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Abstract

Motivated by the rapid rise in statistical tools in
Functional Data Analysis, we consider the Gaus-
sian mechanism for achieving differential privacy
(DP) with parameter estimates taking values in
a, potentially infinite-dimensional, separable Ba-
nach space. Using classic results from probabil-
ity theory, we show how densities over function
spaces can be utilized to achieve the desired DP
bounds. This extends prior results of Hall et al.
(2013) to a much broader class of statistical esti-
mates and summaries, including “path level” sum-
maries, nonlinear functionals, and full function
releases. By focusing on Banach spaces, we pro-
vide a deeper picture of the challenges for privacy
with complex data, especially the role regulariza-
tion plays in balancing utility and privacy. Using
an application to penalized smoothing, we high-
light this balance in the context of mean function
estimation. Simulations and an application to dif-
fusion tensor imaging are briefly presented, with
extensive additions included in a supplement.

1. Introduction

New studies, surveys, and technologies are resulting in ever
richer and more informative data sets. Data being collected
as part of the “big data revolution” have dramatically ex-
panded the pace of scientific progress over the last several
decades, but often contain a significant amount of personal
or subject level information. These data and their corre-
sponding analyses present substantial challenges for pre-
serving privacy as researchers attempt to understand what
information can be publicly released without impeding sci-
entific advancement and policy making (Lane et al., 2014).

One type of big data that has been heavily researched in the
statistics community over the last two decades is functional
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data, with the corresponding branch of statistics called func-
tional data analysis, FDA. FDA is concerned with conduct-
ing statistical inference on samples of functions, trajecto-
ries, surfaces, and other similar objects. Such tools have
become increasingly necessary as our data gathering tech-
nologies become more sophisticated. FDA methods have
proven very useful in a wide variety of fields including eco-
nomics, finance, genetics, geoscience, anthropology, and
kinesiology, to name only a few (Ramsay & Silverman,
2002; 2005; Ferraty & Romain, 2011; Horvath & Kokoszka,
2012; Kokoszka & Reimherr, 2017). Indeed, nearly any data
rich area of science will eventually come across applications
that are amenable to FDA techniques. However, functional
and other high dimensional data are also a rich source of
potentially personally identifiable information (Kulynych,
2002; Erlich & Narayanan, 2014; Schadt et al., 2012).

Related Work: To date, there has been very little work
concerning FDA and statistical data privacy, in either Statis-
tical Disclosure Limitation, SDL or Differential Privacy, DP.
SDL is the branch of statistics concerned with limiting iden-
tifying information in released data and summaries while
maintaining their utility for valid statistical inference, and
has a rich history for both methodological developments
and applications for “safe” release of altered (or masked)
microdata and tabular data (Dalenius, 1977; Rubin, 1993;
Willenborg & De Waal, 1996; Fienberg & Slavkovié, 2010;
Hundepool et al., 2012). DP has emerged from theoretical
computer science with a goal of designing privacy mecha-
nisms with mathematically provable disclosure risk (Dwork,
2006; Dwork et al., 2006b). Hall et al. (2013) provide the
most substantial contribution to statistical privacy with FDA
to date, working within the DP framework and the Gaus-
sian mechanism for releasing a finite number of point-wise
evaluations, with applications to kernel density estimation
and support vector machines. They provide a limiting argu-
ment that establishes DP for certain sets of functions. One
of the major findings of Hall et al. (2013) is the connec-
tion between DP and Reproducing Kernel Hilbert Spaces,
which we extend more broadly to Cameron-Martin Spaces.
Recently, Alda & Rubinstein (2017) extended the work of
Hall et al. (2013) by considering a Laplace (instead of a
Gaussian) mechanism and focused on releasing an approx-
imation based on Bernstein polynomials, exploiting their
close connection to point-wise evaluation on a grid or mesh.
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Other related contributions include Alvim et al. (2018) who
consider privacy over abstract metric spaces assuming one
has a sanitized dataset, and Smith et al. (2018) who examine
how to best tailor the mechanism from Hall et al. (2013).

