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Abstract
Representation learning is typically applied to
only one mode of a data matrix, either its rows
or columns. Yet in many applications, there is
an underlying geometry to both the rows and the
columns. We propose utilizing this coupled struc-
ture to perform co-manifold learning: uncovering
the underlying geometry of both the rows and the
columns of a given matrix, where we focus on a
missing data setting. Our unsupervised approach
consists of three components. We first solve a
family of optimization problems to estimate a
complete matrix at multiple scales of smooth-
ness. We then use this collection of smooth matrix
estimates to compute pairwise distances on the
rows and columns based on a new multi-scale met-
ric that implicitly introduces a coupling between
the rows and the columns. Finally, we construct
row and column representations from these multi-
scale metrics. We demonstrate that our approach
outperforms competing methods in both data vi-
sualization and clustering.

1. Introduction
Dimension reduction plays a key role in exploratory data
analysis, data visualization, clustering and classification.
Techniques range from the classical PCA and nonlinear
manifold learning to deep autoencoders (Tenenbaum et al.,
2000; Roweis & Saul, 2000; Belkin & Niyogi, 2003; Coif-
man & Lafon, 2006; Vincent et al., 2008; Rifai et al., 2011;
Kingma & Welling, 2014). These techniques focus on only
one mode of the data, often the observations (columns)
which are measurements in a high-dimensional feature space
(rows), and exploit correlations among the features to re-
duce the dimension of the feature vectors and obtain the
underlying low-dimensional geometry of the observations.
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Yet for many data matrices, for example in gene expres-
sion studies, recommendation systems, sensor networks,
and word-document analysis, correlations exist among both
observations and features. In these cases, we seek a method
that can exploit the correlations among both the rows and
columns of a data matrix to better learn lower-dimensional
representations of both. Bi-clustering methods, which ex-
tract distinct bi-clusters along both rows and columns, give
a partial solution to performing simultaneous dimension
reduction on the rows and columns of a data matrix. In
certain settings, however, assuming a bi-clustering model is
too restrictive and results in breaking up smooth geometries
into artificial disjoint clusters that do not match the actual
structure of the data. This can occur when the true geom-
etry is one of overlapping rather than disjoint clusters, for
example in word-document analysis (Ahn et al., 2010), or
when the underlying structure is not one of clusters at all but
rather a smooth manifold (Gavish & Coifman, 2012). Thus,
we consider a more general viewpoint: data matrices pos-
sess geometric relationships between their rows (features)
and columns (observations) such that both modes lie on
low-dimensional manifolds. Furthermore, the relationships
between the rows may be informed by the relationships
between the columns, and vice versa. Several recent pa-
pers (Gavish & Coifman, 2012; Ankenman, 2014; Mishne
et al., 2016; Shahid et al., 2016; Mishne et al., 2017; Yair
et al., 2017) exploit this coupled relationship to co-organize
matrices and infer underlying row and column embeddings.

Further complicating the story is that such matrices may
suffer from missing values, due to measurement corrup-
tions and limitations. Missing values can sabotage efforts
to learn the low dimensional manifold underlying the data.
Specifically, kernel-based methods rely on calculating a
similarity matrix between observations, whose eigendecom-
position yields a new embedding of the data. As the number
of missing entries grows, the distances between points are
increasingly distorted, resulting in poor representation of
the data in the low-dimensional space (Gilbert & Sonthalia,
2018). Matrix completion algorithms assume the data is
low-rank and fill in the missing values by fitting a global
linear subspace to the data. Yet, this may fail when the data
lies on a nonlinear manifold.

Manifold learning in the missing data scenario has been
addressed by a few recent papers. Non-linear Principle
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Figure 1: The three components of our approach: (A) smooth estimates of a matrix with missing entries at multiple scales
via co-clustering, (B) a multi-scale metric using the smooth estimates across all scales, yielding an affinity kernel between
rows/columns, and (C) nonlinear embeddings of the rows and columns. The multiscale metric between two columns (red
and orange) is a weighted Euclidean distance between those columns at multiple scales, given by solving the co-clustering
for increasing values of the cost parameters γr and γc.

