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1. Algorithm 1: CO-CLUSTER-MISSING

We provide more technical details on Algorithm 1, which
is an instance of a DC algorithm. DC algorithms in turn
belong to the broader class of majorization-minimization
(MM) algorithms (Lange et al., 2000). The basic strategy
behind an MM algorithm is to convert a hard optimization
problem into a sequence of simpler ones. The MM principle
requires majorizing the objective function f(U) by a surro-
gate function g(U | Ũ) anchored at Ũ. Majorization is a
combination of the tangency condition g(U | Ũ) = f(Ũ)
and the domination condition g(U | Ũ) ≥ f(U) for all
U ∈ Rm×n. The associated MM algorithm is defined by
the iterates Ut+1 = arg min

U
g(U | Ut). It is straight-

forward to verify that the MM iterates generate a descent
algorithm driving the objective function downhill, i.e. that
f(Ut+1) ≤ f(Ut) for all t.

Recall that in the co-clustering step, we seek a minimizer
U(γr, γc) of the function:

f(U) =
1

2
‖PΘ(X−U)‖2F + γrJr(U) + γcJc(U), (1)

where

Jr(U) =
∑

(i,j)∈Er

Ω(‖Ui· −Uj·‖2)

Jc(U) =
∑

(i,j)∈Ec

Ω(‖U·i −U·j‖2).
(2)

We make the following assumptions on Ω.

Assumption 1.1 The row and column graphs Er and Ec
are connected, i.e. the row graph is connected if for any
pair of rows, indexed by i and j with i 6= j, there exists
a sequence of indices i → k → · · · → l → j such that
(i, k), . . . , (l, j) ∈ Er. A column graph is connected under
analogous conditions.
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Assumption 1.2 The function Ω : [0,∞) 7→ [0,∞) is (i)
concave and continuously differentiable on (0,∞), (ii) van-
ishes at the origin, i.e. Ω(0) = 0, (iii) is increasing on
[0,∞), and (iv) has finite directional derivative at the ori-
gin.

In the main paper, we use the following function Ω

Ω(z) =
1

2

∫ z

0

1√
ζ + ε

dζ, (3)

where ε is a small positive number, e.g. 10−12.

The following function

g(U | Ũ) =
1

2
‖X̃−U‖2F + γr

∑
(i,j)∈Er

w̃r,ij‖Ui· −Uj·‖2

+ γc
∑

(i,j)∈Ec

w̃c,ij‖U·i −U·j‖2 + κ

majorizes our objective function (1) at Ũ, where κ is a
constant that does not depend on U and w̃r,ij and w̃c,ij are
weights that depend on Ũ, i.e.

w̃r,ij = Ω′(‖Ũi· − Ũj·‖2)

w̃c,ij = Ω′(‖Ũ·i − Ũ·j‖2),
(4)

where Ω′ denotes the first derivative of Ω.

Minimizing g(U | Ũ) is equivalent to minimizing the objec-
tive function of the convex biclustering problem for which
efficient algorithms have been introduced (Chi et al., 2017).
Thus, in the t + 1th iteration, our MM algorithm solves
a convex biclustering problem where the missing values
in X have been replaced with the values of Ũ = Ut and
the weights w̃r,ij and w̃c,ij have been computed based on
Ũ = Ut according to (4). Note that the weights are con-
tinuously updated throughout the optimization as opposed
to the fixed weights in Chi et al. (2017). This introduces a
notion of the scale of the solution into the weights.

We first construct a majorization of the data-fidelity term. It
is easy to verify that the following function of U

g1(U | Ũ) =
1

2
‖X̃−U‖2F, (5)

where X̃ = PΘ(X) + PΘc(Ũ), majorizes the data-fidelity
term 1

2‖PΘ(X)− PΘ(U)‖2F at Ũ.
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Figure 1: Majorization of the Ω function (black) given in
(3) by its first-order Taylor approximation at 1 (blue).

We next construct a majorization of the penalty term. Recall
that the first-order Taylor approximation of a differentiable
concave function provides a global upper bound on the
function. Therefore, under Assumption 1.2, we have the
following inequality

Ω(z) ≤ Ω(z̃) + Ω′(z̃)(z − z̃), for all z, z̃ ∈ [0,∞).