Our Contribution: In this work, we move beyond Hall
et al. (2013), Alda & Rubinstein (2017) and Smith et al.
(2018) by developing a DP mechanism for functional data
much more broadly. We first show that the Gaussian mecha-
nism achieves DP for a large class of linear functionals and
then show that this mechanism offers seemingly complete
protection against any summary imaginable, covering any
“path level” summaries (such as integrals and derivatives),
nonlinear transformations, or even a full function release,
though the later is usually not computationally feasible with-
out some additional structure (e.g., continuous time Markov
chains). Such extensions are critical for working with trans-
formations that are not simple point wise evaluations, such
as basis expansions, norms, and derivatives or when the
objects exhibit complex nonlinear dynamics. We also pro-
vide an interesting negative result, that shows that not all
Gaussian noises are capable of achieving DP for a particular
summary, regardless of how the noise is scaled. In particular,
we introduce a concept called compatibility, and show that
if a particular summary is not compatible with a Gaussian
noise, then it is impossible to achieve DP with that particular
process. To establish the necessary probabilistic bounds for
DP we utilize functional densities via the Cameron-Martin
Theorem. This is also of independent interest in FDA as den-
sities for functional data are rarely utilized due to the lack
of a natural base measure (Berrendero et al., 2018). Most
attempts at utilizing or defining densities for functional data
involve some work-around to avoid working in infinite di-
mensions (Delaigle & Hall, 2010; Dai et al., 2017). Lastly,
we demonstrate these tools by considering mean function
estimation via penalized smoothing, where we also provide
guarantees on the utility of the sanitized estimate.

One of the major findings of this work is the interesting
connection between regularization and privacy. We show
that by slightly over smoothing, one can achieve DP with
substantially less noise, thus better preserving the utility of
the release. This is driven by the fact that a great deal of per-
sonal information can reside in the “higher frequencies” of a
functional parameter estimate, while the “lower frequencies”
are typically shared across subjects. To more fully illustrate
this point, we demonstrate how a cross-validation for choos-
ing smoothing parameters can be dramatically improved
when the cross-validation incorporates the function to be
released. Previous works concerning DP and regularization
have primarily focused on performing shrinkage regression
in a DP manner (e.g. Kifer et al., 2012; Chaudhuri et al.,
2011) and model selection with linear regression (e.g., Lei
et al. (2018)), not exploiting the regularization to recover
some utility as we propose here.

Organization: The remainder of the paper is organized as
follows. In Section 2 we give the necessary background on
DP and FDA. In Section 3 we present our chief results con-
cerning releasing a finite number of linear functionals fol-
lowed by full function and nonlinear releases. Section 4 has
an application on penalized smoothing for mean estimation,
which is especially amenable to our privacy mechanism. In
Section 5 simulations highlight the role of different param-
eters, while Section 6 contains an application of Diffusion
Tensor Imaging of Multiple Sclerosis patients. In Section 7
we discuss our results and present concluding remarks.

2. Background
2.1. Differential Privacy

Differential Privacy, DP, was introduced in Dwork et al.
(2006b). Let D be a (potentially infinite) population of
records, and denote by D the collection of all n-dimensional
subsets of . Throughout we let D and D’ denote elements
of D. Notationally, we omit the dependence on n for ease
of exposition. We work with (e, §)-DP, where ¢ € R™ and
d € R are parameters representing the privacy budget with
smaller values indicating stronger privacy; when 6 = 0 one
has pure or e-DP. DP is a property of the privacy mechanism
applied to the data summary, in this case 6 p := 6(D), prior
to release. For simplicity, we will denote the application of
this mechanism using a tilde; so ] D= ] (D)~ is the sanitized
version of 6. Probabilistically, we view fp as a random
variable indexed by D (which is not treated as random).
This criteria can be defined for any probability space.

Definition 2.1 (Dwork et al. (2006b); Wasserman & Zhou
(2010)). Let 0 : D — Q, where (), F) is some measurable
space. Let p be random variables, indexed by D, taking
values in §) and representing the privacy mechanism. The
privacy mechanism is said to achieve (e,8)—DP if for any
two datasets, D and D', which differ in only one record, we
have
P(6p € A) < P(Op € A)ef 44,

for any measurable set A € F.

In Section 3.1 we take Q = R¥, corresponding to releasing
N linear functionals of a functional object, while in 3.2 we
consider a real separable Banach space when 2 = B. In Hall
et al. (2013), they consider the space of real valued func-
tions over RY, i.e., the product space 2 = R” with T = R?
(or some compact subset), by clever limiting arguments of
cylindrical sets; they thus considered DP over R equipped
with the cylindrical o-algebra (i.e. the smallest o-algebra
that makes point-wise evaluations measurable). However, in
most cases we are actually interested in a subspace of R”,
such as the space of continuous functions, square integrable
functions, differentiable functions, etc. It turns out that
the resulting o-algebras (and thus the protection offered by
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DP) are in general quite different, and that working directly
with R” can result is some fairly glaring holes. Chapter
7 of Billingsley (2008) or Section 3.1 of Bogachev (1998)
discuss these issues, but it is interesting to note that the
cylindrical o-algebra on R” is missing the sets of linear
functions, polynomials, constants, nondecreasing functions,
functions of bounded variation, differentiable functions, an-
alytic functions, continuous functions, functions continuous
at a given point, and Borel measurable functions. To avoid
this issue, we work directly with the Borel o-algebra on
the function space of interest, which in our case is always
a Banach space, though in principle this approach can be
extended to handle any locally convex vector space.

