , (17)

where f (x;φ) is a multi-layer perceptron and Σ is a full
rank, structured covariance matrix.

We construct the covariance matrix with two properties: (i)
smooth sample paths, and (ii) increasing marginal variance.
The Σmatrix is constructed such that the marginal variances
(along the diagonal) increase; Σ1,1 = .1 increases linearly
to ΣD,D = 1. Examples of the synthetic data are visualized
in Figure 2a and experiment details are in the supplement.

The black-box predictor, f (x;φ), is a multi-layer perceptron
that depends only on x1, the first dimension of x and the
dimension of least variation. Reconstruction of directions
of maximal variation will only carry predictive information
about y through correlations with x1. In this synthetic setup,
we examine the generative and discriminative reconstruction
trade-off as we increase β .

We fit a linear variational autoencoder (i.e. factor analysis) to
learn the distribution of x with discriminative regularization.
We limit the latent z dimension to be K < D; we set K = 10
and D = 50 in this example. To accurately reconstruct the
discriminative score, p(y = 1 |x), the model of x needs to
contain information about the first dimension of x.

We optimize the objective in Equation 3 for increasing val-
ues of β and compute the generative reconstruction error
(gen-err) and the discriminative reconstruction error (disc-
err) on held out test data

gen-err= Ex∼p(x)

�

1
D

∑

d

(xd − x̄d)
2

�1/2

(18)

disc-err= Ex∼p(x)

�

(m(x)−m(x̄))2
�1/2

. (19)

In Figure 2b we visualize these errors as a function of the
regularization strength. Note that we report discriminative
error instead of predictive accuracy because the object of our
study is not the outcome itself but the predictive model m(·).
We want our generative model reconstructions to result in
the same predictions (and including the same mistakes) from
the discriminative model. With these highly structured Gaus-
sian observations, we trade little generative reconstruction
error to obtain nearly perfect discriminative reconstruction.
The discriminative regularizer competes with the ELBO
term for model capacity. When β = 0 (i.e. a VAE), the
model ignores the directions of least variation. As we in-
crease β , the discriminative regularizer competes with the
ELBO, encouraging the generative model to represent the di-
rections of variation that influence the discriminative model.

Digit Experiment For additional empirical analysis in a
semi-synthetic setting, we include an additional experiment
on a modified MNIST data set in the supplement.3

4.2. EKG Data

We now apply DR-VAEs to a data set of clinical EKGs,
using tracings from three leads V1, II, and V5 (analogous to
channels, each recording the heart’s electrical activity from
a different point on the chest), which contain a 10-second
sequence of individual beats. We train discriminative mod-
els using segmented EKG beats (Christov, 2004), depicted
in Figure 4, to predict the following outcomes

• ST elevation (binary): A subtle feature interpreted by
eye that indicates heart attack. We use this outcome to
illustrate model-morphings.

• Bundle Branch Block (binary): A delay or blockage of
the electrical system in the heart that can be labeled from
an EKG observation by eye.

• Major adverse cardiac events with six months (MACE)
(binary): These events include myocardial infarction, car-

3Code available at https://github.com/andymiller/DR-VAE.

https://github.com/andymiller/DR-VAE
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(d) ST Elevation

Figure 3. DR-VAEs contain more predictive information. Depicted are discriminative (horizontal) vs. generative (vertical reconstruction
error on held out data for the four outcomes (age, bundle branch block, MACE, and ST elevation). A single trace represents a single
value of β ; shapes (e.g.  , �, or �) depict different latent dimensionality. We can see in some examples that there is a constant frontier —
we can achieve better discriminative reconstruction accuracy and sacrifice no generative reconstruction accuracy. The discriminative
regularizer is pushing the generative model to prefer this more meaningful representation over other, equivalent generative models. We
also note that predictive accuracy of the actual outcome y remains very similar using x and x̄.
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Figure 4. Example data: three EKG beats from three different
patients. The EKG signal considered records three leads (V1, II,
V5). Beats are segmented and placed on the unit interval.

diac arrest, stent, or a coronary artery bypass grafting.
MACE risk is not predicted with EKGs.

• Age (continuous): Patient age has a noisy relationship
to cardiac function. Visualizing the cardiac functional
correlates of aging is potentially of clinical and scientific
interest (Jones et al., 1990; Khane et al., 2011).

EKG data are a good fit for DR-VAEs as a subtle deviation
from normal cardiac function can be predictive of a
significant clinical outcome. Understanding ST elevation
and bundle branch block predictors is model diagnosis
category, while age and MACE predictors fall under
model-based discovery (defined in Section 1).

Data and model setup We construct a data set for each
outcome with close to even base-rates of y= 1. We split our
cohort by patients into a training/validation development set
(75% of patients) and a testing set (25% of patients) — no
patients overlap in these two groups. We report predictive
performance and model reconstruction statistics only on the
held-out test patients. Further details and statistics of data
used in each experiment are in the supplementary material.

