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Abstract

Modern deep neural networks are typically highly
overparameterized. Pruning techniques are able
to remove a significant fraction of network pa-
rameters with little loss in accuracy. Recently,
techniques based on dynamic reallocation of non-
zero parameters have emerged, allowing direct
training of sparse networks without having to pre-
train a large dense model. Here we present a novel
dynamic sparse reparameterization method that
addresses the limitations of previous techniques
such as high computational cost and the need for
manual configuration of the number of free pa-
rameters allocated to each layer. We evaluate
the performance of dynamic reallocation meth-
ods in training deep convolutional networks and
show that our method outperforms previous static
and dynamic reparameterization methods, yield-
ing the best accuracy for a fixed parameter bud-
get, on par with accuracies obtained by iteratively
pruning a pre-trained dense model. We further
investigated the mechanisms underlying the su-
perior generalization performance of the resul-
tant sparse networks. We found that neither the
structure, nor the initialization of the non-zero
parameters were sufficient to explain the superior
performance. Rather, effective learning crucially
depended on the continuous exploration of the
sparse network structure space during training.
Our work suggests that exploring structural de-
grees of freedom during training is more effective
than adding extra parameters to the network.
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1. Introduction
Deep neural networks’ success in a wide range of appli-
cation domains, ranging from computer vision to machine
translation to automatic speech recognition, stems from
their ability to learn complex transformations by data exam-
ples while achieving superior generalization performance.
Though they generalize well, deep networks learn more ef-
fectively when they are highly overparameterized (Brutzkus
et al., 2017; Zhang et al., 2016). Emerging evidence has
attributed this need for overparameterization to the geome-
try of the high-dimensional loss landscapes (Dauphin et al.,
2014; Choromanska et al., 2014; Goodfellow et al., 2014; Im
et al., 2016; Wu et al., 2017; Liao & Poggio, 2017; Cooper,
2018; Novak et al., 2018), and to the implicit regularization
properties of stochastic gradient descent (SGD) (Brutzkus
et al., 2017; Zhang et al., 2018a; Poggio et al., 2017), though
a thorough theoretical understanding is not yet complete.

In practice, multiple techniques are able to compress large
trained models, including distillation (Bucilua et al., 2006;
Hinton et al., 2015), weight precision reduction (Hubara
et al., 2016; McDonnell, 2018), low-rank decomposi-
tion (Jaderberg et al., 2014; Denil et al., 2013), and prun-
ing (Han et al., 2015a; Zhang et al., 2018b). While these
methods are highly effective in reducing the size of network
parameters with little degradation in accuracy, they either
operate on a pre-trained model or require the full overpa-
rameterized model to be stored and updated during, or at
least at a certain stage of, training. Thus, training remains
memory-inefficient despite the compact size of the resultant
network produced by compression. The effectiveness of
these compression methods, however, indicates the exis-
tence of compact network parameter configurations that are
able to generalize on par with large networks. This raises
a tantalizing hypothesis that overparameterization during
training might not be a strict necessity and alternative train-
ing or reparameterization methods might exist to discover
and train compact networks directly.

The problem of achieving training-time parameter efficiency
is being approached in a number of ways. Most straightfor-
ward is to search for more parameter efficient network archi-
tectures. Innovations in this direction for deep convolutional
neural networks (CNNs) include adoption of skip connec-
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tions (He et al., 2015), replacement of fully-connected layers
with global average pooling layers followed directly by the
classifier layer (Lin et al., 2013), and depthwise separable
convolutions (Sifre & Mallat, 2014; Howard et al., 2017).
These modern CNN architectures drastically improved the
accuracies achievable at a given parameter budget.