Component Analysis (NLPCA) (Scholz et al., 2005) uses an
autoencoder neural network, where the middle layer serves
to learn a low-dimensional embedding of the data, and the
trained autoencoder is used to fill in missing values. Missing
Data Recovery through Unsupervised Regression (Carreira-
Perpin & Lu, 2011) first fills in the missing data with linear
matrix completion methods, then calculates a non-linear
embedding of the data and incorporates this embedding in
an optimization problem to fill in the missing values. Re-
cently Gilbert & Sonthalia (2018) proposed MR-MISSING
which first calculates an initial distance matrix using only
non-missing entries and then uses the increase-only-metric-
repair (IOMR) method to fix the distance matrix so that it is
a metric from which they calculate an embedding. None of
these methods consider the co-manifold setting, where the
coupled structure of the rows and the columns can be used
to fill in the data, and to calculate an embedding.

In this paper, we introduce a new method for performing
joint dimension reduction on the rows and columns of a data
matrix, which we term co-manifold learning, in the missing
data setting. We build on two recent lines of work on co-
organizing the rows and columns of a data matrix (Gavish &
Coifman, 2012; Mishne et al., 2016; 2017) and convex opti-
mization methods for performing co-clustering (Chi et al.,
2017; 2018). The former provide a flexible framework for
jointly organizing rows and columns but lacks algorithmic
convergence guarantees. The latter provides convergence
guarantees but does not take full advantage of the multiple
scales of the data revealed in the solution.

In the first stage of our approach, rather than inferring bi-
clusters at a single scale, we use a multi-scale optimization
framework to fill in the data at fine to coarse scales while
imposing smoothness on both the rows and the columns.
The scales of the solutions are encoded in a pair of joint

cost parameters along the rows and columns. Next, we
define a new multi-scale metric based on the filled-in matrix
across all scales, which we then use to calculate nonlinear
embeddings of the rows and columns. Thus our approach
yields three results: a collection of smoothed estimates of
the matrix, pairwise distances on the rows and columns that
better estimate the geometry of the complete data matrix,
and corresponding nonlinear embeddings (Fig. 1). We will
demonstrate in experimental results that our method reveals
meaningful representations in coupled datasets with missing
entries, whereas other methods are capable of revealing a
meaningful representation only along one of the modes.

The paper is organized as follows. We present the optimiza-
tion framework in Section 2, the new multi-scale metric for
co-manifold learning in Section 3 and experimental results
in Section 4.

2. Co-clustering an Incomplete Data Matrix
We seek a collection of complete matrix approximations
of a partially observed data matrix X ∈ Rm×n that have
been smoothed along their row and columns to varying
degrees. This collection will serve in computing row and
column multi-scale distances to better estimate the pairwise
distances of the complete data matrix. Let [m] denote the set
of indices {1, . . . ,m}, and let Θ ⊆ [m]× [n] be a subset of
the indices that correspond to observed entries of X, and let
PΘ denote the projection operator of m× n matrices onto
an index set Θ, i.e. [PΘ(X)]ij is xij if (i, j) ∈ Θ and is 0
otherwise. We seek a minimizer U(γr, γc) of the function:

f(U) =
1

2
‖PΘ(X−U)‖2F + γrJr(U) + γcJc(U). (1)

The quadratic term quantifies how well U approximates X
on the observed entries, while the two roughness penalties,
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Jr(U) and Jc(U), incentivize smoothness across the rows
and columns of U. The nonnegative parameters γr and γc
tune the tradeoff between how well U agrees with X over Θ
and how smooth U is with respect to its rows and columns.
By tuning γr and γc, we obtain estimates of X at varying
scales of row and column smoothness.

We use roughness penalties of the following forms

Jr(U) =
∑

(i,j)∈Er

Ω(‖Ui· −Uj·‖2)

Jc(U) =
∑

(i,j)∈Ec

Ω(‖U·i −U·j‖2),
(2)

where Ui· (U·i) denotes the ith row (column) of the matrix
U. The index sets Er and Ec denote the edge sets of row
and column graphs that encode a preliminary data-driven
assessment of the similarities between rows and columns
of the data matrix. The function Ω, which maps [0,∞) into
[0,∞), will be explained shortly. Variations on the opti-
mization problem of minimizing (1) have been previously
proposed in the literature. When there is no data missing,
i.e. Θ = [m]× [n] and Ω is a linear mapping, minimizing
the objective in (1) produces a convex bi-clustering prob-
lem (Chi et al., 2017). Additionally, if either γr or γc is zero,
then we obtain convex clustering (Pelckmans et al., 2005;
Hocking et al., 2011; Lindsten et al., 2011; Chi & Lange,
2015). If we take Ω to be a nonlinear concave function,
problem (1) reduces to an instance of concave penalized
regression-based clustering (Pan et al., 2013; Marchetti &
Zhou, 2014; Wu et al., 2016). The convergence properties
of our co-clustering procedure will rely on the following
two assumptions.