At a high level, achieving (e, §)—DP means that the object
to be released changes relatively little if the sample on which
it is based is perturbed slightly. This change is related to
what Dwork (2006) called sensitivity. Another nice feature
is that if 9~D achieves DP, then so does any measurable
transformation of it; see Dwork et al. (2006a;b) for the
original results, Wasserman & Zhou (2010) for its statistical
framework, and Dwork & Roth (2014) for a more recent
detailed review of relevant DP results.

2.2. Functional Data Analysis

Much of FDA is built upon the Hilbert space approach to
modeling, viewing data and/or parameters as elements of
a complete inner product space (most commonly L2[0, 1]
after possibly rescaling). However, we take a more gen-
eral approach by allowing for arbitrary separable Banach
spaces, i.e., a complete normed vector space, which will
dramatically increase the application of our results, while
requiring only a small amount of more technical work. All
of the concepts/tools from this section are classic probabil-
ity theory results that might be of interest in the FDA and
privacy communities. We refer the interested reader to Bo-
gachev (1998) for a nearly definitive treatment of Gaussian
measures. Throughout we let B denote a real separable Ba-
nach space; we always implicitly assume that B is equipped
with its Borel o-algebra, which is the smallest o-algebra
containing the open sets.

Let 0 : D — B denote the particular summary of interest
and for notational ease, we define 6 := (D). In Section
3.1 we consider the case where the aim is to release a finite
number of linear functionals of 8p, whereas in Section
3.2 we consider releasing sanitized versions of the entire
function or some nonlinear transformation of it (such as a
norm or basis expansion).

The backbone of our privacy mechanism is the same as in
Hall et al. (2013), and is used extensively across the DP
literature. In particular, we add Gaussian noise to the sum-
mary and show how the noise can be calibrated to achieve
DP. A random process X € B is called Gaussian if f(X) is

Gaussian in R, for any continuous linear functional f € B*
(Bogachev, 1998, Def. 2.2.1). Throughout we use * to de-
note the corresponding topological dual space. Equipped
with the norm || f||- = supy,,<1 f(h), the dual space
is also a separable Banach space. The pair (B, v) is often
called an abstract Weiner space (Bogachev, 1998, Sec. 3.9),
where v is the probability measure over B induced by X.
Every Gaussian process is uniquely parametrized by a mean,
1 € B, and a covariance operator C' : B* — B, which for
every f € B* satisfies

C(f) = E[f (X = p)(X — p)]

(Laha & Rohatgi, 1979). One can equivalently identify C as
a bilinear form C(f, g) = Cov(f(X), g(X)), and we will
use both notations whenever convenient. It follows that

F(X) ~ N(f(w), C(f, 1),

for any f € B*. We use the short hand notation A/ to denote
the Gaussian distribution over R, but include subscripts for
any other space, e.g., N for B.

A key object concerning privacy will be the Cameron-
Martin space (Bogachev, 1998, Sec. 2.4) of X (or equiva-
lently of (B, v/)). Using C one can equip B* with an inner
product

(,9)x = Cov(£(X), g(X))
— [ 1ta = ngle ~ ) dv(e).

However, B* is no longer complete under this inner product;
denote the completed space as K. Finally, consider the set
of all h € H C B such that the mapping, f — f(h), is
continuous in the K topology. Intuitively, these functions
are ones that are “'nicer” than arbitrary elements of B. In
particular, they must be regular enough to ensure that f(h)
is finite for any f € IC, which are much "uglier” functionals
than those in B*. By the Riesz representation theorem, we
can associate each element h € H with a T), € K such
that (T, f)x = f(h). The set H equipped with the inner
product