Figure 1 shows the relationship between Ω given in (3) with
ε = 10−12 and its first-order Taylor approximation at z̃ = 1.

Thus, we can majorize the penalty term γrJr(U)+γcJc(U)
with the function

g2(U | Ũ) = γr
∑

(i,j)∈Er

w̃r,ij‖Ui· −Uj·‖2 (6)

+ γc
∑

(i,j)∈Ec

w̃c,ij‖U·i −U·j‖2 + κ,

where κ is a constant that does not depend on U and w̃r,ij
and w̃c,ij (4) are weights that depend on Ũ. The sum of
functions (5) and (6)

g(U | Ũ) = g1(U | Ũ) + g2(U | Ũ) (7)

=
1

2
‖X̃−U‖2F

+ γr
∑

(i,j)∈Er

w̃r,ij‖Ui· −Uj·‖2

+ γc
∑

(i,j)∈Ec

w̃c,ij‖U·i −U·j‖2 + κ

majorizes our objective function (1) at Ũ.

2. Convex Biclustering Algorithm
We give a high level overview of the algorithm used to
compute CVX-BCLUST in Algorithm 1 CO-CLUSTERING-
MISSING. Note that we use the variable splitting approach
given in (?). Given data matrix X̃, cost parameters γr and γc,

and weights w̃r,ij and w̃c,ij , we seek the unique minimizer
U of the convex optimization problem

minimize
1

2
‖X̃−U‖2F + γr

∑
(i,j)∈Er

w̃r,ij‖Ui· −Uj·‖2

+ γc
∑

(i,j)∈Ec

w̃c,ij‖U·i −U·j‖2.

The compositions of the nonsmooth 2-norm with an affine
mapping of U, i.e. ‖Ui· −Uj·‖2 and ‖U·i −U·j‖2, make
solving the above optimization problem challenging. Con-
sequently, we use variable splitting to reformulate the above
unconstrained optimization problem as the following equiv-
alent equality constrained problem

minimize
1

2
‖X̃−U‖2F + γr

∑
(i,j)∈Er

w̃r,ij‖vr,ij‖2

+ γc
∑

(i,j)∈Ec

w̃c,ij‖vc,ij‖2.

subject to

vr,ij = Ui· −Uj· for all (i, j) ∈ Er
vc,ij = U·i −U·j for all (i, j) ∈ Ec,

where the new dummy variables vr,ij(vc,ij) are the pair-
wise differences between the ith and jth rows (columns) of
U.

The Lagrangian dual problem to the above equivalent equal-
ity constrained problem is a constrained least squares prob-
lem which can be solved using projected gradient descent
(?). Both the computational complexity and memory re-
quirements of using the projected gradient descent algo-
rithm to compute CVX-BCLUST are linear in the size of
the data X̃ (?). The number of times that we have to com-
pute CVX-BCLUST depends on the inherent structure in the
data. If the rows and columns have more clustered structure,
convergence is rapid and CVX-BCLUST does not need to
be applied many times. On the other hand, if there is less
clustered and more manifold structure, more applications of
CVX-BCLUST will be needed to attain convergence.

3. Proof of Proposition 1
The MM algorithm generates a sequence of iterates that has
at least one limit point, and the limit points are stationary
points of the objective function (1) To reduce notational
clutter, we suppress the dependency of f on γr and γc since
they are fixed during Algorithm 1. We prove Proposition 1
in three stages. First, we show that all limit points of the
MM algorithm are fixed points of the MM algorithm map.
Second, we show that fixed points of the MM algorithm are
stationary points of f in (1). Finally, we show that the MM
algorithm has at least one limit point.
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3.1. Limit points are fixed points

The convergence theory of MM algorithms relies on the
properties of the algorithm map ψ(U) that returns the next
iterate given the last iterate. For easy reference, we state a
simple version of Meyer’s monotone convergence theorem
(Meyer, 1976), which is instrumental in proving conver-
gence in our setting.

Theorem 1 Let f(U) be a continuous function on a do-
main S and ψ(U) be a continuous algorithm map from S
into S satisfying f(ψ(U)) < f(U) for all U ∈ S with
ψ(U) 6= U. Then all limit points of the iterate sequence
Uk = ψ(Uk−1) are fixed points of ψ(U).

