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A. Tensor Representation and vec Operation
on Graphs

We briefly provide a concrete example of the representa-
tion of graphs and the operation vec(G). Consider a graph
with three vertices, one edge attribute at each edge, and two
vertex attributes at each vertex. The connectivity structure
and edge attributes are represented by the 3 × 3 × 2 ad-
jacency tensor A where A(i,j,1) denotes the value of the
graph’s adjacency matrix and A(i,j,2) denotes the value of
the additional edge attribute, i, j ∈ V = {1, 2, 3}.

A(1,1,2) A(1,2,2) A(1,3,2)

A(2,1,2) A(2,2,2) A(2,3,2)

A(3,1,2) A(3,2,2) A(3,3,2)

A(1,1,1) A(1,2,1) A(1,3,1)

A(2,1,1) A(2,2,1) A(2,3,1)

A(3,1,1) A(3,2,1) A(3,3,1)

Observe that the possibility of attributed self-loops is con-
templated but this representation is applicable both to
graphs that have self-loops and those that do not. The ver-
tex attributes are represented in a matrix

X(v) =

(
X1,1 X1,2

X2,1 X2,2

X3,1 X3,2

)
.

A simple vec operation is shown below. The modeler is free
to make modifications such as applying an MLP to the ver-
tex attributes before concatenating with the edge attributes.
Representing G by A and X(v),

vec(G) =
(
A(1,1,1), A(1,1,2), A(1,2,1), A(1,2,2),

A(1,3,1), A(1,3,2), X1,1, X1,2, A(2,1,1), A(2,1,2),

A(2,2,1), A(2,2,2), A(2,3,1), A(2,3,2), X2,1, X2,2,

A(3,1,1), A(3,1,2), A(3,2,1), A(3,2,2), A(3,3,1),

A(3,3,2), X3,1, X3,2

)
.

Starting with the first vertex, each edge attribute (includ-
ing the edge indicator) is listed, then the vertex attributes
are added before doing the same with subsequent vertices.
The vectorization method for k-ary type models is similar,
except that we apply vec on induced subgraphs of size k.

B. More on Permutation-Invariance,
WL-GNN Models, and Unique Identifiers

Here we elaborate on the addition of unique identifiers to
graphs and implications for WL-GNN models. For sim-
plicity, we consider undirected graphs with vertex attributes

but no edge attributes, allowing us to simplify our nota-
tion to an adjacency matrix A and vertex attribute matrix
X . We also consider an oversimplified model with just one
GNN layer (L = 1), the following aggregation scheme

hu = xu +
∑

v∈N (u)

xv, ∀u ∈ V,

and the following read-out function to yield a graph repre-
sentation

hG =
∑
v∈V

hv.

This can be expressed as hG = 1T (A + I|V |)X for adja-
cency matrix A, vertex attribute matrix X , identity matrix
I|V |, and where 1T is a row vector of ones.

For instance, we may observe the following graph with en-
dowed vertex attributes. The numbers indicate vertex fea-
tures, not labels.

6

2 1

5

We can represent this with an adjacency matrix and vertex
attribute matrix as

A =

(
0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 0

)
,X =

(
6
2
1
5

)
.

Here, 1T (A + I|V |)X = 41. Equivalently, we might have
chosen to represent this graph as

Aπ,π =

(
0 0 1 0
0 0 1 1
1 1 0 1
0 1 1 0

)
,Xπ =

(
6
2
5
1

)
Here we swapped the third and fourth column of X and
the third and fourth row and column of A. Yet again,
1T (Aπ,π + I|V |)Xπ = 41, as desired for isomorphic-
invariant functions. We have chosen to assign scalar ver-
tex attributes, but the invariance to permutation holds for
vector vertex attributes.