Instead of inventing new network architectures, an alter-
native approach is to reparameterize an existing model ar-
chitecture, which is the approach we take in this work. In
general, any differentiable reparameterization can be used to
augment training of a given model. Let an original network
(or a layer therein) be denoted by y = f(x;θ), parameter-
ized by θ ∈ Θ. Reparameterize it by φ ∈ Φ and ψ ∈ Ψ
through θ = g(φ;ψ), where g is differentiable w.r.t. φ
but not necessarily w.r.t. ψ. Denote the reparameterized
network by fψ , considering ψ as metaparameters ∗:

y = f (x; g(φ;ψ)) , fψ (x;φ) . (1)

fψ is trained by backpropagating errors through g, as ∂
∂φ =

∂g
∂φ

∂
∂g . If it is so chosen that dim(Φ)+dim(Ψ) < dim(Θ)

and fψ ≈ f in terms of generalization performance, then
fψ is a more parameter efficient function approximator than
f .

Sparse reparameterization is a special case where g is a
linear projection; φ is the non-zero entries (i.e. “weights”)
and ψ their indices (i.e. “connectivity”) in the original pa-
rameter tensor θ. Likewise, parameter sharing is a similar
special case of linear reparameterization where φ is the tied
parameters and ψ the indices at which each parameter is
placed (with repetition) in the original parameter tensor θ.
If metaparameters ψ are fixed during the course of training,
the reparameterization is static, whereas if ψ is adjusted
adaptively during training, we call it dynamic reparameteri-
zation.

In this paper, we investigate multiple static and dynamic
reparameterizations of deep residual CNNs for efficient
training. Inspired by previous techniques, we developed a
novel dynamic reparameterization method that yielded the
highest parameter efficiency in training sparse deep resid-
ual networks, outperforming existing static and dynamic
reparameterization methods.

Our method dynamically changes the sparse structure of the
network during training. Its superior performance suggests
that, given a limited storage and computational budget for
training a CNN, it is better to allocate part of the resources
to describing and evolving the structure of the network, than
to spend it entirely on the parameters of a dense network.
∗We use the term metaparameter to refer to the parameters ψ

of the reparameterization function g. They differ from parameters
φ in that they are not optimized through gradient descent, and
they differ from hyperparameters in that they define meaningful
features of the model which are required for inference.

Furthermore, we show that the success of dynamic sparse
reparameterization is not solely due to the final sparse struc-
ture of the resultant networks, nor to a combination of final
structure and initial weight values. Rather, training-time
structural exploration is necessary for best generalization,
even if a high-performance structure and its initial values
are known a priori. Thus, simultaneous exploration of net-
work structure and parameter optimization through gradient
descent are synergistic. Structural exploration improves the
trainability of sparse deep CNNs.

2. Related work
Training of differentiably reparameterized networks has
been proposed in numerous studies before.

Dense reparameterization Several dense reparameteri-
zation techniques sought to reduce the size of fully con-
nected layers. These include low-rank decomposition (De-
nil et al., 2013), fastfood transform (Yang et al., 2014),
ACDC transform (Moczulski et al., 2015), HashedNet (Chen
et al., 2015), low displacement rank (Sindhwani et al., 2015)
and block-circulant matrix parameterization (Treister et al.,
2018).

Note that similar reparameterizations were also used to intro-
duce certain algebraic properties to the parameters for pur-
poses other than reducing model sizes, e.g. to make training
more stable as in unitary evolution RNNs (Arjovsky et al.,
2015) and in weight normalization (Salimans & Kingma,
2016), to inject inductive biases (Thomas et al., 2018), and
to alter (Dinh et al., 2017) or to measure (Li et al., 2018)
properties of the loss landscape. These dense reparameteri-
zation methods are static.

Sparse reparameterization Successful training of sparse
reparameterized networks usually employs iterative pruning
and retraining, e.g. (Han et al., 2015b; Narang et al., 2017;
Zhu & Gupta, 2017) †. Training typically starts with a large
pre-trained model and sparsity is gradually increased by
pruning and fine-tuning. Training a small, static, and sparse
model de novo fares worse than compressing a large dense
model to the same sparsity (Zhu & Gupta, 2017).