Assumption 2.1 The row and column graphs Er and Ec
are connected, i.e. the row graph is connected if for any
pair of rows, indexed by i and j with i 6= j, there exists
a sequence of indices i → k → · · · → l → j such that
(i, k), . . . , (l, j) ∈ Er. A column graph is connected under
analogous conditions.

Assumption 2.2 The function Ω : [0,∞) 7→ [0,∞) is (i)
concave and continuously differentiable on (0,∞), (ii) van-
ishes at the origin, i.e. Ω(0) = 0, (iii) is increasing on
[0,∞), and (iv) has finite right directional derivative at the
origin.

For concreteness, in the rest of this paper, we use the fol-
lowing function Ω

Ω(z) =
1

2

∫ z

0

1√
ζ + ε

dζ, (3)

where ε is a small positive number, e.g. 10−12. The key
feature of Ω in (3), which satisfies Assumption 2.2, is that

when it is used in the roughness penalties (2) small differ-
ences between rows and columns are penalized significantly
more than larger differences resulting in more aggressive
smoothing of small noisy variations and leaving intact more
significant systematic variations. Specifically, functions that
satisfy Assumption 2.2 are not differentiable at the origin
and therefore incentivize sparsity in the differences in the
rows and columns. Consequently, small noisy variations be-
tween pairs of rows and columns are eliminated completely
for sufficiently large γr and γc. This is in contrast with
commonly used quadratic penalties. For example, replacing
Jr(U) and Jc(U) by quadratic row and column penalties

Jr(U) =
1

2

∑
(i,j)∈Er

wij‖Ui· −Uj·‖22

Jc(U) =
1

2

∑
(i,j)∈Ec

w̃ij‖U·i −U·j‖22,
(4)

gives a version of matrix completion on graphs (Kalofolias
et al., 2014; Rao et al., 2015), where wij and w̃ij are fixed
row and column weights inferred from the data. Shahid
et al. (2016) also use quadratic row and column penalties to
perform joint linear dimension reduction on the rows and
columns of a data matrix. Penalties like the ones given in
(4), unlike the ones considered in Assumption 2.2, smooth
out more significant systematic variations more aggressively
and shrink, but do not completely eliminate, small noisy
variations.

A simple concrete example illuminates the differences be-
tween roughness penalties considered in this paper and com-
monly used existing penalties. Let U1· =

(
1 0

)T
and

U2· =
(
1 + δ 0

)T
and take Ω to be as defined in (3).

Then,

δ = 10−4 δ = 104

‖U1· −U2·‖2 = δ 10−4 104

Ω(‖U1· −U2·‖2) ≈
√
δ ≈ 10−2 ≈ 102

‖U1· −U2·‖22 = δ2 10−8 108

Consider a small difference between the first and second
rows of U, e.g. δ = 10−4. Then small differences are
penalized the most using the concave Ω and the least by the
convex quadratic penalty. Suppose there is a large difference
between the first and second rows of U, e.g. δ = 104. Then
large differences are penalized the least using the concave
Ω and the most by the convex quadratic penalty.

