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A. Proofs
Proof of Theorem 3.2. For f; € K define

vp = (f1(0p)-.... fn(0Dp)),

and the matrix K = {(fi, f;)x}: recall C(f;, f;)
(fi, fi)xc. Using Proposition 3 of Hall et al. (2013), we
then need only to show that

(VD — VD/)TK+(VD — I/D/) S HeD - 9D’||§-u

where + denotes the Moore-Penrose generalized inverse.
We take a common strategy to such problems by showing
that the left hand side can be expressed as | P(6p — 0p/)||3,.
where P is a projection operator. Recall that we can move
between K and H via the transformation h = CT}, for

h € H and T), € K. Define the operator, P; : B —
span{fi,...,fn} C Kas
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and its analog into #, P : B — span{C(f1),...,C(fn)}:
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Notice that while P; maps elements of B to I D B*, P,
maps elements of B into the Cameron-Martin space, H C B.
By the reproducing property, there exists Ty, ¢, € K
such that
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Vp — Z/D/)TK+(Z/D — VD/).
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Moving to H we have
(Top—6,,, P1(0p—0p/))x = (0p—0p/, P(0p —bp/))n

If we show that P is a projection operator over H, i.e., sym-
metric and idempotent, we will have the desired bound.

First, P is idempotent by direct verification:
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Second, we show P is symmetric with respect to the H
inner product by making repeated use of the reproducing

property:

(P(x),y)n = (P1( ), Ty)x
N
_Zfl Z Z]f]
P(y))n-

Hence P is a projection operator from H to K, and the claim
of the theorem holds. O

Proof of Theorem 3.3. We aim to show that for any measur-
able subset A C B we have

PD(A) S GEPD/(A) + 5,

where Pp denotes the measure of (§D, which is Gaussian
with mean 6p and covariance o2C'. Recall the global sensi-
tivity for the functional case is

A% = sup [0p —Oprf3,-
D~D

The density of Op wrt o Z is

exp{—2

ez 1001~ 2To(a) |

where for simplicity we denote Tp = Tp,,. We equivalently
aim to show that

Pod) = [ app(@) = [ S @)iPo (@)
ee/ dPp:(x) + 0.
A

We can express
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Expand

160113, = 100 — 6p + 0|3,

= [10p' — 03 + 10013 — 200D — 07, 0D)#,
and recall that we can write (z,y)y = T, (y). So we have

dPp -
dPD/

exp {—2%2(—”913 —0p/||3, = 2(Tp — Tp/)(z — 90))} :

Decompose B = H; |JH2 where for € H; we have

dpP,
dsz (z) < €€ and for x € H, we have dPg/ (z) > e

Then trivially we have that
PD(A) e PD(A n 7‘[1) + PD(A N 7‘[2)

Using the definition of #; we have that

d dPp,
Poanty) = [ L@ @) o)

. dPp .
<e /Aﬂ’Hl a0 (z) dQ(z) < e“Pp/(A).

The proof will be complete if we can show that
Pp(ANHs) <o.
This is equivalent to showing that

1
P( - grat-ln -

—2(Tp — Tp/)(0p — 0p)) > 6) <.

Op I3

Recall that 6p = 0p + 0 Z, where Z ~ NB(0,C). The
event above can equivalently be stated as

1 -
- 7‘2(—”% —0p/||3,—2(Tp — Tp)(0p — 0p)) > €
& T~ To)(@) 2 0 e~ Sh100 ~ 001

However (I'p — T'p/)(Z) is a (real) normal random variable
with mean zero and variance ||0p — 0p ||§_[ < A2, So, if
Y ~ N(0,1) then we have that
1
202
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as long as € < 1 (Hall et al., 2013).

A.1. Derivation of RKHS Estimate

Recall that

mlf + ollmll7.

1 N
m) = 5 21X -

Without loss of generality, we may drop any terms not in-
volving m and write

g(m) = —=2(X, m)u + [mll + ¢llml[;
= _2<X7 m>H + <m7 m>H + ¢<m7 C_nm>H~
Since we are working with a Hilbert space, it can be identi-
fied with its own dual. We transfer everything over to the
Cameron-Martin Space of C", call it ‘H,,, which contains
H:
g(m) = —2(X,C"m)y
+ <ma Cmm>7‘l + ¢<m7 m>7~l~
We then have that
g'(m) = —2C"X + 2C"m + 2¢m.
Setting the above equal to zero we have that
C"X = C"ji+ ¢jfi. (5)
or B
= (C"+¢I)~rC(X).