(Frankle & Carbin, 2018) identified small and sparse sub-
networks post-training which, when trained in isolation,
reached a similar accuracy as the enclosing big network.
They further showed that these subnetworks were sensitive
to initialization, and hypothesized that the role of overpa-

†Note that these, as well as all other sparse techniques we
benchmark against in this paper, impose non-structured sparsifica-
tion on parameter tensors, yielding sparse models. There also exist
a class of structured pruning methods that “sparsify” at channel
or layer granularity, e.g. (Luo et al., 2017) and (Huang & Wang,
2017), generating essentially small dense models. We describe a
full landscape of existing methods in Appendix D.
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rameterization is to provide a large number of candidate
subnetworks, thereby increasing the likelihood that one of
these subnetworks will have the necessary structure and
initialization needed for effective learning.

Most closely related to our work are dynamic sparse repa-
rameterization techniques that emerged only recently. Like
ours, these methods adaptively alter, by certain heuristic
rules, the location of non-zero parameters during training.
Sparse evolutionary training (SET) (Mocanu et al., 2018)
used magnitude-based pruning and random growth at the
end of each training epoch. NeST (Dai et al., 2017; 2018)
iteratively grew and pruned parameters and neurons during
training; parameter growth was guided by parameter gradi-
ent and pruning by parameter magnitude. Deep Rewiring
(DeepR) (Bellec et al., 2017) combined dynamic sparse pa-
rameterization with stochastic parameter updates for train-
ing. These methods were primarily demonstrated with spar-
sification of fully-connected layers and applied to relatively
small and shallow networks. They also required manual con-
figuration of sparsity levels for different layers of the model.
The method we propose in this paper is more scalable and
computationally efficient than these previous approaches,
while achieving better performance on deep CNNs.

3. Methods
We sparsely reparameterize the majority of layers in deep
CNNs. All sparse parameter tensors are randomly initialized
at the same sparsity (i.e. fraction of zeros). During train-
ing, free parameters are moved within and across weight
tensors every few hundred training iterations, following a
two-phase procedure (Algorithm 1): magnitude-based prun-
ing followed by random growth. Throughout training, we
always maintain the same total number of non-zero parame-
ters in the network.

Our magnitude-based pruning is based on an adaptive global
threshold H where all sparse weights with absolute values
smaller than H are pruned. H is adjusted via a setpoint
negative feedback loop to maintain approximately (with
tolerance δ) a fixed number of pruned/grown parameters Np

during each reallocation step.

Immediately after removing K parameters during the prun-
ing phase, K zero-initialized parameters are redistributed
among the sparse parameter tensors, following a heuristic
rule: layers having larger fractions of non-zero weights re-
ceive proportionally more free parameters (see Algorithm 1).
Intuitively, one should allocate more parameters to layers
such that training loss is more quickly reduced. This means,
to the first order, free parameters should be redistributed to
layers whose parameters receive larger loss gradients. If a
layer has been heavily pruned, this indicates that, for a large
portion of its parameters, the training loss gradients are not

large or consistent enough to counteract the pull towards
zero exerted by weight-decay regularization. This layer is
therefore to receive a smaller share of new free parameters
during the growth phase. The reallocated parameters are ran-
domly placed at zero positions in the target weight tensors.
To ensure the numbers of pruned and grown free parame-
ters are exactly the same, we impose extra guards against
rounding errors, as well as against special cases where more
free parameters are allocated to a tensor than there are zero
positions. For simplicity of exposition, we omit these minor
details in Algorithm 1. See Appendix A for a more detailed
description of the algorithm.

Our algorithm differs from SET (Mocanu et al., 2018) in two
important aspects. First, instead of pruning a fixed fraction
of weights at each reallocation step, we use an adaptive
threshold for pruning. Second, we automatically reallocate
parameters across layers during training and do not impose
a fixed, manually configured, sparsity level on each layer.
The first difference leads to reduced computational overhead
as it obviates the need for sorting operations, and the second
to better performing networks (see Section 4) and the ability
to train extremely sparse networks as shown in Appendix F.