In order to apply Theorem 1, we need to identify elements
in the assumption with specific functions and sets corre-
sponding to the problem of minimizing (1). Throughout the
following proof, it will sometimes be convenient to work
with the column major vectorization of a matrix. The vector
b = vec(B) is obtained by stacking the columns of B on
top of each other.

The function f : Take S = Rm×n and f : S 7→ R to be
the objective function in (1) and majorize f with g(U | Ũ)
given in (7). The function f is continuous. Let ψ(Ũ) =
arg min

U
g(U | Ũ) denote the algorithm map for the MM

algorithm. Since g(U | Ũ) is strongly convex in U, it has a
unique global minimizer. Consequently, f(ψ(U)) < f(U)
for all ψ(U) 6= U.

Continuity of the algorithm map ψ: Continuity of ψ fol-
lows from the fact that the solution to the convex biclus-
tering problem is jointly continuous in the weights and
data matrix (Chi et al., 2017)[Proposition 2]. The weight
w̃r,ij(Ũ) = Ω′(‖Ui· − Uj·‖2) is a continuous function
of Ũ, since Ω′ is continuous according to Assumption 1.2.
The weight w̃c,ij(Ũ) is likewise continuous in Ũ. The
data matrix passed into the convex biclustering algorithm is
X̃ = PΘ(X) + PΘc(Ũ), which is a continuous function of
Ũ since the projection mapping PΘc is continuous.

3.2. Fixed points are stationary points

Let Lij = (ei− ej)
T⊗ I and L̃ij = I⊗ (ei− ej)

T, where
⊗ denotes the Kronecker product. Let ∆ij = Liju and
∆̃ij = L̃iju. Then

vec(Ui· −Uj·) = ∆ij

vec(U·i −U·j) = ∆̃ij .

The directional derivative of f in the direction v at a point
u is given by

Ω′(‖∆ij‖2; v) =

{
Ω′(‖∆ij‖2)〈Lijv, ∆ij

‖∆ij‖2 〉 ∆ij 6= 0

Ω′(‖∆ij‖2)‖Lijv‖2 otherwise.

A point u is a stationary point of f , if for all direction
vectors v

0 ≤ 〈PΘ(u− x),v〉 + γr
∑

(i,j)∈Er

Ω′(‖∆ij‖2; v)

+ γc
∑

(i,j)∈Ec

Ω′(‖∆̃ij‖2; v),

where PΘ(u− x) = vec(PΘ(U)− PΘ(X)).

A point u is a fixed point of ψ, if 0 is in the subdifferential
of g(u | u), i.e.

0 ∈ {PΘ(u− x)}+ γr
∑

(i,j)∈Er

Ω′(‖∆ij‖2)∂‖∆ij‖2

+ γc
∑

(i,j)∈Ec

Ω′(‖∆̃ij‖2)∂‖∆̃ij‖2,

(8)

where the set on the right is the subdifferential ∂g(u | u).

If ∆ij 6= 0, then ∂‖∆ij‖2 =
{

LT
ij

∆ij

‖∆ij‖2

}
. On the other

hand, if ∆ij = 0, then ∂‖∆ij‖2 = ∂‖0‖2 = {d : ‖d‖2 ≤
1}.

Fix an arbitrary direction vector v. The inner product of v
with an element in the set on right hand side of (8) is given
by

〈PΘ(u− x),v〉+ γr
∑

(i,j)∈Er

Ω′(‖∆ij‖2)〈dij ,v〉

+ γc
∑

(i,j)∈Ec

Ω′(‖∆̃ij‖2)〈dij ,v〉,
(9)

where dij ∈ ∂‖∆ij‖2 and d̃ij ∈ ∂‖∆̃ij‖2.

Then the supremum of the right hand side of (9) over all
dij ∈ ∂‖∆ij‖2 and d̃ij ∈ ∂‖∆̃ij‖2 is nonnegative, because
0 ∈ ∂g(u | u). Consequently, all fixed points of ψ are also
stationary points of f .