Since (Aj, v;) are the eigenvalues/eigenfunctions of C' and

Xi = 3772, ijv; then we have
o0 o0 )\'f] B
= <:U', Uj>HUJ = 7l : <X’ Uj>H'UJ
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Proof of Theorem 4.1. The upper bound for A2 is derived
as following:
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We can also derive a simpler bound by examining the func-
tion N
T~
r) = —35,

and where it attains its maximum. Taking the derivative we
have f’(x) = 0 if and only if

(2" +¢)*(2n — 1)a®" 7% — 2®1 " 2ma" ™ (@ + ¢) = 0

2"+ ¢)(2n—1)—2n2" =0

= (¢(2n — 1)/
Taking a second derivative shows that this is where the
maximum occurs. We then have that

(620 = D)> Y7y (20— 1>
@21 —1) + )2 e

Thus, we can also use the bound

x>0,
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For 1 = 1, the bound becomes 2N ’2¢’1, while another
calculus argument shows that regardless of 7, one will al-
ways have

2 (2n—1)%"1n < 472
N2gl/n n? T NZpt/ne

as desired.

B. Extension of Empirical Study

In this section we review the impact of different parameters
on the utility of sanitized releases introduced in Section 5.
For the RKHS, H, we would consider four popular kernels:

2
C1(t,s) = exp { #} 6)

Cs(t, s) = (1 + \/5‘7;_ oy 5(t3;25)2) exp { _\/EI'; — ¢l }

Cs(t,s) = (1 N ﬁ\;— s|) exp{—\/ﬁu —s\}

p
Cy(t,s) = exp{#} .

the first is also known as the Gaussian or squared exponen-
tial kernel and the last is also known as the exponential,
Laplacian, or Ornstein-Uhlenbeck kernel.

Recall the all parameters discussed in Section 5 will be fixed
in all scenarios, except for the one where they are explicitly
varied to consider their effect.

The scenario 1 was discussed in Section 5.

SCENARIO 2: VARYING KERNEL RANGE PARAMETER p

Here all defaults are used except the range parameter for
the noise and RKHS (which are taken to be the same in
all settings) that ranges from 0.002 to 2. The results are
presented in Figure 4. We see very similar patterns to Sce-
nario 1, where increasing p increases the smoothing of both
the estimate and its privacy enhanced version. However,
increasing p smooths more than it shrinks and there is still
a non-negligible difference between the two estimates for
larger values, (e.g., p = 0.2). Practically, both p and ¢
should be chosen together for the best performance, which
we will explore further in Section 6.

$=0.002 p=0.02

AN sample functions sample functions
por Y o y

—— private summary —— private summary

-015 -005 005 0.15
N
N

-015 -005 005 0.5

sample functions
original summary
—\ —— private summary

sample functions
_— original summary
—— private summary

0.15 005 005 0.5
/

-015 -005 005 0.5
/
\

Figure 4. Original and private RKHS smoothing mean with Gaus-
sian Kernel (C') for different values of kernel range parameter

p

SCENARIO 3: VARYING THE KERNEL FUNCTION c(t, )

Here we consider the four different kernels given in (6) for
both the noise and RKHS kernel (which are taken to be the
same). The results are summarized in Figure 5. All kernels
give roughly the same pattern, however, C; produces curves
which are infinitely differentiable, while the exponential
kernel produces curves that are nowhere differentiable (they
follow an Ornstein-Uhlenbeck process). The two Matérn
covariances give paths that have either one (C3) or two (C3)
derivatives. Since the underlying function to be estimated is
already very smooth, the kernel does not have a substantial
impact. However, for more irregular shapes, this choice
can play a substantial role on the efficiency of the resulting
RKHS estimate.

SCENARIO 4: VARYING THE SMOOTHING PARAMETER
OF SAMPLES p

In this setting we vary p from 1.1 to 4, which determines the
smoothness of the data, X, (¢). Note that p has to be strictly
larger than 1 or the X; will not be square integrable. Figure 6
summarizes these results. As we can see, the smoothness of
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Figure 5. Original and private RKHS smoothing mean for different
kernels

the curves has a smaller impact on the utility of the sanitized
estimates as compared to other parameters. As the curves
become smoother, the global sensitivity decreases implying
the need for less noise being added in order to maintain the
desired privacy level, and thus resulting in a higher utility
for the privacy enhanced curves. However, the smoothness,
in terms of derivatives, of the estimates is not affected, as
this is determined by the kernel.
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Figure 6. Original and private RKHS smoothing mean with Gaus-
sian Kernel (C1) for different values of smoothing parameter of
samples p