We evaluated our method on the deep residual CNNs listed
in Table 1, and compared its performance against existing
static and dynamic reparameterization methods‡. We did
not experiment with AlexNet (Krizhevsky et al., 2012) and
VGG-style networks (Simonyan & Zisserman, 2014) as
their parameter efficiency is inferior to modern residual net-
works. Such a choice makes the improvement in parameter
efficiency achieved by our dynamic sparse training method
more practically relevant. Dynamic sparse reparameteriza-
tion was applied to all weight tensors of convolutional layers
(with the exception of downsampling convolutions and the
first convolutional layer acting on the input image), while
all biases and parameters of normalization layers were kept
dense.

At a specific global sparsity§ s, we compared our method
(dynamic sparse) against six baselines:

1. Full dense: original large and dense model, with N free
parameters;

2. Thin dense: original model with less wide layers, such
that it had the same size as dynamic sparse;

3. Static sparse: original model initialized at sparsity level
s with random sparseness pattern, then trained with con-
nectivity (sparseness pattern) fixed;

4. Compressed sparse: sparse model obtained by iteratively
pruning and re-training a large and dense pre-trained

‡Code is available at https://github.com/IntelAI/
dynamic-reparameterization.
§Global sparsity s is defined as the overall sparsity of all sparse

parameter tensors, not the entire model, which has a small fraction
of dense parameters.
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Algorithm 1: Reallocation of non-zero parameters within and across parameter tensors

1: for each sparse parameter tensor Wi do
2: (Wi, ki)← prune by threshold(Wi, H) . ki is the number of pruned weights
3: li ← number of nonzero entries(Wi) . Number of surviving weights after pruning
4: end for
5: (K,L)← (

∑
i ki,

∑
i li) . Total number of pruned and surviving weights

6: H ← adjust pruning threshold(H,K, δ) . Adjust pruning threshold
7: for each sparse parameter tensor Wi do
8: Wi ← grow back(Wi,

li
LK) . Grow li

LK zero-initialized weights at random in Wi

9: end for

model to target sparsity s (Zhu & Gupta, 2017);
5. DeepR: sparse model trained by using Deep

Rewiring (Bellec et al., 2017);
6. SET: sparse model trained by using Sparse Evolutionary

Training (SET) (Mocanu et al., 2018).

Appendix C compares our method against an additional
static (dense) parameterization method based on weight
sharing: HashedNet (Chen et al., 2015).

Because sparse tensors require storage of both the free pa-
rameter values and their locations, we compare models that
have the same size in descriptive length, instead of the same
number of weights. While the number of bits needed to
specify the connectivity is implementation dependent, we
assume one bit is used for each position in the weight tensors
indicating whether this position is zero or not. A sparse ten-
sor is fully defined by this bit-mask, together with the non-
zero entries. This scheme was previously used in CNN ac-
celerators that natively operate on sparse structures (Aimar
et al., 2018). For a network with N 32-bit weights in its
dense form, a sparse version at sparsity s has a descriptive
length of (32s+ 1)N bits, and is thus equivalent in size to
a thinner dense network with (s+ 1

32 )N weights. We use
this formula to determine the parameter counts of the thin
dense baseline, which has N

32 more weights than comparable
sparse models.

A recent study (Liu et al., 2018) showed that training small
networks de novo can almost always match the generaliza-
tion performance obtained by post-training pruning of larger
networks, so long as the small networks were trained for
long enough. To address concerns that the superior perfor-
mance of dynamic sparse might be matched by training thin
dense or static sparse networks for more epochs, we always
train thin dense and static sparse baselines for double the
number of epochs used to train dynamic sparse models.