The practical consequence of the differences highlighted by
the example above is that the convex penalties, either when
Ω is linear or quadratic, do not introduce enough smoothing
for small differences and too much smoothing for large dif-
ferences. Indeed, Pan et al. (2013),Marchetti & Zhou (2014),
and Wu et al. (2016) showed that superior clustering results
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Algorithm 1 CO-CLUSTER-MISSING(PΘ(X), γr, γc)

1: Initialize U0, w̃r,ij , and w̃c,ij
2: repeat
3: X̃← PΘ(X) + PΘc(Ut−1)

4: {Ut, nr, nc} ← CVX-BCLST
(
X̃, γr, γc, w̃r, w̃c

)
5: w̃r,ij ← Ω′(‖Ut,i· −Ut,j·‖2) for all (i, j) ∈ Er
6: w̃c,ij ← Ω′(‖Ut,·i −Ut,·j‖2) for all (i, j) ∈ Ec
7: until convergence
8: Return

{
U(γr, γc) = Ut, X̃, nr, nc

}

could be had, when only Jr or Jc is used, by using concave
Ω. Chi et al. (2017) also showed that empirically that the
solution to the convex bi-clustering problem tended to iden-
tify too many bi-clusters and consequently also introduced a
one-step reweighted convex bi-clustering refinement, which
recovered the true bi-clusters more accurately in simulation
experiments. The reweighting refinement can be seen as
taking a single step in an iterative algorithm for minimizing
(1) inexactly when Ω is concave (Chi et al., 2018; Chi &
Steinerberger, 2018). As our method combines bi-clustering
of incomplete data at different scales, or values of γr and
γc, consequently we extend the reweighting refinement in-
troduced by Chi et al. (2017) in Section 2.1.

Our problem formulation (1) is distinct from related problem
formulations in the following ways:

1. Rows and columns of U are simultaneously shrunk to-
wards each other as the parameters γr and γc increase. Note
that this shrinkage procedure is fundamentally different
from methods like the clustered dendrogram, which indepen-
dently cluster the rows and columns as well as alternating
partition tree construction procedures (Gavish & Coifman,
2012; Mishne et al., 2016).

2. Our ultimate goal is not to perform matrix completion
(though this is a by-product of our approach) but rather to
perform joint row and column dimension reduction.

3. Our work generalizes both (Shahid et al., 2016) and (Chi
et al., 2017) in that we seek the flexibility of performing
non-linear dimension reduction on the rows and columns of
the data matrix, i.e. a more general manifold organization
than a co-clustered structure.

4. Instead of determining an optimal single scale of the
solution as in (Shahid et al., 2016; Chi et al., 2017), we rec-
ognize that the multiple scales of the different solutions can
be aggregated to better estimate the underlying geometry,
similar to the tree-based Earth mover’s distance in (Anken-
man, 2014; Mishne et al., 2017).

2.1. Co-Clustering Algorithm

The objective function (1) is a difference of convex functions
when Ω is concave as in Assumption 2.2 and consequently
can be inexactly minimized via a difference-of-convex (DC)
algorithm (Horst & Thoai, 1999). The DC algorithm mini-
mizes a sequence of convex surrogate functions. The surro-
gate functions are coupled in that each surrogate function
depends on the minimizer of the previous surrogate function
in the sequence. The t+ 1th iterate of the DC algorithm is
given by Ut+1 = arg min

U
g(U | Ut), where

g(U | Ut) =
1

2
‖X̃−U‖2F + γr

∑
(i,j)∈Er

w̃r,ij‖Ui· −Uj·‖2

+ γc
∑

(i,j)∈Ec

w̃c,ij‖U·i −U·j‖2

and w̃r,ij and w̃c,ij are weights that depend on Ut, i.e.

w̃r,ij = Ω′(‖Ut,i· −Ut,j·‖2)

w̃c,ij = Ω′(‖Ut,·i −Ut,·j‖2),
(5)

where Ω′ denotes the right directional derivative of Ω. Min-
imizing g(U | Ũ) is equivalent to minimizing the objective
function of the convex bi-clustering problem for which ef-
ficient algorithms have been introduced (Chi et al., 2017).
Thus, in the t + 1th iteration, our DC algorithm solves a
convex bi-clustering problem where the missing values in
X have been replaced with the values of Ut and the weights
w̃r,ij and w̃c,ij have been computed based on Ut accord-
ing to (5). Note that the weights are continuously updated
throughout the optimization as opposed to the fixed weights
in (Chi et al., 2017). This introduces a notion of the scale of
the solution into the weights.