SCENARIO 5: VARYING THE PRIVACY PARAMETERS
(€,0)

In this setting we vary the privacy parameters, € and ¢. Fig-
ure 7 present the effects of varying e from 5 to 0.1 while
in Figure 8 we vary 6 from 0.1 to 1075, As we decrease
the parameters, we are requiring a stricter form of privacy,
which is reflected in the plots; recall that § = 0 will give
us the stricter form of DP, e-DP (also called e-DP). As we
decrease these values, the overall noise added increases, and
we expect larger deviations of the sanitized estimates from

the mean. There is less sensitivity in the output to changes
in ¢ than to e. However, as with the previous scenario these
parameters play no role in the overall smoothness, in terms
of derivatives of the resulting estimates.
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Figure 7. Original and private RKHS smoothing mean with Gaus-
sian Kernel (C1) for different values of privacy level parameter e
whend =1
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Figure 8. Original and private RKHS smoothing mean with Gaus-
sian Kernel (C) for different values of privacy level parameter o
whene =1

SCENARIO 6: VARYING SAMPLE SIZE N

In Figure 9 we vary the sample size from 5 to 100. The
results are very similar to changing ¢ and e, as the sample
size does not influence the smoothness of the curves (in
terms of derivatives), but the accuracy of the estimate (green
curve) gets much better and so does the utility of the privacy
enhanced version.

SCENARIO 7: DIFFERENT UNDERLYING MEAN
FUNCTION p

Lastly, in Figure 10 we consider three additional mean func-
tions. Overall, the actual function being estimated does not
influence the utility of the privacy enhanced version, only
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Figure 9. Original and private RKHS smoothing mean with Gaus-
sian Kernel (C1) for different sample sizes N

the accuracy of the original estimate. This is because the
noise to be added is computed from the different smoothing
parameters as well as the range of the L? norm of the data,
not the underlying estimate itself.
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Figure 10. Original and private RKHS smoothing mean with Gaus-
sian Kernel (C1) for different initial mean functions

C. Extension of Diffusion Tensor Imaging

In this section our aim is to see the privacy enhanced RKHS
smoothing estimate of the mean function discussed in Sec-
tion 6 for C3 and C, based on the optimal parameters in
Table 1 for CV. The results are given in Figures 11 and 12
for Matern and Exponential kernels, respectively. In each
case, we see that the utility of the privacy enhanced versions
increases as ¢ increases, however, the largest values of ¢
produce estimates that are over smoothed. Here Table 2 rep-
resents the optimal parameters to generate privacy enhanced
estimates for PCV.

Exp. Kernel Mat 3/2 Kernel ~Gau. Kernel

10) optimum p optimum p optimum p
1 0.0001 0.25 0.10 0.01
2 0.001 0.20 0.15 0.01
3 0.01 0.30 0.15 0.03
4 0.03 0.80 0.30 0.05

Table 1. Optimum kernel range parameters p for different kernels
with using CV for each fixed penalty parameter ¢ in DTI dataset

Kernel range ¢ range p  optimum ¢ optimum p
Ch [10-%,0.1] [0.01,0.1] 0.005 0.030
Cs [107%,0.1]  [0.05,0.5] 0.005 0.250
Cy [107%,0.1] [0.2,1] 0.010 0.466

Table 2. Optimum penalty and range parameters (¢, p) for differ-
ent kernels with PCV in CCA application.
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Figure 11. Mean estimate for CCA and its private release using
Matérn(3/2) kernel (C'3) with CV.

=10 =0.001 =001 0=0.03
original functions, original functions original functions original functions
= mean function || £y mean function o mean function o mean function
——- privatemean ]y S| ——- private mean S] ——- private mean S| ——- private mean
1 '
i il
[N ~ ~ ~
' i S 3 S
3 B ih
Wi |
nn\ ) i
I © © ©
nopl ot ! E g H
Hl/ M n|| (
5o Vi « g | s
8 1 8 8 ~ 8
) M | ° Al Al
f | o ol S o
P = S [N s A\
v \— TR ) { N ,!
nh i IN/ o
h TN -« <l -
sl sy ) S S S
I’ 1R
|’ I
I ALy
il 2 g g
~ 1
S v

00 02 04 06 08 10 0o 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Figure 12. Mean estimate for cca and its private release using Ex-
ponential kernel (C's) with CV.