Note that compressed sparse is a compression method that
first trains a large dense model and then iteratively prunes it
down, whereas dynamic sparse and all other baselines main-
tain a constant small model size throughout training. For
compressed sparse, we train the large dense model for the

same number of epochs used for our dynamic sparse, and
then iteratively prune and fine-tune it across additional train-
ing epochs. Compressed sparse thus trains for more epochs
than dynamic sparse. See Appendix B for hyperparameters
used for all experiments.

4. Experimental results
WRN-28-2 on CIFAR10 We ran experiments on a Wide
Resnet model WRN-28-2 (Zagoruyko & Komodakis, 2016)
trained to classify CIFAR10 images (see Appendix B for
details of implementation). We varied global sparsity levels
and evaluated test accuracy of different training methods
based on dynamic and static reparameterization. As shown
in Figure 1a, static sparse and thin dense significantly under-
performed compressed sparse model as expected, whereas
our dynamic sparse performed on par or slightly better than
compressed sparse on average. DeepR significantly under-
performed all other method. Though SET was generally
on par with compressed sparse and dynamic sparse at low
sparsity levels, it underperformed dynamic sparse at high
sparsity levels. Even though the statically reparameterized
models static sparse and thin dense were trained for twice
the number of epochs, they still failed to reach the accuracy
of dynamic sparse or SET. Note that thin dense had even
more trainable free parameters than all sparse models (see
Section 3).

Further, we inspected the layer-wise sparsity patterns that
emerged from automatic parameter reallocation across lay-
ers (Algorithm 1) during dynamic sparse training. We ob-
served consistent patterns at different sparsity levels: (a)
larger parameter tensors tended to be sparser than smaller
ones, and (b) deeper layers tended to be sparser than shal-
lower ones. Figure 1b shows a breakdown of the final spar-
sity levels of different residual blocks at different sparsity
levels.

Resnet-50 on Imagenet Next, we trained the Resnet-50
bottleneck architecture (He et al., 2015) on Imagenet (see
Appendix B for details of implementation). We ran ex-
periments at two global sparsity levels, 0.8 and 0.9 (Ta-
ble 2). Models obtained by our (dynamic sparse) method
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Table 1: Datasets and models used in experiments

Dataset CIFAR10 Imagenet

Model WRN-28-2 (Zagoruyko & Komodakis, 2016) Resnet-50 (He et al., 2015)

Architecture C16/3×3
[C16/3×3,C16/3×3]×4
[C64/3×3,C64/3×3]×4
[C128/3×3,C128/3×3]×4
GlobalAvgPool, F10

C64/7×7-2, MaxPool/3×3-2
[C64/1×1, C64/3×3, C256/1×1]×3
[C128/1×1, C128/3×3, C512/1×1]×4
[C256/1×1, C256/3×3, C1024/1×1]×6
[C512/1×1, C512/3×3, C2048/1×1]×3
GlobalAvgPool, F1000

# Parameters 1.5M 25.6M
For brevity architecture specifications omit batch normalization and activations. Pre-activation batch normalization was
used in all cases. Convolutional (C) layers are specified with output size and kernel size and Max pooling (MaxPool) layers
with kernel size. Brackets enclose residual blocks postfixed with repetition numbers; the downsampling convolution in the
first block of a scale group is implied.

outperformed all dynamic and static reparameterization
baseline methods, slightly outperforming compressed sparse
models obtained through post-training compression of a
large dense model. In Table 2, we also list two addi-
tional representative methods of structured pruning (see
Appendix D), ThiNet (Luo et al., 2017) and Sparse Struc-
ture Selection (Huang & Wang, 2017), which, consistent
with recent criticisms (Liu et al., 2018), underperformed
static dense baselines. Similar to dynamic sparse WRN-
28-2, reliable sparsity patterns across parameter tensors in
different layers emerged from dynamic parameter realloca-
tion during training, displaying the same empirical trends
described above (Figure 2).