Algorithm 1 summarizes our DC algorithm, CO-CLUSTER-
MISSING, which returns a smooth output matrix U(γr, γc),
a filled-in matrix X̃ = PΘ(X) + PΘc(U(γr, γc)) as well
as nr and nc, which are the number of distinct rows and
columns in U(γr, γc) respectively. CVX-BCLUST denotes
the solution to the convex bi-clustering problem. Details on
the convex bi-clustering algorithm, such as computational
complexity, are presented in the supplement.

The CO-CLUSTER-MISSING algorithm has the following
convergence guarantee.

Proposition 1 Under Assumption 2.1 and Assumption 2.2,
the sequence Ut generated by Algorithm 1 has at least one
limit point, and all limit points are stationary points of (1).

The proof of Proposition 1 is presented in the supplement.

2.2. Co-clustering at multiple scales

Initializing Algorithm 1 is very important as the objective
function in (1) is not convex. The matrix U(0) is initialized
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Algorithm 2 Co-manifold learning on an Incomplete
Data Matrix

1: Initialize Er, Ec
2: Set d(X·i,X·j) = 0 and d(Xi·,Xj·) = 0
3: Set nr = m,nc = n, k = k0, and l = l0
4: while nr > 1 do
5: while nc > 1 do
6:

{
U(l,k), X̃

(l,k)
, nr, nc

}
← CO-CLUSTER-

MISSING
(
PΘ(X), γr = 2l, γc = 2k

)
7: Update row and column distances:

d (Xi·,Xj·) += d
(
X̃

(l,k)

i· , X̃
(l,k)

j·

)
d (X·i,X·j) += d

(
X̃

(l,k)

·i , X̃
(l,k)

·j

)
8: k ← k + 1
9: end while

10: l← l + 1
11: end while
12: Calculate affinities Ar(Xi·,Xj·) and Ac(X·i,X·j)
13: Calculate embeddings Ψr,Ψc

to be the mean of all non-missing values. The connectiv-
ity graphs Er and Ec are initialized at the beginning using
k-nearest-neighbor graphs, and remain fixed throughout
all considered scales. If we observed the complete matrix,
employing a sparse Gaussian kernel is a natural way to quan-
tify the local similarity between pairs of rows and pairs of
columns. The challenge is that we do not have the complete
data matrix X but only the partially observed one PΘ(X).
Therefore, we rely only on the observed values to calculate
the k-nearest-neighbor graph, based on the distance used
by Ram et al. (2013) in an image inpainting problem.

Solving the co-clustering problem in Algorithm 1 at a single
scale yields the smooth estimate U, the filled-in data matrix
X̃, and nr and nc which are the number of distinct row and
column clusters, respectively, identified at that scale through
columns and rows merging in U. To obtain a collection
of estimates at multiple scales, we solve the optimization
problem for pairs of values for γr, γc set at logarithmic
scale (Chi & Steinerberger, 2018) until we have converged
to single global bi-cluster, i.e. nr = nc = 1.

We start with small values of γr = 2l0 and γc = 2k0 , where
l0, k0 < 0. We compute a co-clustering via Algorithm 1
to obtain the smooth estimate U(l0,k0) = U(2l0 , 2k0) used

to fill in the data matrix X̃
(l0,k0)

. Keeping γr fixed, we
continue increasing γc by power of 2 and applying the bi-
clustering until the algorithm converges to one cluster along
the columns (nc = 1). We then increase γr by power of 2
and reset γc = 2k0 . We repeat this procedure at increasing
scales of γr = 2l, γc = 2k, until we have converged to
a single global bi-cluster. This multiscale procedure yields

a collection of filled-in matrices at all scales
{
X̃

(l,k)
}
l,k

.

Note that the l and k denote the power of 2 taken for specific
row and column cost parameters (γc, γr) in the solution.
This is intended as a compact notation that corresponds a
pair of parameters (γr, γc) to their solution U(l,k) and filled

in estimate X̃
(l,k)

.

3. Co-manifold learning
Kernel-based manifold learning relies on constructing a
good similarity measure between points, and a dimension
reduction method based on this similarity. The eigenvec-
tors of these kernels are typically used as the new low-
dimensional coordinates for the data. Here we leverage
having calculated an estimate of the filled-in matrix at mul-

tiple scales
{
X̃

(l,k)
}
l,k

, to define a new metric between

rows and columns. This metric encompasses all bi-scales as
defined by joint pairs of optimization cost parameters γr, γc.
Given a new metric we employ Diffusion maps (Coifman
& Lafon, 2006) to obtain a new embedding of the rows and
columns. The full algorithm is given in Algorithm 2.