For each outcome, discriminative model m(·) is a multi-

layer perceptron classifier (or regressor) trained to minimize
the cross entropy (or squared error) loss. Each discrimina-
tive model has two hidden layers of size 100 and a ReLU
nonlinearity. Discriminative models are trained with dropout
(p = .5) and stochastic gradient optimization with Adam
(Kingma & Ba, 2014), starting with the learning rate set to
.001 and halved every 25 epochs. We save the model with
the best performance on the validation set.

Throughout our experiments we compare a standard VAE to
the DR-VAE with values of β = [1,5, 10, 100] (note that
a DR-VAE with β = 0 corresponds to a standard VAE).
All deep generative models have one hidden layer with 500
units and a ReLU nonlinearity. We also train generative
models with gradient-based stochastic optimization using
Adam (Kingma & Ba, 2014), with an initial learning rate of
.001 that is halved every 25 epochs. Accompanying code
contains all model architecture and training details.

Discriminative vs. generative trade-offs For each out-
come, we train all five generative models and compare both
generative and discriminative reconstruction error. In Fig-
ure 3 we visualize the trade-off between generative and
discriminative reconstruction error on held-out test data. In
these experiments, there exists a trade-off between genera-
tive reconstruction and discriminative reconstruction. How-
ever, the standard VAE lies on a nearly constant part of the
frontier — we can see this by comparing a shape (e.g.  , �,
or �) across the different traces (colored lines). Four of the
models are essentially constant in terms of generative rmse
from the VAE to DR-VAE with β = 1. For these outcomes,
we can trade negligible generative performance for mean-
ingful discriminative performance. With higher values of β ,
we see the trade-off emerge.

As a concrete example, for ST Elevation and latent size K =
50, the discriminative RMSE for the DR-VAE with β = 1
is 20% lower than the RMSE for a standard VAE, while
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(b) DR-VAE, β = 5

Figure 5. Model-based morphings can identify more meaningful
features. Depicted are morphed examples (only lead II) comparing
the (a) direct gradient and (b) DR-VAE with β = 5. The thick
blue line indicates the starting EKG (low ST elevation), and the
thin red line indicates the morphed EKG to Pr(y |x) = .8 (high
ST elevation). Without a model, the EKG quickly starts to look
unrealistic. The model preserves structure — smoothness, and
characteristic EKG features.
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Figure 6. DR-VAEs describe more predictive variation. Depicted is
the mean morphing delta, E [x̄− x̃] (and marginal variance Σ̂morph)
for a single lead (II) while varying β . The expectation was esti-
mated on 1024 test beats using the ST Elevation predictor. On the
left, the standard VAE exhibits smaller morphing variation. As we
increase β , the model morphs exhibit more variation, indicating
the DR-VAE represents a richer set of predictive features than the
standard VAE. Note that generative reconstruction is similar for
these models.

the generative reconstruction error remains identical (seen
in Figure 3d). This improvement indicates that we have
learned a representation z that contains more information
about m(·) than the standard VAE.

Exploring z-space with morphings We qualitatively and
quantitatively examine the difference between the suite of
generative models trained on EKG observations. To com-
pare the z space of each generative model, we examine
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(a) low-to-high.
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(b) high-to-low.

Figure 7. DR-VAEs capture more predictive variation. Depicted is
the trace of the Σ̂morph matrix defined in Equation 20 variation by
model. As we increase β , the latent space finds more ways (over
the N = 1024 test examples) to increase (left) and decrease (right)
the probability of ST elevation according to m(·). Note that the
VAE and β = 1, 5, and 10 all have roughly the same generative
reconstruction error (see Figure 3).

morphed pairs of test data. For a generative model gθ (·), to
compute a morphed pair for test example xn we
• compute x̄n = µλ(xn) via the encoder
• update x̄n into x̃n via morphing z with the operation de-

fined in Equation 16 using model gθ (·)
• stop updating when m(x̃) has reached a certain value

(e.g. m(x̃) reaches the second highest decile)
This creates a pair, x̄n and x̃n, the latter of which has
morphed from the former according to the gradient of
model m(·) and gθ (·). Figure 5b depicts a model-morphing
trajectory. The initial EKG starts at the thick blue line (low
ST elevation) and is morphed to the thin red line (high
ST elevation). By comparison, Figure 5a depicts a model
free morph, the result of following the gradient flow of
m(x) which produces unrealistic synthetic examples —
particularly non-smooth sample paths and the elimination of
physiologically characteristic waves. We repeat for N exam-
ples in our test set, yielding a collection of morphed pairs.

A key question is, does a DR-VAE have more capacity to
explore predictive variation than a standard VAE? Intuitively,
if two models achieve equal generative performance, but
model a has more morphing variation than model b, model
a has more capacity to explore predictive variation than
model b. One could imagine using an entropy estimator
to measure this capacity. We use a simpler summary to
quantify this, the empirical covariance of the difference
between x̄ and x̃ according to generative model gθ (z)

Σ̂morph = cov
�

{x̄n − x̃n}Nn=1

�

. (20)

The trace of Σ̂ summarizes how much predictive variation
model gθ (·) has captured with respect to discriminative
model m(x). We can also examine the spectrum of Σ̂morph
for a clearer picture of our model-morphs — e.g. how many
effective dimensions of X = RD are used?