Computational overhead of dynamic parameter reallo-
cation We assessed the additional computational cost
incurred by dynamic parameter reallocation steps (Algo-
rithm 1) during training, and compared ours with existing
dynamic sparse reparameterization techniques, DeepR and
SET (Table 3). Because both SET and dynamic sparse re-
allocate parameters only intermittently (every few hundred
training iterations), the computational overhead was negligi-
ble for the experiments presented here¶. DeepR, however,
requires adding noise to gradient updates as well as real-
locating parameters every training iteration, leading to a
significantly larger overhead.

Understanding the effects of dynamic parameter real-
location Why did dynamic parameter reallocation yield
sparse models that generalize better than static models
trained de novo? To address this question, we investigated

¶Because of the rather negligible overhead, the reduced op-
eration count thanks to the elimination of sorting operations did
not amount to a substantial improvement over SET on GPUs. Our
method’s another advantage over SET lies in its ability to produce
better sparse models and to reallocate free parameters automati-
cally (see Appendix F).

whether our method discovered more trainable sparse net-
work structures, following the reasoning of the recently pro-
posed “lottery ticket” hypothesis (Frankle & Carbin, 2018).

First, we did the following experiment with WRN-28-2
trained on CIFAR10: after training with dynamic sparse
method, we retained the final network sparseness pattern
(i.e. positions of non-zero entries in all sparse parame-
ter tensors), and then randomly re-initialized this network
and re-trained with its structure fixed (Figure 3a). It failed
to reach comparable accuracy, suggesting that the sparse
connectivity discovered by our method is not sufficient to
explain the high generalization performance.

Next, we asked whether the particular weight initialization
of the sparse network in addition to its sparseness struc-
ture led to high accuracies (Frankle & Carbin, 2018). We
used the final network structure as described above, and
re-initialized it with the exact same initial values used in
the original training. As shown in Figure 3a, the combi-
nation of final structure and original initialization still fell
significantly short of the level of accuracy achieved by train-
ing with dynamic parameter reallocation, not significantly
different from training the same network with random re-
initialization.

For control, we also show the performance of static sparse
models where the sparse network structure and its initial-
ization were both random (Figure 3a), which, not surpris-
ingly, performed the worst. Similar trends were observed
for Resnet-50 trained on Imagenet (Figure 3b). All static
networks, in all sparseness pattern and re-initialization con-
figurations, were trained for double the number of epochs
used for dynamic training.

These results suggest that the dynamic evolution of the net-
work through parameter reallocation is crucial to effective
learning, because the superior generalization performance
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Table 2: Test accuracy% (top-1, top-5) of Resnet-50 trained on Imagenet

Final overall sparsity (# Parameters) 0.8 (7.3M) 0.9 (5.1M) 0.0 (25.6M)

Reparameterization

Static
Thin dense

72.4
[-2.5]

90.9
[-1.5]

70.7
[-4.2]

89.9
[-2.5]

74.9
[0.0]

92.4
[0.0]

Static sparse
71.6
[-3.3]

90.4
[-2.0]

67.8
[-7.1]

88.4
[-4.0]

Dynamic

DeepR
(Bellec et al., 2017)

71.7
[-3.2]

90.6
[-1.8]

70.2
[-4.7]

90.0
[-2.4]

SET
(Mocanu et al., 2018)

72.6
[-2.3]

91.2
[-1.2]

70.4
[-4.5]

90.1
[-2.3]

Dynamic sparse
(Ours)

73.3
[-1.6]

92.4
[ 0.0]

71.6
[-3.3]

90.5
[-1.9]

Compression

Compressed sparse
(Zhu & Gupta, 2017)

73.2
[-1.7]

91.5
[-0.9]

70.3
[-4.6]

90.0
[-2.4]

ThiNet
(Luo et al., 2017)

68.4
[-4.5]

88.3
[-2.8] (at 8.7M parameter count)

SSS
(Huang & Wang, 2017)

71.8
[-4.3]

90.8
[-2.1] (at 15.6M parameter count)

Numbers in square brackets are differences from the full dense baseline. Romanized numbers are results of our experiments,
and italicized ones taken directly from the original paper. Performance of two structured pruning methods, ThiNet and Sparse
Structure Selection (SSS), are also listed for comparison (below the double line, see Appendix D for a discussion of their
relevance); note the difference in parameter counts.

cannot be solely attributed to the network’s structure, nor to
its initialization, nor to a combination of the two.