<.’L’, y>'H = <Txv Ty>l€7

is called the Cameron-Martin Space, and is itself a separable
Hilbert space. Note that, slightly less abstractly, we have
C(Ty) = h (Bogachev, 1998, Lemma 2.4.1). One can
also view KC as being a type of Reproducing Kernel Hilbert
Space (Bogachev, 1998, pg. 44) in a very broad sense since
we have (Th, f)x = f(h), for any f € K. In infinite
dimensions the Cameron-Martin space does not contain the
sample paths of X, but they can be thought of as "’living at
the boundary” of H. While the Cameron-Martin space is
introduced via Gaussian processes, it is determined entirely
by the covariance operator C.
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2.3. Hilbert Space Example

While working with a general Banach space allows for a
broader impact, it is also conceptually much more challeng-
ing. We can gain additional insight by considering what
happens when B = H is a Hilbert space. By the Riesz
Representation Theorem, which characterizes continuous
linear functionals, H is isomorphic to H* so we can always
identify H* with H and de-emphasize the linear functionals.

We can obtain very convenient expressions if we take a basis
{v; :i=1,2,...} of H consisting of the eigenfunctions of
C (recall in Hilbert spaces C' must be nonnegative definite
and trace class). In this case we have that

C(v;) = \v;  where  A\; > 0.

Assuming that that there are no zero eigenvalues (\; # 0),
define e; = /\;1/2
of K as

v;, then these form an orthonormal basis

(eirej)ic = A PATY2 Cov((vs, X, (vg, X)a) = 6,

? J

where 0;; is 1 if ¢ = j and zero otherwise. The space K
consists of all linear combinations of the e; whose coeffi-
cients are square summable. The inner product on Cameron-
Martin space, H, is given by

(@)= WM

so that

o A2
H = {xEH:Z<x7;7’>H <oo}. (1)
i=1 v

In other words, those elements of H are the functions whose
coefficients in the v; basis decrease sufficiently quickly.
Note that the case where some \; are actually zero (meaning
C has a nontrivial null space) can be easily handled by
restricting A to the range of C..!

The space H is a Hilbert space when equipped with the
inner product (z,y)% = > A, ' {z,v;)(y,v;). When H =
L?[0,1] and C is an integral operator with continuous ker-
nel ¢(t, s), then H is isomorphic to a Reproducing Kernel
Hilbert Space, RKHS (Berlinet & Thomas-Agnan, 2011)
(one has to be slightly careful as L? consists of equivalence
classes), meaning ¢;(s) € H for all ¢ when viewed as a
function of s and (¢, f) = f(t) forall f € H.

3. Privacy Enhanced Functional Data

In this section we present our main results. The mechanism
we use for guaranteeing DP is to add a Gaussian noise before

'In fact, such a game can be played quite broadly as any Radon
measure over a Fréchet space will concentrate on a reflexive sepa-
rable Banach space (Bogachev, 1998, Thm 3.6.5).

releasing 6 p; our release is based on a private version Op =
0p + o Z, where Z is a Gaussian process and o is a constant
determined by the sensitivity and privacy budget. However,
it turns out that not just any Gaussian noise, Z, can be used.
In particular, the options for choosing Z depend heavily on
the summary 6. This is made explicit in Definition 3.1.

Definition 3.1. We say that the summary 0 is compatible
with a Gaussian noise, Z ~ Ng(0,C), if 0p = 6(D)
resides in the Cameron-Martin space of Z for every D € D.

Intuitively, this means that the noise must be “rougher” than
the summaries. Our next definition is a generalization of
one from Hall et al. (2013), which focused on functions in
RKHS only.

Definition 3.2. The global sensitivity of a summary 6, with
respect to a Gaussian noise Z ~ Ng(0, C) is given by

A = sup ||6p —Op/|3,
D’'~D

where D' ~ D means the two sets differ at one record only,
and || - |3 is the norm on the Cameron-Martin space of Z.

The global sensitivity (GS) is a central quantity in the theory
of DP; the amount of noise, 0 Z, depends directly on the
global sensitivity. Here we focus on the global sensitivity
that typically leads to the worst case definition of risk under
DP; for a detailed review of DP theory and concepts, includ-
ing other notions of “sensitivity”, such as local sensitivity,
see Dwork & Roth (2014). If a summary is not compatible
with a noise, then it is possible to make the global sensitivity
infinite, in which case no finite amount of noise would be
able to preserve privacy in the sense of satisfying DP. Inter-
estingly, sensitivity is computed with the Cameron-Martin
norm, which can be convenient as it is a Hilbert space norm
and avoids the original Banach space norm.

Theorem 3.1. If a summary 6 is not compatible with a noise
Z ~ Ng(0,C) then for any o > 0, 0p := 0p + o Z will
not satisfy DP.