Now, we propose assigning unique one-hot IDs after con-
structing the adjacency matrix, which corresponds to the
following representations

A =

(
0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 0

)
,
[
X on I|V |

]
=

(
6 1 0 0 0
2 0 1 0 0
1 0 0 1 0
5 0 0 0 1

)

Aπ,π =

(
0 0 1 0
0 0 1 1
1 1 0 1
0 1 1 0

)
,
[
Xπ on I|V |

]
=

(
6 1 0 0 0
2 0 1 0 0
5 0 0 1 0
1 0 0 0 1

)
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(recall that [· on ·] denotes concatenation). Note that we ef-
fectively assign identifiers after constructing A and X (and
similarly for Aπ,π , Xπ), so that the latter four columns of[
X on I|V |

]
and

[
Xπ on I|V |

]
are the same.

Now, 1T (A + I|V |)
[
X on I|V |

]
= (41, 2, 3, 3, 4) yet

1T (Aπ,π + I|V |)
[
Xπ on I|V |

]
= (41, 2, 3, 4, 3). This per-

mutation sensitivity in the presence of unique IDs holds for
more general WL-GNNs and not just the one considered
here. Often hG is fed forward through a linear or more
complex layer to obtain the final graph-level prediction and
this layer is usually permutation sensitive. Thus, we apply
RP to GNNs with unique IDs to guarantee permutation in-
variance; meanwhile, the intuition for using unique IDs is
to better distinguish vertices and thus create a more power-
ful representation for the graph.

B.1. An alternative approach to RP-GNN models

Next we present an equivalent but alternative representation
of RP-GNN models (Equation 5) that may be simpler to
implement in practice and provide an example. In the pre-
vious section, we described permuting the adjacency tensor
and matrix of endowed vertex attributes, leaving the matrix
of identifiers unchanged. Alternatively, with f

⇀

modeled as
an isomorphic-invariant Graph Neural Network, one may
leave the former two unchanged and instead permute the
matrix of identifiers. Thus, the alternative model becomes

f(G)=
1

|V |!
∑

π∈Π|V |

f
⇀
(

A,
[
X(v) on (I|V |)π

])
, (11)

where (I|V |)π denotes a permutation of the rows of the
identity matrix. The more tractable version discussed pre-
viously of assigning a one-hot encoding of the id i mod m
to node i ∈ V , for some m ∈ {1, 2, . . . , |V |} is still ap-
plicable. In this case, we replace (I|V |)π with a |V | × m
matrix of m-bit one-hot identifiers, appropriately permuted
by π.

For example, consider again the graph defined by adja-
cency matrix A and vertex features X given above. To
evaluate f

⇀

(Aπ,π,Xπ) when the permutation is given by
π(1, 2, 3, 4) = (2, 1, 3, 4), we could forward

A =

(
0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 0

)
,
[
X on (I|V |)π

]
=

(
6 0 1 0 0
2 1 0 0 0
1 0 0 1 0
5 0 0 0 1

)
through our model of f

⇀

. Previously the first row of[
X on I|V |

]
was (6, 1, 0, 0, 0) whereas after permutation

by π it became (6, 0, 1, 0, 0), and so on. Both formulations
discussed in this section were used in our experiments.

Proof of Theorem 2.1
Proof. Let Ω be a finite set of graphs
G = (V,E,X(v),X(e)) = (A,X(v)) that includes

all graph topologies for any given (arbitrarily large but fi-
nite) graph order, as well as the associated vertex and edge
attributes from a finite set. Note that isomorphic graphs
G and Gπ,π are considered distinct elements in Ω (Gπ,π
denotes a permutation of A and X(v)). If G = (A,X(v)),
let G(G) = {(Aπ,π,X(v)

π ) : π ∈ Π|V |} denote the set of
graphs that are isomorphic to G and have the same vertex
and edge attribute matrices up to permutation. Consider a
classification/prediction task where G ∈ Ω is assigned a
target value t(G) from a collection of |Ω| possible values,
such that t(G) = t(G′) iff G′ ∈ G(G). Clearly, this is the
most general classification task. Moreover, by replacing
the target value t(G) with a probability p(G) (measure),
the above task also encompasses generative tasks over Ω.
All we need to show is that f of Equation 1 is sufficiently
expressive for the above task.