3.3. The MM iterate sequence has a limit point

To ensure the existence of a limit point, we show that the
function f is coercive, i.e. f(Ut) → ∞ for any sequence
‖Ut‖F →∞. Recall that according to Assumption 1.1 we
assume that the row and column edge sets Er and Ec form
connected graphs. Therefore, Jr(U) = Jc(U) = 0 if and
only if U = a11T (Chi et al., 2017, Proposition 3). The
edge-incidence matrix of the column graph Φc ∈ R|Ec|×n
encodes its connectivity and is defined as

φc,li =


1 If node i is the head of edge l,
−1 If node i is the tail of edge l,
0 otherwise.
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The row edge-incidence matrix Φr ∈ R|Er|×m is defined
similarly. Assume that Θ non-empty, i.e. at least one entry
of the matrix has been observed. Finally, assume that Ω is
also coercive.

Note that any sequence Ut = at11T + Bt where
〈Bt,11T〉 = 0. Note that Jr(Ut) = Jr(Bt) and Jc(Ut) =
Jc(Bt). Let Ut be a diverging sequence, i.e. ‖Ut‖F →∞.
There are two cases to consider.

Case I: Suppose that ‖Bt‖F →∞. Let

L =

(
I⊗Φr

Φc ⊗ I

)
∈ R|Er|m+|Ec|n×mn,

and let σmin denote the smallest singular value of L. Note
that the null space of L is the span of 1. Therefore, since
〈1,bt〉 = 0

‖Lbt‖2 ≥ σmin‖Bt‖F. (10)

Also note that

Lbt =

(
vec(ΦrBt)

vec(BtΦ
T
c )

)
.

Since the mapping x =
(
xT

1 xT
2

)T 7→
max{‖x1‖2, ‖x2‖2} is a norm, and all finite dimen-
sional norms are equivalent, there exists some η > 0 such
that

η‖Lbt‖2 ≤ max
{
‖ΦrBt‖F, ‖BtΦ

T
c ‖F

}
. (11)

By the triangle inequality

max
{
‖ΦrBt‖F, ‖BtΦ

T
c ‖F

}
≤ max

 ∑
(i,j)∈Er

‖Lijbt‖2,
∑

(i,j)∈Ec

‖L̃ijbt‖2

 .
(12)

Let M = max{|Er|, |Ec|} then

max

 ∑
(i,j)∈Er

‖Lijbt‖2,
∑

(i,j)∈Ec

‖L̃ijbt‖2


≤M max

{
max

(i,j)∈Er
‖Lijbt‖2, max

(i,j)∈Ec
‖L̃ijbt‖2

}
.

(13)

Putting inequalities (10), (11), (12), and (13) together gives
us

ησmin

M
‖Bt‖F ≤ max

{
max

(i,j)∈Er
‖Lijbt‖2, max

(i,j)∈Ec
‖L̃ijbt‖2

}
.

(14)

Since Ω is increasing according to Assumption 1.2, it fol-
lows that

Ω
(ησmin

M
‖Bt‖F

)
≤ max

{
Ω

(
max

(i,j)∈Er
‖Lijbt‖2

)
,Ω

(
max

(i,j)∈Ec
‖L̃ijbt‖2

)}
.

(15)

Inequality (15) implies that

min{γr, γc}MΩ
(ησmin

M
‖Bt‖F

)
≤ min{γr, γc}max {Jr(Ut), Jc(Ut)}

≤ γrJr(Ut) + γcJc(Ut).

Consequently, since Ω is increasing and ‖Bt‖F → ∞ im-
plies that f(Ut)→∞.

Case II: Suppose ‖Bt‖F ≤ B for some B. Then |at| → ∞.
Note that we have the following inequality

f(Ut) ≥
∑

(i,j)∈Θ

(xij − bk,ij − at)2

≥
∑

(i,j)∈Θ

a2
t − 2at(xij − bk,ij)

= |Θ|a2
t − 2at

∑
(i,j)∈Θ

(xij − bk,ij)

≥ |Θ|a2
t − 2at sup

‖Bt‖F≤B

∑
(i,j)∈Θ

(xij − bk,ij)

= |Θ|
[
a2
t − 2atC

]
= |Θ|

[
(at − C)2 − C2

]
,

where C = |Θ|−1 sup
‖Bt‖F≤B

∑
(i,j)∈Θ(xij − bk,ij).