3.1. Multi-scale metric

We define a new metric to estimate the geometry of the
complete data matrix both locally and globally. For a given
pair γr, γc, we calculate the Euclidean distance between
rows for the filled-in matrix at that joint scale, weighted by
the cost parameters:

d
(
X̃

(l,k)

i· , X̃
(l,k)

j·

)
= (γrγc)

α‖X̃
(l,k)

i· − X̃
(l,k)

j· ‖2

where X̃
(l,k)

= PΘ(X) + PΘc(U(l,k)), and we set α =
−1/2 to favor local over global structure in our simulations.
Our goal is to aggregate distances between a pair of rows
(columns) across multiple scales of the solution, to calculate
a metric that better recovers the local and global geometry
of the data despite the missing values, thus “fixing” the
missing data metric. Having solved for multiple pairs from
the solution surface, we sum over all the distances to obtain
a multi-scale distance on the data rows:

d(Xi·,Xj·) =
∑
l,k

d
(
X̃

(l,k)

i· , X̃
(l,k)

j·

)
.

An analogous multi-scale distance is computed for pairs
of columns. Note that if there are no missing values, this
metric is just the Euclidean pairwise distance scaled by a
scalar, so that we recover the original embedding of the
complete matrix.

This metric takes advantage of solving the optimization for
multiple pairs of cost parameters and filling in the missing
values with increasingly smooth estimates (as γr and γc
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increase). It also alleviates the need to identify the ideal
scale at which to fill in the points; it is not clear that a single
“optimal” scale actually exists, but rather different points in
the matrix may have different optimal scales. As opposed
to the partition-tree based metric of Mishne et al. (2017),
this metric accounts for all joint scales of the data as U is
smoothed across rows and columns simultaneously, thus
fully taking advantage of the coupling between both modes.

3.2. Diffusion maps

Having calculated a multi-scale metric on the rows and
columns throughout the joint optimization procedure, we
can now construct a pair of low-dimensional embeddings
based on these distances. Specifically we use Diffusion
maps (Coifman & Lafon, 2006), but any dimension reduc-
tion technique relying on the construction of a distance
kernel could be used instead. We briefly review the con-
struction of the diffusion maps for the rows (features) of a
matrix but the same can be applied to the columns (obser-
vations). Given a distance between two rows of the matrix
d(Xi·,Xj·), we construct an affinity kernel on the rows. We
choose an exponential function, but other kernels can be
considered depending on the application:

A[i, j] = exp{−d2(Xi·,Xj·)/σ
2},

where σ is a scale parameter. The exponential function
enhances locality, as pairs of samples whose distance exceed
σ have negligible affinity. One possible choice for σ is to
be the median of distances within the data.

We derive a row-stochastic matrix P by normalizing the
rows of matrix A: P = D−1A, where D is a diagonal
matrix whose elements are given by D[i, i] =

∑
jA[i, j].

The eigendecomposition of P yields a sequence of positive
decreasing eigenvalues: 1 = λ0 ≥ λ1 ≥ . . ., and right
eigenvectors {ψ`}`. Retaining only the first d eigenvalues
and eigenvectors, the mapping Ψ embeds the rows into the
Euclidean space Rd:

Ψ : Xi· →
(
λ1ψ1(i), λ2ψ2(i), . . . , λdψd(i)

)T
.

The embedding integrates the local connections found in
the data into a global representation, which enables visu-
alization of the data, organizes the data into meaningful
clusters, and identifies outliers and singular samples. This
embedding is also equipped with a noise-robust distance,
the diffusion distance (Coifman & Lafon, 2006).

