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A. Proofs
A.1. Proof of Lemma 1

Lemma 1. Let S be the solution obtained by performing
the local search algorithm. Then S is a local optima.

Proof. Suppose S is not a local optima, then there exists
an element x that satisfies one of the followings: x ∈
S and F (S\{x}) ≥ F (S) or x ∈ V\S and F (S∪{x}) ≥
F (S). This means the algorithm must not terminate with S .
Contradiction.

A.2. Proof of Theorem 1

Before proving Theorem 1, we introduce submodularity in-
dex (SmI) which is a measure of the degree of submodularity
(Zhou & Spanos, 2016).

Definition 4. The submodularity index (Zhou & Spanos,
2016) for a set function F : 2V → R, a set L, and a
cardinality k is defined as

λF (L, k) = min
A⊆L
S∩A=∅
|S|≤k

{
φF (S,A) ,

∑
x∈S

Fx(A)− FS(A)

}
,

where FS(A) = F (A ∪ S)− F (A).

It is easy to verify ∀I ⊆ J , SmI satisfies λF (I, k) ≥
λF (J , k) and for the optimal solution C, −2F (C) ≤
λF (V, 2) ≤ 2F (C). Following lemma bounds the degrada-
tion in submodularity with SmI.

Lemma 2. LetA be an arbitrary set, B = A∪{y1, ..., yM}
and x ∈ B. Then, Fx(A)− Fx(B) ≥MλF (B, 2)

Proof. See Zhou & Spanos (2016) Lemma 3.
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Lemma 3. Let Y be an arbitrary set and A ⊆ B, Then

F (A∪Y)− F (A)
≥ F (B ∪ Y)− F (B) + |B \ A| · |Y| · λF (B ∪ Y, 2)

Proof. Let Y = {a1, ..., an}. Then,

F (A ∪ {a1})− F (A)
≥ F (B ∪ {a1})− F (B) + |B \ A|λF (B, 2)

F (A ∪ {a1, a2})− F (A ∪ {a1})
≥ F (B ∪ {a1, a2})− F (B ∪ {a1})
+ |B \ A|λF (B ∪ {a1}, 2)

...
F (A ∪ Y)− F (A ∪ Y \ {an})

≥ F (B ∪ Y)− F (B ∪ Y \ {an})
+ |B \ A|λF (B ∪ Y \ {an}, 2)

By telescoping sum,

F (A ∪ Y)− F (A)

≥ F (B ∪ Y)− F (B) + |B \ A|
n∑

i=1

λF (B ∪ {a1, ...ai−1}, 2)

≥ F (B ∪ Y)− F (B) + |B \ A| · |Y| · λF (B ∪ Y, 2)
(By property of SmI)

Next lemma relates the local optima solution from local
search with submodularity index.

Lemma 4. If S is a local optima for a function F, then for
any subsets I ⊆ S ⊆ J , the following holds.

F (I) ≤ F (S)−

(
|S \ I|

2

)
λF (S, 2)

F (J ) ≤ F (S)−

(
|J \ S|

2

)
λF (J , 2)

Proof. Let I = T0 ⊆ T1 ⊆ · · · ⊆ Tk = S be a chain of
sets where Ti \ Ti−1 = {ai}. For each 1 ≤ i ≤ k, the
following holds.
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F (Ti)− F (Ti−1) ≥ F (S)− F (S \ {ai}) + (k − i)λF (S \ {ai}, 2)
(By Lemma 3)

≥ (k − i)λF (S \ {ai}, 2)
(By the definition of local optima)

≥ (k − i)λF (S, 2)
(By the property of SmI)

By telescoping sum,

F (S)− F (I) ≥
k∑

i=1

(k − i)λF (S, 2) =

(
|S \ I|

2

)
λF (S, 2)

Similarly, Let S = T0 ⊆ T1 ⊆ · · · ⊆ Tk = J be a chain
of sets where Ti \ Ti−1 = {ai}. For each 1 ≤ i ≤ k, the
following holds.

F (Ti)− F (Ti−1) ≤ F (S ∪ {ai})− F (S)− (i− 1)λF (Ti−1, 2)
(By Lemma 3)

≤ −(i− 1)λF (Ti−1, 2)
(By the definition of local optima)

≤ −(i− 1)λF (J , 2)
(By the property of SmI)

By telescoping sum,

F (J )− F (S) ≤ −
k∑

i=1

(i− 1)λF (J , 2)

= −

(
|J \ S|

2

)
λF (J , 2)

Now, we prove Theorem 1.

Theorem 1. Let C be an optimal solution for a function F
and S be the solution obtained by the local search algorithm.
Then,

2F (S) + F (V \ S) ≥ F (C) + ξλF (V, 2),

where

ξ =

(
|S \ C|

2

)
+

(
|C \ S|

2

)
+ |S ∪ C| · |S|+ |C \ S| · |S ∩ C|

Proof. Since S is a local optimum, The following holds by
Lemma 4.

