
Flat Metric Minimization with Applications in Generative Modeling

Appendix

A. Proof of Proposition 3
Since gθ]S and T are normal currents we know
Fλ(gθ]S, T) <∞ for all θ ∈ Θ.

We now directly show Lipschitz continuity. First notice that

Fλ(gθ]S − T) = Fλ(gθ]S + gθ′]S − gθ′]S − T) (36)
≤ Fλ(gθ]S − gθ′]S) + Fλ(gθ′]S − T), (37)

yields the following bound:

|Fλ(gθ]S−T)−Fλ(gθ′]S−T)| ≤ Fλ(gθ]S−gθ′]S). (38)

Due to Prop. 1 we have that

Fλ(gθ]S − gθ′]S) ≤ max{1, λ} · F(gθ]S − gθ′]S). (39)

Now define the compact set C ⊂ Rd as

C =
{

(1− t)gθ(z) + tgθ′(z) : z ∈ sptS,

0 ≤ t ≤ 1
}
,

(40)

and as in §4.1.12 in Federer (1969) for compact K ⊂ Rd

the “stronger” flat norm

FK(T) = sup
{
T (ω) | ω ∈ Dk(Rd), with

‖ω(x)‖∗ ≤ 1, ‖dω(x)‖∗ ≤ 1 for all x ∈ K
}
.

(41)

Since the constraint in the supremum in (41) is less restric-
tive than in the definition of the flat norm (20), we have

F(gθ]S − gθ′]S) ≤ FC(gθ]S − gθ′]S). (42)

Then, the inequality after §4.1.13 in Federer (1969) bounds
the right side of (42) for k > 0 by

FC(gθ]S − gθ′]S) ≤
‖S‖(|gθ − gθ′ |ρk) + ‖∂S‖(|gθ − gθ′ |ρk−1),

(43)

where ρ(z) = max{‖∇zg(z, θ)‖, ‖∇zg(z, θ′)‖} <∞ due
to Assumption 1 and we write ‖S‖(f) =

∫
f(z) d‖S‖(z),

where ‖S‖ is defined in the sense of (19). For k = 0, a
similar bound can be derived without the term ‖∂S‖.

For k > 0, by setting µS = ‖∂S‖ + ‖S‖ we can further
bound the term in (43) by

‖S‖(|gθ − gθ′ |ρk) + ‖∂S‖(|gθ − gθ′ |ρk−1) ≤

c1 ·
∫
‖gθ(z)− gθ′(z)‖dµS(z),

(44)

where c1 = supz max{ρk(z), ρk−1(z)}. For k = 0, the
bound is derived analogously.

Now since g(z, ·) is locally Lipschitz and Θ ⊂ Rn is
compact, g(z, ·) is Lipschitz and we denote the constant
as Lip(g), leading to the bound∫
‖gθ(z)− gθ′(z)‖dµS(z) ≤ µS(Z) Lip(g) · ‖θ − θ′‖.

(45)
Since S ∈ Nk,Z(Rl) is a normal current, µS(Z) < ∞.
Thus by combining (38), (39), (42), (43), (44) and (45)
there is a finite c2 = max{1, λ} · c1 · µS(Z) · Lip(g) <∞
such that

|Fλ(gθ]S − T)− Fλ(gθ′]S − T)| ≤ c2‖θ − θ′‖. (46)

Therefore, the cost Fλ(gθ]S, T) in (27) is Lipschitz in θ and
by Rademacher’s theorem, §3.1.6 in Federer (1969), also
differentiable almost everywhere.

B. Parameters and Network Architectures
For all experiments we use Adam optimizer (Kingma &
Ba, 2014), with step size 10−4 and momentum parameters
β1 = 0.5, β2 = 0.9. The batch size is set to 50 in all
experiments except the first one (which runs full batch with
batch size 5). We always set λ = 1.

B.1. Illustrative 2D Example

We pick the same parameters for k ∈ {0, 1}. We set the
penalty to ρ = 10 and use 5 discriminator updates per
generator update as in (Gulrajani et al., 2017). The generator
is a 5 – 6 – 250 – 250 – 250 – 2 fully connected network
with leaky ReLU activations. The first layer ensures that
the latent coordinate z1 has the topology of a circle, i.e.,
it is implemented as (cos(z1), sin(z1), z2, z3, z4, z5). The
discriminators ω0 and ω1,1 are 2 – 100 – 100 – 100 – 1
respectively 2 – 100 – 100 – 2 nets with leaky ReLUs. The
distribution on the latent is a uniform z1 ∼ U([−π, π]) and
zi ∼ N (0, 1) for the remaining 4 latent codes.