Proof. This is a direct consequence of the Cameron-Martin
Theorem, which characterizes the equivalence/orthogonality
of Gaussian measures. Two measures are said to be equiv-
alent if they agree on sets of measure zero and orthogonal
if they concentrate on disjoint sets. If the summary is not
compatible with the noise, then there exists a D ~ D’ such
that ||0p — 6p/|| = oo, which implies that the distribu-
tions (D) and 6(D') are orthogonal. Since the measures
are orthogonal, it means that there exists a set A such that
P(é(p) € A) = 1and P(A(D') € A) = 0, which means
that 6p is not differentially private for § < 1. O

Intuitively, if the summary is not compatible with the noise,
then one can pool even small amounts of information from
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across an infinite number of dimensions to produce a disclo-
sure. An example where one would have ||0p—60p/ ||y = o0
would be if B = L2[0, 1], fp only possessed one derivative,
but the paths of Z possessed two derivatives. However, we
stress that this is very specific to Gaussian processes; other
privacy mechanisms may have other forms of compatibility
and sensitivity that become critical in infinite dimensions.

3.1. Releasing Finite Projections

We begin with the comparatively simpler task of releas-
ing a finite vector of linear functionals of . In particu-
lar, we aim to release f(0p) = {f1(0),..., fn(0p)}, for
fi € K D B* and some fixed N. While placed in a more
general context, the core concepts involved are the same as
in Hall et al. (2013) (they focused on point-wise evaluations,
which are continuous linear functionals over an appropriate
space). Since we are using the Cameron-Martin space, we
can actually release more than just continuous linear func-
tionals; we can release any functional from /C, which is, in
general, much larger than B*.

Theorem 3.2. Assume 0 is compatible with Z ~ N(0,C),
€ < 1, and define
o2 > 2log(2/6) A2,

€2

,fn(0p)} and f(0p) =

Then fp

Op =0p +0cZ with
Now define f(0p) = {f1(0),...

{fi(0p),.... fnOp)}, for {fi € K}L,.
achieves (¢,0)-DP in RV,

Theorem 3.2 can be viewed as an extension of Hall et al.
(2013) who focus on point-wise releases. If B is taken to
be the space of continuous functions with an appropriate
topology, then Theorem 3.2 implies point-wise releases are
protected as well. However, this theorem allows the release
of any functional in K. This dramatically increases the
release options and applications as compared to Hall et al.
(2013) or Alda & Rubinstein (2017).

3.2. Full Function and Nonlinear Releases

While Section 3.1 covers a number of important cases, it
does not cover all releases of potential interest. In particu-
lar, full function releases are not protected and neither are
nonlinear releases, such as norms or derivatives. A full
function release is not often practically possible. However
in some situations, such as continuous time Markov chains,
full paths can be completely summarized using a finite num-
ber of values, but these values are not simple point-wise
evaluations or linear projections and thus not covered under
Hall et al. (2006); Alda & Rubinstein (2017) or our results
from Section 3.1. Still, there is a certain comfort in knowing
that one has a complete protection that holds regardless of
whatever special structures one might be able to exploit or
new computational tools that might become available. In

addition, one can obtain a great deal of insight by consid-
ering the infinite dimensional problem, as it highlights the
fundamental role smoothing plays when trying to maintain
utility while achieving DP.

To guarantee privacy for these types of releases, we need
to establish (e, §)-DP for the entire function, not just finite
projections. This means that in Definition 2.1, the space is
taken to be B, which is infinite dimensional. Previous works,
e.g., Dwork et al. (2014); Hall et al. (2013), establish the
probability inequalities as in Definition 2.1, using bounds
based on multivariate normal densities. This presents a seri-
ous problem for FDA and infinite dimensional spaces as it
becomes difficult to work with such objects (there is very
little FDA literature that does so). For example, Delaigle
& Hall (2010) define densities only for finite “directions”
of functional objects, and Bongiorno & Goia (2015) define
psuedo-densities by carefully controlling “small ball” prob-
abilities. Both works claim that for a functional object the
density “generally does not exist.” However, this turns out
to be a technically incorrect claim, while still often being
true in spirit. The correct statement is that, in general, it
is difficult to define a useful density for functional data. In
particular, to work with likelihood methods, a family of
probability measures should all have a density with respect
to the same base measure, which, at present, does not appear
to be possible in general for functional data.