We now consider a permutation-sensitive function f
⇀

that
assigns a distinct one-hot encoding to each distinct input
graph G = (A,X(v)). This f

⇀

can be approximated arbi-
trarily well by a sufficiently expressive neural network (op-
erating on the vector representation of the input) as these
are known to be universal approximators (Hornik et al.,
1989). Now, lettingG′ ∈ Ω be arbitrary, for allG ∈ G(G′),
we have

f(G) =
1

|V |!
∑

π∈Π|V |

f
⇀

(Aπ,π,X(v)
π )

=
1

|V |!
∑

(A′,X′(v))∈G(G)

f
⇀

(A′,X ′(v))

=
1

|V |!
∑

(A′,X′(v))∈G(G′)

f
⇀

(A′,X ′(v))

=
1

|V |!f
(G′),

thus f(G′) is the unique fingerprint of the set G(G′). Then,
all we need is a function ρ(·) that takes the representation
f(G′) and assigns the unique target value t(G′), satisfy-
ing the desired condition and proving that RP has maximal
representation power over Ω.

Proof of Theorem 2.2
Preliminaries. For an n× dB matrix B and an n× dC ma-
trixC, writeD = [B on C] to denote their concatenation to
form an n×(dB+dC) matrixD. Recall that RP-GNN adds
a one-hot encoding of the node id to the node features. This
node id is defined as its position in the adjacency matrix or
tensor Aπ,π for a permutation π. Let I|V | be a |V | × |V |
identity matrix representing the one-hot encoding vectors
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of node IDs 1 to |V |. We let α denote a maximally pow-
erful WL-GNN, that is, a deep-enough WL-GNN satisfy-
ing the conditions of Theorem 3 in Xu et al. (2019). That
is, the multiset functions for vertex aggregation and the
graph-level readout are both injective over discrete node at-
tributes. In accordance with Xu et al. (2019), we focus on
graphs whose features live in a countable space. Finally,
we denote multisets by {{. . .}}.

Proof. We need to show that RP-GNN is strictly more ex-
pressive than any WL-GNN. More specifically, we will
show that RP-GNN (1) maps isomorphic graphs to the
same graph embedding, (2) maps nonisomorphic graphs to
distinct embeddings whenever a WL-GNN does, and (3)
can map pairs of nonisomorphic graphs to distinct graph
embeddings even when a most-powerful WL-GNN maps
them to the same embedding. Again, in the context of the
proof, when we say two graphs are ‘isomorphic’ it is un-
derstood that they have the same topology and the same
vertex/edge features up to permutation.We suppose that all
pairs of graphs have the same number of vertices, denoted
by n; if they have different numbers of vertices it is triv-
ial to show that both RP-GNN and WL-GNN can represent
them differently.

(1) Assume G1 = (A1,X
(v)
1 ) and G2 = (A2,X

(v)
2 )

are isomorphic graphs with the same features (up to per-
mutation). Let

[
(X

(v)
j )π on In

]
be the new (RP-GNN)

features for some permutation π ∈ Πn of graph Gj for
j ∈ {1, 2}. Since G1 is isomorphic to G2, there exists a
π′ ∈ Πn such that A1 = (A2)π′,π′ and

[
X

(v)
1 on In

]
=[

(X
(v)
2 )π′ on In

]
. Thus

f(G1) =
1

n!

∑
π∈Πn

α
(
(A1)π,π,

[
(X

(v)
1 )π on In

])
=

1

n!

∑
π′′∈Π′′

n

α
(
(A2)π′′,π′′ ,

[
(X

(v)
2 )π′′ on In

])
= f(G2),

where we define Π′′n = {π ◦ π′ : π ∈ Πn} and observe
that Π′′n = Πn. Thus, no pairs of isomorphic graphs will be
mapped to different representations by an RP-GNN f .

(2) Assume now that G1 = (A1,X
(v)
1 ) and G2 =

(A2,X
(v)
2 ) are nonisomorphic graphs with discrete at-

tributes successfully deemed nonisomorphic by the WL
test. Theorem 3 of Xu et al. (2019) implies

α(A1,X
(v)
1 ) 6= α(A2,X

(v)
2 ).