The function (at−C)2 diverges since |at| → ∞. Therefore,
the function f is coercive.

4. Filling in missing data
We present the original underlying structure of 3D points
used to generate the Euclidean distance matrix X for the
datasets linkage and linkage2 in Figure 2 and Figure 5.
In Figure 3 and Figure 6, on the left we plot the original
complete matrix where the rows and columns have been
ordered according to the geometry of the 3D points. On
the right we plot the matrix we analyze whose rows and
columns have been permuted and 50% of the entries have
been removed. In Figure 4 and Figure 7 we display the

matrix X̃
(l,k)

for three pairs of values l, k to demonstrate
the smoothing that is occurring across the different scales
of the rows and columns.
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Figure 2: Points in 3D used to generate the Euclidean dis-
tance matrix X in the linkage dataset. Rows correspond
to the helix, columns to the 2D surface. Points are colored
corresponding to the embedding of rows and columns in
Figure 2 of the main text.

Figure 3: linkage dataset: (Left) Complete matrix X.
(Right) Matrix whose rows and columns and columns have
been permuted and 50% of the values have been removed.

Figure 4: linkage dataset: Filled-in matrices X̃ at multiple

scales: X̃
(−3,−2)

,X̃
(1,0)

,X̃
(5,2)

. Rows and columns have
been reordered based on the manifold embedding follow-
ing (Ankenman, 2014).

5. Metric distortion
To further evaluate the different methods beyond just cluster-
ing accuracy, we calculate a metric distortion measure with
respect to the underlying parametrization of the geometry.
The distortion arises from two sources: the missing data and
the embedding method itself.

Denote Θ as the underlying parametrization, and let Ψ be
the embedding of the observed data to a low-dimensional
space. The metric distortion due to the embedding is

distortion(Ψ) = expansion(Ψ)× contraction(Ψ),

where

expansion(Ψ) = max
θi,θj∈Θ

‖Ψ(i)−Ψ(j)‖2
‖θi − θj‖2

and

contraction(Ψ) = max
θi,θj∈Θ

‖θi − θj‖2
‖Ψ(i)−Ψ(j)‖2

.
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Figure 5: Points in 3D used to generate the Euclidean dis-
tance X in the linkage2 dataset. Rows correspond to the
three 3D Gaussians, columns to the 2D surface. Points
are colored corresponding to the embedding of rows and
columns in Figure 2 of the main text.

Figure 6: linkage2 dataset: (Left) Complete matrix X.
(Right) Matrix whose rows and columns and columns have
been permuted and 50% of the values have been removed.

We plot the distortion of the different methods for the link-
age and linkage2 datasets with respect to their underlying
geometries (1D helix, 2D surface, 3D clusters) in Figures 8–
9. The least distortion is achieved by diffusion maps on
the full data (without missing entries) which we plot as
a baseline (black plot). The co-manifold approach out-
performs Diffusion maps with missing data and both linear
embeddings of FRPCAG. For the linkage dataset NLPCA
out-performs co-manifold but for the linkage2 dataset co-
manifold out-performs NLPCA up to high percentage of
missing values.

As diffusion maps itself introduces a distortion, we also plot
the metric distortion of diffusion maps with missing data and
the co-manifold embeddings with respect to the diffusion
distance on the full data (without missing entries) in Figures
10–11. For both datasets, the diffusion embedding yielded
by the co-manifold approach introduces less distortion than
the the diffusion embedding of the data with missing values.
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Figure 8: Metric distortion of embedding linkage dataset
with respect to the 1D helix (top) and 2D surface (bottom).
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Figure 9: Metric distortion of embedding linkage2 dataset
with respect to the 3D Gaussian clusters (top) and 2D surface
(bottom).
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Figure 10: Metric distortion of embedding linkage dataset
with increasing missing values with respect to diffusion
maps without missing values. 1D helix (top) and 2D surface
(bottom).
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Figure 11: Metric distortion of embedding linkage2 dataset
with increasing missing values with respect to diffusion
maps without missing values. 3D Gaussian clusters (top)
and 2D surface (bottom)
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