The difficulty in defining densities in infinite-dimensional
spaces comes from the fact there is no common base or ref-
erence measure (Cuevas, 2014), such as Lebesgue measure,
however our goal in using densities is more straightforward.
We require densities (with respect to the same base mea-
sure) for the family of probability measures induced by
{6p +0Z : D € D}, where Z is a mean zero Gaussian
process in B with covariance operator C'. It turns out that
this is in fact possible because we are adding the exact same
type of noise to each element. We give the following lemma,
which is a rephrasing of the classic Cameron-Martin formula
(Bogacheyv, 1998, Corollary 2.4.3).

Lemma 3.1. Assume that the summary 6 is compatible
with a noise Z. Denote by Q) the probability measure over
B induced by 0 Z, and by {Pp : D € D} the family of
probability measures over B induced by 0p + oZ. Then
every measure Pp has a density over B with respect to Q,
which is given by

dP 1

220 0) = exp {505 (190l — 20 () }.

Q almost everywhere. Recall that §p = C(Ty,,) and that
the density is unique up to a set of Q measure zero.

(z) =e

At this point we stress that the noise is chosen by the user; it
is not a property of the data. The primary hurdle for the user
is ensuring that the summary is compatible with the selected
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noise. As we will see in Section 4, one can accomplish this
by using specific estimators. Lemma 3.1 implies that, for
any Borel measurable set A C B we have

Po() = [ G2 (@) dqle)

which we exploit in our proofs later on.

Now that we have a well defined density we can establish
differential privacy for entire functions.

Theorem 3.3. Assume 0 is compatible with a noise Z and
that € < 1, then 0p := 0p + 0 Z achieves (e,0)-DP over B
(with the Borel o-algebra), with o defined in Theorem 3.2.

We also have the following simple corollary, which is a
consequence of the post-processing inequality (Dwork &
Roth, 2014).

Corollary 3.1. Let 0 be compatible with a noise Z, and let
f be any measurable transformation from B — S, where S
is a measurable space. Then f(0p—+oZ) achieves (¢, 6)-DP
over S, where o is defined in Theorem 3.2.

Together, Theorem 3.3 and Corollary 3.1 imply that the
Gaussian mechanism gives very broad privacy protection
for functional data and other infinite dimensional objects,
as nearly any transformation or manipulation of the pri-
vacy enhanced release is guaranteed to maintain DP; this
is known as a post-processing property (e.g., see Dwork &
Roth (2014)).

4. Privacy for Mean Function Estimation

In this section we consider the problem of estimating a mean
function i from a sample X7, ..., X, that are iid elements
of HwithEX,; = p € Hand || X;|lm < 7 < oo for all 4.
We derive a bound on the global sensitivity as well as utility
guarantees. In Section 5 and in the Supplemental we will
illustrate how to produce private releases of mean function
estimates based on RKHS smoothing in more specific set-
tings. In Hall et al. (2013) one can also find examples for
kernel density estimation and support vector machines.

As is usual in the DP literature, we assume that the data
is standardized so that it is bounded, usually with 7 =
1. In this case, the sample mean i = n~! Yo X is
root-n consistent and asymptotically normal (Kokoszka &
Reimherr, 2017). There are a multitude of methods for
estimating smooth functions, however, a penalized approach
is especially amenable to our privacy mechanism. In this
case we define a penalty using the covariance of the noise, C'.
However, the penalty and noise kernels need not be exactly
the same, and in particular, we assume that penalty uses C"
for some 7 > 1. Here C" has the same eigenfunctions as
C, but the eigenvalues have been raised the power 7. This
allows for greater flexibility in terms of smoothing and it

is helpful for deriving utility guarantees. We define the
penalized estimate of the mean u

N
. 1 2 2
= argmin — X; —mllg + o||m||7,
ji=argnin 321 =+ ol

where ¢ is the penalty parameter. The norm || - ||, is
defined as the Cameron-Martin norm of C". While the
most natural candidate is 7 = 1, taking something slightly
larger can actually help with statistical inference as we
will see later on. Here, we can see the advantage of a
penalized approach as it forces the estimate to lie in the
space ‘H which means that the compatibility condition, as
discussed in theorems 3.1 and 3.2, is satisfied. A kernel
different from the noise could be used, but one must be
careful to make sure that the compatibility condition is met.
If (\;,v;) are the eigenvalue/function pairs of the C' and
{Xi = Zgoil Ti5U5 ¢ 1=1,... ,N}, with Tij = <X’i7vj>H7
then the estimate can be expressed as

- J
== o Tig Vs 2
N i=1j=1 >‘j t¢
We then have the following result.