F (S) ≥ F (S ∩ C) +
(
|S \ C|

2

)
λF (S, 2)

F (S) ≥ F (S ∪ C) +
(
|C \ S|

2

)
λF (S ∪ C, 2)

Also from Lemma 3, we have,

F (S ∪ C) + F (V \ S)
≥ F (C \ S) + F (V) + |S ∪ C| · |S| · λF (V, 2)
≥ F (C \ S) + |S ∪ C| · |S| · λF (V, 2)

(By non-negativity)

Also,

F (S ∩ C) + F (C \ S)
≥ F (C) + F (∅) + |C \ S| · |S ∩ C| · λF (C, 2)
≥ F (C) + |C \ S| · |S ∩ C| · λF (C, 2)

(By non-negativity)

Summing the inequalities, we get

2F (S) + F (V \ S) ≥ F (C)+
(
|S \ C|

2

)
λF (S, 2)

+

(
|C \ S|

2

)
λF (S ∪ C, 2)

+|S ∪ C| · |S| · λF (V, 2)
+|C \ S| · |S ∩ C| · λF (C, 2)

Since all λF (·, 2)’s are greater than or equal to λF (V, 2) by
the property of SmI, we get

2F (S) + F (V \ S) ≥ F (C) +

[(
|S \ C|

2

)
+

(
|C \ S|

2

)

+ |S ∪ C| · |S|+ |C \ S| · |S ∩ C|

]
λF (V, 2)

= F (C) + ξλF (V, 2)

B. Hyperparameters
B.1. Experiments on Cifar-10

Hyperparameters for NES and Bandits on Cifar-10 dataset
in untargeted setting are shown in Table 1 and Table 2 re-
spectively. Note that the hyperparameters are tuned in a
setting where images are normalized in a scale of [0, 1] to
maintain consistency with the experiments on ImageNet
dataset.
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Hyperparameter Value

σ for NES 0.001
n, size of each NES population 100
η, learning rate 0.01
β, momentum 0.9

Table 1. Hyperparameters for NES untargeted attack on Cifar-10.

Hyperparameter Value

η, OCO learning rate 0.1
h, image learning rate 0.01
δ, bandit exploration 0.1
η, finite difference probe 0.1
tile size 16

Table 2. Hyperparameters for Bandits untargeted attack on Cifar-
10.

B.2. Untargeted attacks on ImageNet

Hyperparameters for NES and Bandits on ImageNet dataset
in untargeted setting are listed in Table 3 and Table 4. We
use NES implementation from Ilyas et al. (2018b), since
Ilyas et al. (2018a) conducted experiments only in the tar-
geted setting.

Hyperparameter Value

n, sample per step 100
η, finite difference probe 0.1
h, image learning rate 0.01

Table 3. Hyperparameters for NES untargeted attack on ImageNet.

Hyperparameter Value

η, OCO learning rate 100
h, image learning rate 0.01
δ, bandit exploration 1.0
η, finite difference probe 0.1
tile size 50

Table 4. Hyperparameters for Bandits untargeted attack on Ima-
geNet.

B.3. Targeted attacks on ImageNet

Hyperparameters for NES targeted attack on ImageNet
dataset are shown in Table 5. All the hyperparameters ex-
cept for momentum are referred from the original paper.
For momentum, we tuned with range β ∈ {0.5, 0.7, 0.9}.
The result of tuning momentum is in Table 6. We choose
β = 0.7 which records the lowest average queries.

Hyperparameter Value

σ for NES 0.001
n, size of each NES population 50
η, learning rate 0.01
β, momentum 0.7

Table 5. Hyperparameters for NES targeted attack on ImageNet.

Momentum Success
rate

Avg.
queries

Med.
queries

0.5 99.2% 16977 13375
0.7 99.7% 16284 12650
0.9 99.8% 16725 13525

Table 6. Result of tuning momentum for NES.

B.4. Untargeted attacks on ImageNet with smaller ε

Hyperparameters for NES and Bandit with smaller maxi-
mum perturbation are given in Table 7 and Table 8. Since
we run the experiments in untargeted setting, we use NES
implementation from Ilyas et al. (2018b).

Hyperparameter Value

ε = 0.01 ε = 0.03

n, samples per step 100 100
η, finite difference probe 1 1
h, image learning rate 0.001 0.005

Table 7. Hyperparameters for NES untargeted attack on ImageNet
with smaller ε.

Hyperparameter Value

ε = 0.01 ε = 0.03

η, OCO learning rate 100 100
h, image learning rate 0.001 0.005
δ, bandit exploration 0.1 1
η, finite difference probe 1 1
tile size 50 50

Table 8. Hyperparameters for Bandits untargeted attack on Ima-
geNet with smaller ε.

C. Tuning Bandits for targeted attack
In applying Bandits to targeted attack, we tuned for image
learning rate h and OCO learning rate η. Other hyperpa-
rameters were set as the untargeted setting given by the
authors. We performed grid search on the two hyperparam-
eters, with range h ∈ {0.0001, 0.001, 0.005, 0.01, 0.05}
and η ∈ {1, 10, 100, 1000}. This sweep range covers the
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method’s original untargeted setting, which is h = 0.01 and
η = 100. Evaluation metrics were attack success rate and
average queries. Results can be found below.
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Figure 1. Success rate with given hyperparameters.
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Figure 2. Average queries with given hyperparameters.

On the paper’s Table 3 we used h = 0.001 and η = 1,
which shows the best result on success rate with low average
queries.

D. Additional plot on hyperparameter
sensitivity analysis

To show the robustness of our method to hyperparameters
more explicitly, we draw a mean and standard deviation plot
of success rate against the number of queries across different
hyperparameter settings for each attack method. The exper-
imental protocol is the same as in Section 5.5 in the main
text. The results are shown in Figure 3. The figure shows
that our method is less sensitive to the hyperparameters than
Bandits at every query limit.
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Figure 3. Mean and standard deviation plots of success rate against
the number of queries across different hyperparamters. The solid
lines show the average success rate (y-axis) at each query limit
(x-axis).
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