We conduct two experiments that center on statistics of mor-
phed pairs: (i) low-to-high: we take test examples from
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the lowest decile of m(x) (e.g test patients with the low-
est probability of ST elevation) and morph them up such
that m(x̃) = .75 (e.g. high probability of ST elevation); (ii)
high-to-low: we take test examples from the highest decile
of m(x) (e.g. test patients with the highest probability of ST
elevation) and morph them down such that m(x̃) = .1.

For each direction (low-to-high and high-to-low) we com-
pute morphed pairs for all five generative models. In Fig-
ures 7a and 7b we plot the total variation of Σ̂morph for the
ST elevation outcome. We can see that as β increases, so
does the total variation in the morphed pairs. In fact the
total number of dimensions with non-zero variation also
increases with β (visualized in the supplemental material).
In Figure 6, we show the marginal variance of the model-
morphings as we increase β (for lead V1), summarizing the
total lead variation in the title. As β grows, the marginal
variance of the morph also grows, indicating higher varia-
tion in predictive features induced by the morph.

These summaries are evidence that the DR-VAE is able to
capture a wider range of EKG features that indicate high ST
elevation (according to the predictor m(x)). This tool can
be used to reveal potentially unknown ways in which m(x)
behaves — allowing us to diagnose the model or trace a
prediction to its physiological origins. Using just a VAE (as
in Nguyen et al. (2016)) will fail to visualize much of the
predictive variation in x-space.

Comparing variation in observational data may capture cor-
related modes of variation — if two EKG features frequently
co-occur, an information-constrained latent space will learn
to express them together. If the predictor were trained with
a non-confounded data set, and the generative model were
trained with a confounded data set, our exploratory approach
may not draw a distinction between them.

Physician validation We validate our generative model of
EKGs with an expert labeling experiment. Our goal is to
measure how real the model-based EKGs appear and how
convincing model-morphed features are. We construct a
two-alternative forced choice labeling task. We present a
physician with N trials, where each trial compares a pair of
EKG beats — one real and one fake (in a randomized order).
The fake beat has been constructed with a ST elevation-
regularized DR-VAE (β = 5) in one of four ways: (i) a x̄
with low ST elevation (second decile), (ii) a x̄ with high ST
elevation (ninth decile), (iii) a x̃ morphed from low-to-high
ST elevation, and (iv) a x̃ morphed from high-to-low ST
elevation. The morphed examples are morphed from the
second to the ninth decile (or vice versa). Here, the decile is
with respect to values of the predictor m(·).

We present the expert with fifty of each category — 200 in
total — with the task of identifying which EKG beat is real
and which has ST elevation.

For the real-vs-fake question, the expert was able to
distinguish slightly above random guessing, with an overall
accuracy rate of 60% [54-66% CI]. For a more detailed
picture, we compute accuracy rates (and 95% confidence
intervals) for each type of synthetic data. For non-morphed
types, (i) and (ii), we observe rates of 60% [46-74%]
and 64% [50-78%], respectively. For morphed types, (iii)
and (iv), we observe rates of 76% [64-88%] and (iv) 42%
[28-56%], respectively.

Model-morphed examples are interpreted asymmetrically
— high ST elevation examples morphed to look like low
ST elevation examples are nearly indistinguishable from
real data. However, examples morphed to have high ST
elevation are more likely to be flagged as fake. This may be
due to model smoothness becoming more conspicuous or
poor EKG feature reconstruction. Overall, our model was
able to fool an expert between 40% and 24% of the time,
depending on the construction of the synthetic data.

For the feature-inducing accuracy, the expert label of ST ele-
vation almost always matched the model-morphing induced
feature. The low-to-high ST elevation morphed examples
were correctly labeled 88% [78-96%] of the time, and the
high-to-low morphed examples were correctly labeled 94%
[88-100%]. This result is evidence that model-morphs can
induce clinically relevant features that are recognizable and
visually interpretable to an expert. We view these results as
a promising first step toward model-based feature discovery
and understanding for black-box EKG predictors. Further
experiment details are in the supplement.

5. Discussion and Conclusion
We described discriminitively regularized VAEs (DR-VAEs),
a method to constrain the representation of a deep genera-
tive model to contain targeted information about a black-box
predictor of interest. We motivated the regularizer from an
information theoretic perspective. We applied DR-VAEs
to synthetic and EKG data, and empirically showed that
DR-VAE representations can contain more predictive in-
formation than standard VAEs. We measured how realis-
tic synthesized EKGs from the deep generative model are
with an expert labeling experiment. While the results were
promising, the task of further developing and validating
richer generative models remains open.

In future work, we will use this technique to highlight fea-
tures of an EKG that are predictive of various cardiovascular
diseases. We hope to use model-morphs to relate predictions
back to the underlying cardiac physiology driving the predic-
tion. Along this same thread, we would like to develop flexi-
ble generative models an inductive bias rooted in cardiology,
uniting physiological plausibility with DGM flexibility.
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