Theorem 4.1. If the H norm of any element of the popula-
tion is bounded by a constant 0 < T < oo then the GS of i
form > 1is bounded by

472 Azt

AQ <7 J
S e

or more simply

2
AL S Ngi

™ [@n-ptm A
,'72 —N2¢1/7]'

The resulting bound is practically very useful. Data can be
rescaled so that their H bound is, for example, 1, and then
the remaining quantities are all tied to the used noise/RKHS.
Thus, the bound can be practically computed and the corre-
sponding releases are guaranteed to achieve DP.

We conclude with a final theorem that provides a guarantee
on the utility of 1 + 0 Z. One interesting note is that in finite
dimensional problems, the magnitude of the noise added for
privacy is often of a lower order than the statistical error
of the estimate. However, in infinite dimensions, this is no
longer true unless 1 > 1. This is driven by the fact that the
squared bias is of the order ¢, and thus ¢ must go to zero
like N1 if it is to balance the variance of 1. However, in
that case the magnitude of the noise added for privacy is of
the order o2 =< N—2+t1/7_If 5 = 1, then o2 is also of the
order N1, while if n > 1, then it is of a lower order and
thus asymptotically negligible. We remind the reader that
the noise and thus C' is arbitrary, so 1 can be chosen in a
way that is appropriate for i by using a rougher noise.
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Theorem 4.2. Assume the X; are iid elements of H with
norm bounded by T < oo. Define

jii= i+ oz,
where
2 21og(2/0) 72(2n — 1)2_1/’7
7= €2 x N2¢1/’77)2 ’

If the tuning parameter; ¢, satisfies ¢ oc N~ and if || p|,, <
oo then we have

Bla—alg=o(N"")  and

while [i achieves (e-0) DP in H.

5. Empirical Study

Here we briefly present simulations with B = L2[0,1] to
explore the impact of parameters on the utility of sanitized
releases. We consider the problem of estimating the mean
function from a random sample of functional observations
using RKHS smoothing, as discussed in Section 4.

For the RKHS, H, we consider the Gaussian (squared expo-
nential) kernel :

a2
Ci(t,s) = exp {tps|} 3)

We simulate data using the Karhunen-Loeve expansion, a
common approach in FDA simulation studies. In particular
we take

Xi(t) = p(t) +> i PPU () te0,1], @
j=1

where the scores, U;;, are drawn iid uniformly between
(—0.4,0.4). The functions, v;(t), are taken as the eigen-
functions of C; and m was taken as the largest value such
that \,,, was numerically different than zero in R (usually
about m = 50). All of the curves are generated on an
equally spaced grid between 0 and 1, with 100 points and
the RKHS kernel and the noise kernel will be taken to be
the same (i.e. n = 1). The range parameter for the kernel
used to define H is taken p = 0.001 and the smoothness
parameter of the X;(¢) is set to p = 4 . The mean func-
tion, sample size and DP parameters will also be set as
pu(t) = 0.1sin(mt), N = 25, (e = 1, = 0.1), respectively.
We vary the penalty, ¢, from 10~% to 1 to consider its effect.

Note that we take 7 = sup || X;||g forany i € 1,..., N and
thus all qualities needed for Theorem 4.1 are known. The
risk is fixed by choosing the € and ¢ in the definition of DP.
We thus focus on the utility of the privacy enhanced curves
by comparing them graphically to the original estimates.

E|li—pl=0(N7T),

Ideally, the original estimate will be close to the truth and
the privacy enhanced version will be close to the original
estimate. What we will see is that by compromising slightly
on the former, one can makes substantial gains in the latter.

In Figure 1 we plot all of the generated curves in gray, the
RKHS smoothed mean in green, and the sanitized estimate
in red. We can see that as the penalty increases, both es-
timates shrink towards each other and to zero. There is a
clear “sweet spot” in terms of utility, where the smoothing
has helped reduce the amount of noise one has to add to the
estimate while not over smoothing. Further simulations that
explore the impact of different parameters can be found in
the supplemental B.

¢=10"° =0.001
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Figure 1. Original and private RKHS smoothing mean with Gaus-
sian Kernel (C) for different values of penalty parameter ¢

6. Applications

In this section we illustrate our method on an application
involving brain scans (diffusion tensor imaging, DTI) that
give fractional anisotropy (FA) tract profiles for the corpus
callosum (CCA) and the right corticospinal tract (RCST) for
patients with multiple sclerosis as well as controls; data are
part of the refund (Huang et al., 2016) R package. Each
profile/function consists of thickness measurements taken
along the tract of the corresponding tissue. This type of
imaging data is becoming more common and the privacy
concerns can be substantial. Images of the brain or other
major organs might be quite sensitive source of information,
especially if the study is related to some complex disease
such as cancer, HIV, etc. Thus it is useful to illustrate how
to produce privacy enhanced versions of function valued
statistics such as mean functions. We focus on the CCC
data, which includes 382 patients measured at 93 equally
spaced locations along the CCA.