Next, we can always construct an α′ which has the same
weights for the affine transformation over the endowed at-
tributes as α but zero weights for the affine transformation

over the RP-specific identifiers In such that

α′
(

Aπ,π,
[
(X(v))π on In

] )
= α

(
Aπ,π,X(v)

π

)
for any G = (A,X(v)). Note that α′ is isomorphic-
invariant since α is by construction; indeed, α′ ignores its
permutation-sensitive part. Thus,

f(G1) =
1

n!

∑
π∈Πn

α′
(

(A1)π,π,
[
(X

(v)
1 )π on In

] )
= α

(
A1,X

(v)
1

)
6= α

(
A2,X

(v)
2

)
=

1

n!

∑
π∈Πn

α′
(

(A2)π,π,
[
(X

(v)
2 )π on In

] )
= f(G2).

Therefore, RP-GNN can map graphs that WL-GNNs can
distinguish to different representations, completing our
proof of part (2).

(3) Finally, we construct an example to show that RP-GNN
is more expressive than WL-GNN. Consider the circulant
graphs with different skip links in Figure 1. We show that
these two (pairwise nonisomorphic) graphs can have differ-
ent representations by RP-GNN but cannot be represented
as distinct by WL-GNN. Let G1 = (A1,X

(v)) denote the
graph Gskip(M = 11, R = 2) and G2 = (A2,X

(v)) de-
note the graph Gskip(M = 11, R = 3), where X(v) = c1,
a vector of c ∈ R. It is not hard to show that WL-GNN
cannot give different representations to G1 and G2, as the
WL test fails in these graphs (Arvind et al., 2017; Cai et al.,
1992; Fürer, 2017) and the most powerful WL-GNN is just
as powerful as the WL test (Xu et al., 2019).

To show that RP-GNN is capable of giving dif-
ferent representations, we first show that for any
given permutation π of G1, there is no permutation
π′ of G2 such that α((A1)π,π,

[
(X

(v)
1 )π on In

]
) =

α((A2)π′,π′ ,
[
(X

(v)
2 )π′ on In

]
) (note that α is a most-

powerful GNN and thus not a constant function). In this
part of the proof, for simplicity and without loss of general-
ity, consider π a permutation such that the vertices are num-
bered sequentially from 1, 2, . . . , n clockwise around the
circle in Figure 1. Then, node 3 in G1 has neighbors N3 =
{1, 2, 4, 5} and node 4 has neighbors N4 = {2, 3, 5, 6},
with intersection N3 ∩ N4 = {2, 5}. However, in G2, no
two nodes share two neighbors. Therefore, the multisets
of all neighborhood attribute sequences for both permuted
graphs – denoted in (Gl)π,π as

{{
(h

(0)
l,u)u∈Nv

}}
v∈Vl

, for
l ∈ {1, 2}, where the h(0) terms include the rows of In –



Relational Pooling for Graph Representations

will be distinct. Thus a most powerful α with the recursion
in Equation 4 will map them to distinct collections of vertex
embeddings. Thus, the graph embeddings hGl , obtained by
applying an injective read-out function to

{{
h

(1)
l,v

}}
v∈Vl

will be distinct: h(G1)π,π 6= h(G2)π′,π′ , as desired.

As no representation of G2 can match any representation
of G1, we can find a function g(·) that, when composed
with α, ensures that the sum in Equation 1 gives different
values for G1 and G2 by Lemma 5 of Xu et al. (2019) (or
Theorem 2 of Zaheer et al. (2017)). Since we can always
redefine α′ = g ◦α and α′ is still a WL-GNN, we conclude
our proof.

Proposition 2.1
The following proposition regarding the convergence of π-
SGD was stated in the paper:
Proposition 2.1. π-SGD stochastic optimization enjoys
properties of almost sure convergence to optimal W under
conditions similar to SGD (listed in Supplementary).

Here we list the relevant conditions. Murphy et al. (2019)
point out that π-SGD can be characterized by the work
of Younes (1999); Yuille (2005) and is a a familiar appli-
cation of stochastic approximation algorithms already used
in training neural networks.

In particular, the following assumptions are made:

1. There exists a constant M > 0 such that for all W ,
−GT

t W ≤ M‖W −W ?‖22, where Gt is the true
gradient for the full batch over all permutations and
W ? is an optimum.