4. Numerical Experiments
The model we consider in the paper is such that the data is
not represented by a bi-clustering model but rather at least
one of the modes (rows/columns) lies on a low-dimensional
manifold. In our experiments we consider three such ex-
amples. In the first a manifold structure exists along both

rows and columns, and for the second and third the columns
belong to disjoint clusters while the rows lie on a manifold:

1. linkage A synthetic dataset with a 1D manifold along the
rows and a 2D manifold along the columns. Let {zi}N1

i=1 ∈
R3 be points along a helix and let {yj}N2

j=1 ∈ R3 be a 2D
surface, where we set N1 = 190, N2 = 300. We analyze
the matrix of Euclidean distances between the two spatially
distant sets of points to reveal the underlying geometry of
both rows and columns,

X[i, j] = ‖zi − yj‖2. (6)

Other functions of the distance can also be used such as the
elastic or Coulomb potential operator (Coifman & Gavish,
2011). Missing values correspond to having access to only
some of the distances between pairs of points across the two
sets. Note that this is unlike multidimensional scaling, since
these are not pairwise distances between all data points, but
rather distances between two sets of points.

2. linkage2 A synthetic dataset with a clustered structure
along the rows and a two-dimensional manifold along the
columns. Let {xi}N1

i=1 ∈ R3 be composed of points in 3
Gaussian clouds in 3D and let {yj}N2

j=1 ∈ R3 be a two
dimensional surface as before, with N1 = 200, N2 = 300.

3. lung500 A real-world dataset composed of 56 lung can-
cer patients and their gene expression (Lee et al., 2010).
We selected the 500 genes with the greatest variance from
the original collection of 12,625 genes. Subjects belong
to one of four subgroups; they are either normal subjects
(Normal) or have been diagnosed with one of three types
of cancers: pulmonary carcinoid tumors (Carcinoid), colon
metastases (Colon), and small cell carcinoma (Small Cell).
For all datasets, the rows and columns of the data matrix
are randomly permuted so their natural order does not play
a role in inferring the geometry. We evaluate results both
qualitatively and quantitatively.

We compare our embeddings to three approaches: NLPCA
with missing data completion (Scholz et al., 2005), Fast
Robust PCA on Graphs (FRPCAG) (Shahid et al., 2016)
and Diffusion Maps (DM) (Coifman & Lafon, 2006) on the
corrupted data, i.e. incompletely observed data. FRPCAG
provides a linear embedding of a low-rank estimate of a data
matrix using quadratic row and column penalties, while the
other methods output nonlinear embeddings. NLPCA and
DM are applied to each mode separately, while our method
and FRPCAG take into account the coupled geometry. Com-
paring to Diffusion maps demonstrates how missing values
corrupt the embedding. Note that this is also equivalent to
applying our approach for only a single scale of the cost
parameters (γr, γc →∞), as for this choice of parameters
the solution U converges to the grand mean of the data.

In Figure 2, we display the embeddings of the different



Co-manifold learning with missing data

linkage
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NLPCA DM Co-manifoldFRPCAG

Figure 2: Comparing row and column embeddings of NLPCA, FRPCAG, DM, Ours, for three datasets with 50% missing
entries. For each dataset, top / bottom row is embedding of rows / columns of X. For the lung500 dataset, the color of the
clusters are as follows: yellow - normal subjects, dark blue - carcinoid, cyan - colon , red - small cell carcinoma.

methods for each of the three datasets for both their rows
(top) and their columns (bottom), where 50% of the en-
tries have been removed. Both NLPCA and DM reveal the
underlying 2D surface structure on the rows in only one
of the linkage datasets, and err greatly on the other. DM
correctly infers a 1D path for the linkage dataset but it is
increasingly noisy. For NLPCA the 1D embedding is not
as smooth and clean as the embedding inferred by the co-
manifold approach. Our method reveals the 2D surface in
both cases. FRPCAG is unsuccessful in uncovering the
non-linear manifolds underlying either rows or columns in
the linkage dataset. For linkage2, the rows do not separate
cleanly into disjoint clusters, and for the columns only one
of the parameters of the 2D plane is uncovered.

For the lung500 data, NLPCA and DM embed the cancer
samples such that the normal subjects (yellow) are close to

the Colon type (cyan), whereas both our method and FR-
PCAG separates the normal subjects from the cancer types.
This is due to taking into account the coupled structure of
the genes and the samples. As opposed to the clustered struc-
ture along the samples, the three nonlinear methods reveal a
smooth manifold structure to the genes, which is different
than the assumed clustered structure a bi-clustering method
would infer. The representation yielded by FRPCAG is
the least structured but also does not reveal disjoint gene
clusters. For plots presenting the datasets, filled-in values
at multiple scales and evaluation of metric distortion intro-
duced by the embeddings see the supplement.