Our aim is to release a sanitized RKHS estimate of the mean
function. We consider three kernels C7, C5 and C4 which
correspond to the Gaussian kernel, Matérn kernel with v =
3/2, and the exponential kernel, respectively. Each kernel
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is from the Matérn family of covariances (Stein, 2012). The
exact forms are given in (3) in the supplement, where a
fourth kernel C5 is also considered that is “in between”
C7 and Cj3 (hence the odd numbering). In all settings we
take (¢,0) = (1,0.1) and select the penalty, ¢, and range
parameter, p, according to two different approaches. The
first is regular Cross Validation, CV, and the second we call
Private Cross Validation, PCV. In CV we fix ¢ and then take
the p that gives the minimum 10-fold cross validation score.
We do not select ¢ based on cross validation because, based
on our observations, the minimum score is always obtained
at the minimum ¢ for this data. In PCV we take nearly the
same approach, however, when computing the CV score
we take the expected difference (via Monte-Carlo) between
our privacy enhanced estimate and the left out fold from the
original data. In other words, we draw a sample of privacy
enhanced estimates, compute a CV score for each one, and
then average the CV scores. In our simulations we use 1000
draws from the distribution of the sanitized estimate. We
then find both the ¢ and p which give the optimal PCV score
based on a grid search.

For the CV-based results, for each of the kernels, we fixed a
value for ¢ € {0.0001,0.001,0.01,0.03} and then vary the
p between [0.01, 2]. We use the optimal parameter values in
Table 1 to produce the privacy enhanced estimates for C in
Figure 2. We see that the utility of the privacy enhanced ver-
sions increases as ¢ increases, however, the largest values of
¢ produce estimates that are over smoothed. There is a good
trade-off between privacy and utility with ¢ = 0.01 for C}.
The results for other kernels are reviewed in supplemental

¢=0.001 =001 9=0.03
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Figure 2. Mean estimate for cca and its private release using Gaus-
sian kernel (C7) with CV.

Turning to PCV, we varied ¢ in range [10~*,0.1] for each
of the kernels but p will be varied in [0.01,0.1], [0.05, 0.5]
and [0.2, 1] for C1,C5 and C, respectively. Here we use
the optimal parameters in Table 2 to generate privacy en-
hanced estimates, given in Figure 3. Here we see that the
utility of the privacy enhanced estimates is excellent for
C1. Using PCV tends to over smooth the original estimates

(green lines), however, by slightly over smoothing we make
substantial gains in utility as we add less noise.
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Figure 3. Mean estimate of CCA and its private release for Expo-
nential (Cy), Matérn(3/2) (C'3) and Gaussian kernels (C1) using
PCV.

7. Conclusions

In this work we provide a (¢, 6)-DP mechanism for a wide
range of summaries related to functional parameter esti-
mates. This work expands upon Hall et al. (2013), (Alda &
Rubinstein, 2017), and (Smith et al., 2018), who explored
this topic in the context of point-wise releases of functions.
Our work covers theirs as a special case, but also includes
path level summaries, full function releases, and nonlinear
releases quite broadly.In general, functional data can be
highly identifiable compared to scalar data. In biomedi-
cal settings, for example, a study may collect and analyze
many pieces of information such as genomic sequences,
biomarkers, and biomedical images, which either alone or
linked with each other and demographic information, lead
to greater disclosure risk (Lippert et al., 2017).

The heart of our work utilizes densities for functional data in
a way that has not yet been explored in the functional data lit-
erature. Previously, usable densities for functional data were
thought not to exist (Delaigle & Hall, 2010) and researchers
instead relied on various approximations to densities. We
showed how useful forms for densities can be constructed
and utilized. However, it is still unclear how extensively
these densities can be used for other FDA problems.

The literature on privacy for scalar and multivariate data is
quite extensive, while there has been very little work done
for FDA and related objects. Therefore, there are many
opportunities for developing additional theory and meth-
ods for such complicated data. One issue that we believe
will be especially important is the role of smoothing and
regularization in preserving the utility of privacy enhanced
releases. As we have seen, a bit of extra smoothing can go
a long way in terms of maintaining privacy, however, the
type of smoothing may need to be properly tailored to the
application for much complicated objects.
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