2. there exists a constant δ > 0 such that for all W ,
Et[‖Zt‖22] ≤ δ2(1 + ‖Wt −W ?

t ‖22), where Zt is the
random gradient of the loss w.r.t. weights at step t and
the expectation is taken with respect to all the data
prior to step t.

If these assumptions are satisfied, then π-SGD (as with
SGD) converges to a fixed point with probability one.

Proof of Proposition 2.2
We restate the proposition for completeness.
Proposition. The RP in Equation 10 requires summing
over all k-node induced subgraphs of G, thus saving com-
putation when k < |V |, reducing the number of terms in
the sum from |V |! to |V |!

(|V |−k)! .

Proof. k-ary RP needs to iterate over the k-node induced
subgraphs of G (

(|V |
k

)
subgraphs), but for each subgraph

there are k! different ways to order its nodes, resulting in
|V |!

(|V |−k)! evaluations of f
⇀

.

Proof of Proposition 2.3
We restate the proposition for completeness.

Proposition. f
(k)

becomes strictly more expressive as k
increases. That is, for any k ∈ N, define Fk as the set of
all permutation-invariant graph functions that can be rep-
resented by RP with k-ary dependencies. Then, Fk−1 is a
proper subset ofFk. Thus, RP with k-ary dependencies can
express any RP function with (k−1)-ary dependencies, but
the converse does not hold.

Proof. (Fk−1 ⊂ Fk): Consider an arbitrary element

f
(k−1)

∈ Fk−1, and write f
⇀

(A[1 : (k− 1), 1 : (k− 1), :
],X(v)[1 : (k− 1), :];W ) for its associated permutation-

sensitive RP function. Also consider f
(k)
∈ Fk and let f

⇀′

be its associated permutation-sensitive RP function. For
any tensor A and attribute matrix X(v), we can define
f
⇀′

(A[1 :k, 1:k, :],X(v)[1 :k, :];W ) = f
⇀

(A[1 :(k−1), 1:

(k−1), :],X(v)[1:(k−1), :];W ). Thus, f
(k−1)

∈ Fk and

because f
(k−1)

is arbitrary, we conclude Fk−1 ⊂ Fk.

(Fk 6⊂ Fk−1): The case where k = 1 is trivial, so assume

k > 1. We will demonstrate ∃f
(k)
∈ Fk such that f

(k)
6∈

Fk−1. Let f
(k)

and f
(k−1)

be associated with f
⇀(k)

and

f
⇀(k−1)

, respectively.

Task. Consider the task of representing the class of cir-
cle graphs with skip links shown in Figure 1. Let Gk ∈
Gskip(Mk, k) and Gk+1 ∈ Gskip(Mk, k + 1) where Mk is
any prime number satisfying Mk > 2(k − 1)(k + 1). That
is, Gk and Gk+1 are circulant skip length graphs with the
same number of vertices and skip lengths of k and k + 1,
respectively. Note that Mk > k + 1 is prime and thus it is
co-prime with both k and k+1; further, Mk−1 > k+1 so
the conditions for creating the CSL graph in Definition 2.1
are indeed satisfied. To complete the proof, we need to

show that (1) there is a f
(k)

capable of distinguishing Gk

from Gk+1 but (2) no such f
(k−1)

exists.

DenoteGR = (AR,X
(v)),R ∈ {k, k+1}, where X(v) =

c1 for some c ∈ R for both graphs, as there are no vertex
features, and where AR represents an adjacency matrix for
GR (there are no edge features).

(1) A k-ary f
(k)

that can distinguish between Gk and
Gk+1. We will define f

⇀(k)
in terms of a composition with

a canonical orientation. In particular, we only allow the
orientation of A (and X(v)) that arises from first generating
an edgelist by the scheme described in Definition 2.1 and
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then constructing the adjacency matrix from it in the usual

way. For either graph, we define f
⇀(k)

((AR)π,π[1 : k, 1 :

k, :],X
(v)
π [1 : k, :]) = 0 for all permutations that do not

yield this ‘canonical’ adjacency matrix.