Finally, to investigate whether the convergence of sparse
network structures and that of parameter values had similar
time courses, we did extra experiments with WRN-28-2,
where at various stages during training, we stopped dynamic
parameter reallocation, fixing the network structure while
continuing the optimization of parameter values. As shown
in Figure 4, dynamic parameter reallocation does not need
to be active for the entire course of training, but only for
some initial epochs. This suggests the network structure
converges faster than the network parameters, which might

Table 3: Wall-clock training time comparison

WRN-28-2 on
CIFAR10

Resnet-50 on
Imagenet

DeepR 4.466 ± 0.358 5.636 ± 0.218
SET 1.087 ± 0.049 1.009 ± 0.002
Dynamic sparse (ours) 1.083 ± 0.051 1.005 ± 0.004

Median± standard deviation of wall-clock training epoch times
(from 25 epochs) for WRN-28-2 and Resnet-50 for different dy-
namic reparameterization methods. Results are relative ratios to the
epoch time of a sparse network trained without dynamic parameter
reallocation. WRN-28-2 is trained on a single, while Resnet-50 on
four, Nvidia TITAN Xp GPU(s).

be exploited in practice to further reduce computational
cost.

5. Discussion
In this work, we addressed the following problem: given a
small, fixed budget of parameters for a deep residual CNN
throughout training time, how to train it to yield the best
generalization performance. We showed that training with
dynamic parameter reallocation can achieve significantly
better accuracies than static reparameterization at the same
model size. Dynamic sparse reparameterization techniques
have received relatively little attention to date, two existing
methods (SET and DeepR) being applied only to relatively
small and shallow networks. We proposed a dynamic pa-
rameterization method that adaptively reallocates free pa-
rameters across the network based on a simple heuristic
during training. Our method yielded sparse models that
generalize better than those produced by previous dynamic
parameterization methods and outperformed all the static
reparameterization methods we benchmarked against‖.

High-performance sparse networks are often obtained by

‖Additionally, we show that our method outperformed a static
dense reparameterization method HashedNet (Chen et al., 2015)
(Appendix C), and that it is also able to train networks at extreme
sparsity levels where previous static and dynamic parameterization
methods often fail catastrophically (Appendix F).
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Figure 1: WRN-28-2 on CIFAR10. (a) Test accuracy plotted
against number of trainable parameters in the sparse models for
different methods. Dashed lines are used for the full dense model
and for models obtained through compression, whereas all methods
that maintain a constant parameter count throughout training and
inference are represented by solid lines. Circular symbols mark
the median of 5 runs, and error bars are the standard deviation.
Parameter counts include all trainable parameters, i.e, parameters
in sparse tensors plus all other dense tensors, such as those of batch
normalization layers. (b) Breakdown of the final sparsities of the
parameter tensors in the three residual blocks that emerged from
our dynamic sparse parameterization algorithm (Algorithm 1) at
different levels of global sparsity.

post-training pruning of dense networks. A number of re-
cent studies have attempted direct training of sparse net-
works using post hoc information obtained from a pruned
model. (Liu et al., 2018) argued that the sparse structure
of the pruned model alone suffices to yield high accuracy,
i.e. training a model of the same structure, starting with
random weights, almost always reaches comparable levels
of accuracy as the pruned model. In contrast, (Frankle &
Carbin, 2018) argued that a post-compression sparse net-
work structure alone is not sufficient, but necessary, to attain
high accuracy, which, as the authors argue, requires both the
pruned network connectivity and its initial weights when it
was trained as part of the dense model pre-compression. In
our experiments, we found that neither the post hoc sparse-
ness pattern, nor the combination of connectivity and initial-
ization, managed to explain the high performance of sparse
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Figure 2: layer-wise breakdown of the final parameter tensor
sparsities of Resnet-50 trained on Imagenet. (a) At overall sparsity
0.8. (b) At overall sparsity of 0.9.