Manifold learning is not only used for visualization but also
for calculating new representations for signal processing
and machine learning tasks. Here we calculate clustering
accuracy of clustering the low-dimensional representation
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Figure 3: Evaluation of k-means clustering applied to em-
bedding of data for increasing percentages of missing values
using ARI compared to the ground-truth labels of (top) the 4
cancer types for the lung500 dataset, and (bottom) 3 Gaus-
sian clusters of the linkage2 dataset.

of the data. We apply k-means to the column embeddings
of each method, with k set to the correct number of clusters
in the data, as we want to evaluate the ability of the methods
to properly represent the data without being sensitive to
empirical estimation of the number of clusters in the data.
We use the Adjusted Rand Index (ARI) (Hubert & Arabie,
1985), to measure the similarity between the k-means clus-
tering of the embedding and the ground-truth labels. ARI
indicates no agreement between two clusterings by 0 and
perfect agreement by 1.

We note that Shahid et al. (2016) do not provide guidelines
by which to select the appropriate cost parameters γr and
γc in the FRPCAG solution. Therefore we calculated the
solution using a wide range of possible values and plot
the results for worst and best performance to demonstrate
the sensitivity to setting these parameters. In contrast, our
approach eliminates this parameter selection step.

The top panel of Figure 3 compares clustering the embed-
ding of the cancer patients in lung500 by each method for
increasing percentage of missing values in the data, where
we averaged over 30 realizations of missing entries. For
low values of missing data, FRPCAG performs the best but
its performance degrades as the percentage of missing val-
ues increases. For higher values of missing data (50% and
above), our embedding (blue plot) gives the best clustering
result and its performance is significantly degraded only
at 90% missing values, as opposed to Diffusion maps (red

plot). This demonstrates that the metric we calculate is a
good estimate of the metric of the complete data matrix.
NLPCA (yellow plot) performs worst.

The bottom panel of Figure 3 compares clustering the em-
bedding of the three Gaussian clusters in linkage2 for in-
creasing percentage of missing values in the data, where we
averaged over 30 realizations of the data itself and the miss-
ing entries. Our embedding (blue plot) gives the best cluster-
ing result (for 20% missing values and above) and its perfor-
mance is unaffected by increasing the percentage of missing
values up to 80%, as opposed to Diffusion maps (red plot)
which is greatly degraded by the missing values. NLPCA
(yellow plot) does not perform as well as our approach, with
performance decreasing as the percentage of missing values
increases. For a good parameter selection FRPCAG (purple
plot) performs well for low percentage of missing values,
and then performance is drastically impaired above 50%.
For a poor parameter selection FRPCAG (green plot) has the
worst performance for practically all percentages of missing
values. Note that the overall poor performance of FRPCAG
in this setting is due to the underlying manifold being non-
linear and the data being high-rank, demonstrating the need
for nonlinear embedding approaches.

5. Conclusions
In this paper, we presented a new method for learning nonlin-
ear manifold representations of both the rows and columns
of a matrix with missing data. We proposed a new optimiza-
tion problem to obtain a smooth estimate of the missing
data matrix, and solved this problem for different values
of the cost parameters, which encode the smoothness scale
of the estimate along the rows and columns. We leverage
calculating these multi-scale estimates into a new metric
that aims to capture the geometry of the complete data ma-
trix. This metric is then used in a kernel-based manifold
learning technique to obtain new representations of both the
rows and the columns. In future work, we will investigate
additional metrics in a general co-manifold setting and re-
late them to optimal transport problem and Earth Mover’s
Distance (Coifman & Leeb, 2013). We also intend to de-
velop efficient solutions to accelerate the optimization in
order to address large-scale datasets, in addition to the small-
scale regime we demonstrate here. We note that the datasets
considered here, while being small-scale in the observa-
tion domain are high-dimensional in the feature domain,
which is a non-trivial setting, and indeed a challenge for
supervised methods such as deep learning due to limited
training data. Finally, we note that in this work we consid-
ered the case where the missingness pattern was completely
at random. We leave it to future work to study the more
complicated problem setting where data may be missing in
a more systematic fashion.
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