Under this orientation, the k× k submatrix Ak[1 : k, 1 : k]
of Gk will have more nonzero elements than that of Gk+1,
Ak+1[1 : k, 1 : k]. The relevant induced subgraph of size
k in Gk will include a pair of vertices that are k ‘hops’
away which will thus be connected by an edge, whereas in
Gk+1, the skip length is too long so its induced subgraphs
of size k will have fewer edges. Therefore, it suffices to let

f
⇀(k)

count the number of nonzero elements in the (properly
oriented) submatrices presented to it.

(2) No (k − 1)-ary f
(k−1)

can distinguish between Gk
and Gk+1. We will show that the induced subgraphs of
size k− 1 are “the same” in both Gk and Gk+1, which will

imply that no satisfactory f
⇀(k−1)

can be constructed. In
particular, if we denote by Lk−1(Gk) the multiset of in-
duced subgraphs of size k − 1 in Gk and by Lk−1(Gk+1)
the multiset of induced subgraphs of size k − 1 in Gk+1,
it can be shown that Lk−1(Gk) and Lk−1(Gk+1) are
equivalent in the following sense. There exists a bijec-
tion φ between these finite multisets such that for every
H ∈ Lk−1(Gk), φ(H) ∈ Lk−1(Gk+1) is isomorphic to
H . For example, the multisets (with arbitrarily labeled ver-
tices)

{{
1 2 3 , 2 3 4 , 5 6 7

}}
and

{
{ 1 3 5 ,

2 5 7 , 5 7 9
}}

have an isomorphism-preserving bi-
jection between them and will thus be considered equal.

In the interest of brevity, what follows is a sketch. We
first observe that we only need to consider the multi-
sets of induced subgraphs that include vertex 0 ∈ V =
{0, 1, . . . ,Mk−1} due to the vertex transitivity of the CSL
graphs. Next, we observe that we only need to consider the
multisets of ‘maximally connected’ induced subgraphs of
size k − 1. By ‘maximally connected’, we mean an in-
duced subgraph of size k− 1 such that no more edges from
GR,R ∈ {k, k+1}, can be added without adding a kth ver-
tex to the induced subgraph. Indeed, once we show that a
bijection exists between maximally connected induced sub-
graphs of size k−1, it follows that such a bijection exists for
any connected induced subgraphs of size k − 1 since these
can be formed by deleting any edge that does not render
the induced subgraph disconnected. Then, viewing discon-
nected graphs as the disjoint union of connected compo-
nents, a similar argument to the one applied for connected
induced subgraphs can be used to complete the argument
for any possible induced subgraph of size k − 1.

We can construct all such maximally connected subgraphs
including 0 ∈ V in both GR for R ∈ {k, k + 1} by form-

ing recursive sequences on the integers {0, 1, . . . ,Mk − 1}
with addition mod Mk (see for instance Definition 2.1);
the key difference in these sequences is whether R = k or
R = k+ 1 can be added to or subtracted from the previous
value in the sequence. We will call the former a k-sequence
and the latter a (k+1)-sequence. In either case, distinct se-
quences may result in the same induced subgraphs but we
can simply take one representative from each equivalence
class.

Importantly, these sequences can be constructed in a way
that abstracts from either underlying graph Gk or Gk+1.
Due to our choice of Mk, the recursive sequences never
‘wrap around’ the graph and can be informally thought of
as a recursive sequence on the integers of a bounded in-
terval with 0 in the middle rather than a circle with skip
links. In particular, we can define recursive sequences on
the set of integers {−(k + 1)(k − 1), . . . , (k + 1)(k − 1)}
with regular addition to construct the same induced sub-
graphs (-1 corresponds to vertex (Mk − 1) ∈ V and so
on, in either case). Then it becomes clear that there is
an isomorphism-preserving bijection between the induced
subgraphs formed by recursive (k + 1)-sequences and k-
sequences on this bounded interval of integers; any se-
quence defined in terms of adding or subtracting k + 1 can
be replaced by one that adds or subtracts k (and vice versa),
which completes the proof.