B.2. MNIST

For the remaining experiments, we use only 1 discriminator
update per iteration. The digits are resized to 32× 32. For
generator we use DCGAN architecture (Radford et al., 2015)
without batch norm and with ELU activations, see Table 1.
The discriminators are given by the architectures in Table 2,
with leaky ReLUs between the layers.

Before computing 〈ω1,1(x)∧ω1,2(x), v1 ∧ v2〉, the tangent
images v1, v2 ∈ R32·32 are convolved with a Gaussian with
a standard deviation of 2 and downsampled to 8× 8 using
average pooling. The distributions on the latent space are
given by z1 ∼ U([−7.5, 7.5]), z2 ∼ U([−0.5, 0.5]) and
zi ∼ N (0, 1) for the remaining 126 latent variables. The
tangent vectors at each sample are computed by a 2 degree
rotation and a dilation with radius one.

Flat Metric Minimization with Applications in Generative Modeling

layer name output size filters

Reshape 128× 1× 1 –
Conv2DTranspose 32F × 4× 4 128→ 32F
Conv2DTranspose 16F × 8× 8 32F → 16F
Conv2DTranspose 4F × 16× 16 16F → 4F
Conv2DTranspose 1× 32× 32 4F → 1

Table 1. Generator architecture for MNIST experiment, F = 32.

layer name output size filters

Reshape 1× 32× 32 –
Conv2D 2F × 16× 16 1→ 2F
Conv2D 4F × 8× 8 2F → 4F
Conv2D 32F × 4× 4 4F → 32F
Conv2D 1× 1× 1 32F → 1

Conv2DTranspose 1× 8× 8 32F → 1

Table 2. The discriminator ω0 has F = 32 and red last layer. The
discriminators ω1,1, ω1,2 have F = 8 and last layer in blue.

B.3. SmallNORB

We downsample the smallNORB images to 48 × 48. The
architectures and parameters are chosen similar to the previ-
ous MNIST example, see Table 3 and Table 4.

layer name output size filters

Reshape 128× 1× 1 –
Conv2DTranspose 32F × 4× 4 128→ 32F
Conv2DTranspose 16F × 8× 8 32F → 16F
Conv2DTranspose 16F × 12× 12 16F → 16F
Conv2DTranspose 4F × 24× 24 16F → 4F
Conv2DTranspose 1× 48× 48 4F → 1

Table 3. Generator for smallNORB experiment, F = 24.

layer name output size filters

Reshape 1× 48× 48 –
Conv2D 2F × 24× 24 1→ 2F
Conv2D 4F × 12× 12 2F → 4F
Conv2D 32F × 6× 6 4F → 32F
Conv2D 1× 1× 1 32F → 1

Conv2DTranspose 1× 12× 12 32F → 1

Table 4. SmallNORB discriminator ω0, F = 32, last layer in
shown in red, and tangent discriminators ω1,1, ω1,2, ω1,3 where
F = 8 and last layer is highlighted in blue.

B.4. Tinyvideos

The architectures for the tinyvideo experiment are borrowed
from the recent work Mescheder et al. (2018), see Table 5
and Table 6.

layer name output size filters

Fully Connected 8192 –
Reshape 512× 4× 4 –

ResNet-Block 512× 4× 4 512→ 512→ 512
NN-Upsampling 512× 8× 8 –

ResNet-Block 256× 8× 8 512→ 256→ 256
NN-Upsampling 256× 16× 16 –

ResNet-Block 128× 16× 16 256→ 128→ 128
NN-Upsampling 128× 32× 32 –

ResNet-Block 64× 32× 32 128→ 64→ 64
NN-Upsampling 64× 64× 64 –

ResNet-Block 64× 64× 64 64→ 64→ 64
Conv2D 3× 64× 64 64→ 3

Table 5. Generator architecture for tinyvideos experiment.

layer name output size filters

Conv2D 64× 64× 64 3→ 64

ResNet-Block 64× 64× 64 64→ 64→ 64
AvgPool2D 64× 32× 32 –

ResNet-Block 128× 32× 32 64→ 64→ 128
AvgPool2D 128× 16× 16 –

ResNet-Block 256× 16× 16 128→ 128→ 256
AvgPool2D 256× 8× 8 –

ResNet-Block 512× 8× 8 256→ 256→ 512
AvgPool2D 512× 4× 4 –

ResNet-Block 1024× 4× 4 512→ 512→ 1024
Conv2D 1× 1× 1 1024→ 1

ResNet-Block 256× 16× 16 128→ 256→ 256
Conv2D 3× 16× 16 256→ 3

Table 6. Discriminator architectures for tinyvideos experiment.
Last layers of ω0 are highlighted in red, and the last layers of
the temporal discriminator ω1,1 are highlighted in blue.