networks produced by our dynamic sparse training method.
Thus, the value of dynamic parameter reallocation goes be-
yond discovering trainable sparse network structure: the
evolutionary process of structural exploration itself seems
helpful for SGD to converge to better weights. Extra work
is needed to explain the mechanisms underlying this phe-
nomenon. One hypothesis is that the discontinuous jumps
in parameter space when parameters are reallocated across
layers helped training escape sharp minima that generalize
badly (Keskar et al., 2016).

Structural degrees of freedom are qualitatively different
from the degrees of freedom introduced by overparameteri-
zation. The latter directly expands the dimensionality of the
parameter space in which SGD directly optimizes, whereas
structural degrees of freedom are realized and explored us-
ing non-differentiable heuristics that only interact indirectly
with the dynamics of gradient-based optimization, e.g. regu-
larization pulling weights towards zero causing connections
to be pruned. Our results suggest that, for residual CNNs
under a given descriptive complexity (i.e. memory storage)
constraint, it is better (in the sense of producing models
that generalize better) to allocate some memory to describe
and explore structural degrees of freedom, than to allocate
all memory to conventional weights. This makes a poten-
tially compelling case for hardware acceleration of sparse
computations for more parameter efficient training.

Beside storage (spatial complexity), computational effi-
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Figure 3: Comparison of training using our dynamic reparame-
terization method against training a number of related statically
parameterized networks. All statically parameterized networks
were trained for double the number of epochs used by our method.
(a) WRN-28-2 on CIFAR10. Mean and standard deviation from 5
runs. (b) Resnet-50 on Imagenet. Single run.

ciency (temporal complexity) is also of primary concern.
Current mainstream computing hardware architectures such
as CPUs and GPUs cannot efficiently handle unstructured
sparsity patterns. To maintain structured network configura-
tions, various pruning techniques prune a trained model at
the level of entire feature maps or layers. Emerging evidence
suggests that the resulting pruned networks perform no bet-
ter than directly-trained thin networks (Liu et al., 2018),
calling into question the value of such coarse-grained prun-
ing. We show in Appendix E additional results applying
dynamic sparse training at an intermediate level of struc-
tured sparseness, i.e. pruning 3× 3 kernel slices. Imposing
this sparseness structure led to significantly worse general-
ization, producing sparse networks performing on par with
statically parameterized thin dense networks trained for dou-
ble the number of epochs.

In summary, we show in this paper that it is possible to train
deep sparse CNNs directly to reach generalization perfor-
mances comparable to those achieved by iterative pruning
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Figure 4: Test accuracies of sparse WRN-28-2 trained on CI-
FAR10 when dynamic parameter reallocation was switched off
at certain epochs. Results are shown for two global sparsity lev-
els: 0.8 and 0.9. Horizontal bands indicate the accuracy of the
compressed sparse baselines where the band widths represent the
standard deviation. For all data points, we ran training for 200
epochs, regardless of when dynamic parameter reallocation was
stopped. Mean and standard deviation from 5 independent runs.

and fine-tuning of pre-trained large dense models. The per-
formance level achieved by our proposed method is signifi-
cantly higher than that achieved by training dense models
of the same size. Our method is the first to reallocate free
parameters effectively and automatically within and across
layers. Furthermore, we show that dynamic exploration of
structural degrees of freedom during training is crucial to
effective learning. Our work does not contradict the com-
mon wisdom that extra degrees of freedom are helpful for
training deep networks to achieve better generalization, but
it suggests that adding and dynamically exploring structural
degrees of freedom is often a more effective and efficient
alternative than simply increasing the parameter counts of
the model.
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