C. Further Details of the Experiments
C.1. Relational Pooling and Graph Structure

Representation on CSL Graphs

Our GIN architecture uses five layers of recursion, where
every MLP(l) has two hidden layers with 16 neurons in
the hidden layers. The graph embedding is mapped to
the output through a final linear layer softmax(hTGW).
ε(l) is treated as a learnable parameter. With standard
GIN, since the vertex attributes are not one-hot encoded
(they are constants), we first apply an MLP embedding be-
fore computing the first update recursion (as in Xu et al.
(2019)). Since RP-GIN utilizes one-hot IDs, we do not
need an MLP embedding in the first update. For these
experiments, we assign one-hot encoding of i mod 10 for
i ∈ {1, 2 . . . , |V | = 41} – rather than completely unique
IDs – which facilitates learning. We train with π-SGD, ap-
plying one random permutation of each adjacency matrix at
each epoch. For inference, we average the score over five
random permutations of each graph, as in Remark 2.1. Fig-
ure 3 shows the stronger performance of RP-GIN on this
task.

Both models are trained for 1000 epochs using
ADAM (Kingma & Ba, 2015) for optimization.
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Figure 3: RP-GNN is more powerful than WL-GNN in a
challenging 10-class classification task.

Table 3: Datasets used in our experiments.

Data Set Number of Compounds Number of Tasks
HIV 41,127 1
MUV 93,087 17
Tox 21 6,284 12

For the cross-validation, we use five random initializations
at each fold. The folds are such that the classes are bal-
anced in both training and validation.

Models are trained on CPUs but on machines with multiple
CPUs; PyTorch inherently multithreads the execution.

C.2. Predicting Molecular Properties

Here we provide additional details on the molecular ex-
periments. (1) For the models based on Graph Convolu-
tion (Duvenaud et al., 2015; Altae-Tran et al., 2017), we
extend the architecture provided from DeepChem and the
MoleculeNet project. Following them, the learning rate
was set to 0.003, we trained with mini-batches of size 96,
and used the Adagrad optimizer(Duchi et al., 2011). Mod-
els were trained for 100 epochs. Training was performed on
48 CPUs using the inherent multithreading of DeepChem.

Note that we re-trained DeepChem models using this fewer
number of epochs to make results comparable. That being
said, many models reached optimal performance before the
last epoch; we use the model with best validation-set per-
formance for test-set prediction.

(2) For the so-called RNN and CNN models, all MLPs have
one hidden layer with 100 neurons. We used the Adam
optimizer (Kingma & Ba, 2015), again training all models
with mini-batches of size 96 and 50 epochs. We performed
a hyperparameter line search over the learning rate, with
values in {0.003, 0.001, 0.01, 0.03, 0.1, 0.3}. Training was
performed on GeForce GTX 1080 Ti GPUs. To model the
RNN, we use an LSTM with 100 neurons and use the long
term memory as output.

RP-Duvenaud When we train RP-Duvenaud, we follow
any training particulars as in the DeepChem implementa-
tion. For instance, DeepChem’s implementation computes
a weighted loss which penalizes misclassification differ-
ently depending on the task, and they compute an overall

performance metric by taking the mean of the AUC across
all tasks (see Table 3). One difference is that the DeepChem
recommends either metrics PRC-AUC or ROC-AUC and
splits “random” or “scaffold” depending on the dataset un-
der consideration. Since ROC-AUC and random splits
were the most commonly used among the three datasets
we chose, we decided – before training any models – to use
random splits and ROC-AUC for every dataset for simplic-
ity. We also note that the authors of MoleculeNet report
ROC-AUC scores on all three datasets. Regarding the sizes
of the train/validation/test splits, we used the default values
provided by DeepChem.

We implement the model that assigns unique IDs to atoms
by first finding the molecule with the most atoms across
training, validation, and test sets, and then appending a fea-
ture vector of that size to the endowed vertex attributes.
That is, if the largest molecule has A atoms, we concate-
nate a vector of length A of one-hot IDs to the existing
vertex attributes (for every vertex in each molecule).

CNNs and RNNs We explore k = 20-ary RP with f
⇀

as a CNN, learned with π-SGD. At each forward step,
we run a DFS from a different randomly-selected vertex
to obtain a 20 × 20 × 14 subtensor of A (there are 14
edge features), which we feed through two iterations of
conv → ReLU → MaxPool to obtain a representation hA
of A. The corresponding vertex attributes are fed through
an MLP and concatenated with hA to obtain a represen-
tation hG of the graph which in turn is fed through an
MLP to obtain the predicted class (see also Equation 3).
Zero padding was used to account for the variable-sized
molecules. Twenty initial vertices for the DFS (i.e. ran-
dom permutations) were sampled at inference time. Table 2
shows that the CNN f

⇀

underperforms in all tasks.

We also consider RP with an RNN as f
⇀

learned with π-
SGD, starting with a DFS to yield a |V | × |V | × 14 subten-
sor. For f

⇀

, we treat the edge features of a given vertex as a
sequence: for vertex v, we apply an LSTM to the sequence
(Av,1,·,Av,2,·, . . . ,Av,|V |,·) and extract the long-term state.
We also take the vertex attributes and pass them through
an MLP. The long term state and output of the MLP are
concatenated, ultimately forming a representation for every
vertex (and its neighborhood) which we view as a second
sequence. We apply a second LSTM and again extract the
long term state, which can be denoted hG, the embedding
of the graph. Last, hG is forwarded through an MLP yield-
ing a class prediction. Twenty starting vertices (i.e. per-
mutations) were sampled at inference time. Variability was
quantified with 5 random train/val/test splits for both neural
network based models. Interestingly, Table 2 shows that the
RP-RNN approach performs reasonably well in the Tox21
dataset, while underperforming in other datasets. Future
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work is needed to determine those tasks for which the RNN
and CNN approaches are better suited.

π-SGD To train with π-SGD, we sample a different ran-
dom permutation of the graph at each forward pass. In the
case of RP-Duvenaud, this involves assigning permutation-
dependent unique IDs at each forward step (as in Equa-
tion 5). In our implementation, we achieve this by build-
ing a new DeepChem object for the molecule at each for-
ward pass. This operation is expensive but we did not
consider refined code optimizations for this work. In gen-
eral, with properly optimized code, sampling permutations
need not be as expensive and allows for a tractable and the-
oretically justified procedure. Looking ahead to the test
data in order to find the largest molecule in test and val-
idation corresponds to using domain knowledge and the
modeling choice that the resulting model will only work
on molecules with at most A atoms. It is not hard to
construct a similar model that does not rely on this look-
ahead mechanism, such as assigning a one-hot encoding of

i mod Aobserved where i ∈ {1, 2, . . . , |V |} and Aobserved is
the largest molecule observed in the model building phase.

Molecule dataset details Details on the molecular
datasets are shown in Table 3. The observant reader
may notice that we report a different number of Tox21
molecules than in Wu et al. (2018). This resulted from
simultaneously finding (1) that the validation and testing
Python objects for Tox21 were empty when we first loaded
them in the early stage of development and (2) comments
in the DeepChem source code that led us to believe that
this was expected behavior. We thus split up the ‘training’
dataset rather than using the provided splits. This treatment
was the same for all models, making the comparison fair.

The number of molecules in each dataset with greater than
k = 10, 20, 30, 40, 50 molecules are 98.18%, 63.71%,
22.30%, 7.71%, 3.59% for HIV; 99.93%, 75.33%, 12.30%,
0.03%, 0.00% for MUV; and 78.07%, 33.63%, 10.39%,
3.90%, 1.97% for Tox21.
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Figure 4: Training time and model performance of k-ary models for the Tox21 task. Test-set AUC was computed for five
different random splits of train/validation/test: we show the mean ± one standard deviation. We also show the speedup
factor for training: time to train on the full graph divided by time for k-ary model. Training was performed on 48 CPUs,
making use of PyTorch’s inherent multithreading.
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Figure 5: Training time and model performance of k-ary models for the HIV task.
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Figure 6: Training time and model performance of k-ary models for the MUV task.


